
ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate
Updates

Zhimin Peng · Yangyang Xu · Ming Yan · Wotao Yin

January 11, 2022

Abstract Finding a fixed point to a nonexpansive operator, i.e., x∗ = Tx∗, abstracts many problems in
numerical linear algebra, optimization, and other areas of scientific computing. To solve fixed-point problems,
we propose ARock, an algorithmic framework in which multiple agents (machines, processors, or cores)
update x in an asynchronous parallel fashion. Asynchrony is crucial to parallel computing since it reduces
synchronization wait, relaxes communication bottleneck, and thus speeds up computing significantly. At each
step of ARock, an agent updates a randomly selected coordinate xi based on possibly out-of-date information
on x. The agents share x through either global memory or communication. If writing xi is atomic, the agents
can read and write x without memory locks.

Theoretically, we show that if the nonexpansive operator T has a fixed point, then with probability one,
ARock generates a sequence that converges to a fixed points of T . Our conditions on T and step sizes are
weaker than comparable work. Linear convergence is also obtained.

We propose special cases of ARock for linear systems, convex optimization, machine learning, as well as
distributed and decentralized consensus problems. Numerical experiments of solving sparse logistic regression
problems are presented.

Contents

1 Introduction . 2
2 Applications . 9
3 Convergence . 16
4 Experiments . 23
5 Conclusion . 25
6 Acknowledgements . 25
A Derivation of certain updates . 27
B Derivation of async-parallel ADMM for decentralized optimization . 29

Z. Peng · W. Yin
Department of Mathematics, University of California, Los Angeles, CA 90095, USA
E-mail: zhimin.peng / wotaoyin@math.ucla.edu
Y. Xu
Institute for Mathematics and its Application, University of Minnesota, Minneapolis, MN 55455, USA
E-mail: yangyang@ima.umn.edu
M. Yan
Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
E-mail: yanm@math.msu.edu

1

ar
X

iv
:1

50
6.

02
39

6v
5

 [
m

at
h.

O
C

]
 2

7
M

ay
 2

01
6

2 Z. Peng, Y. Xu, M. Yan, and W. Yin

1 Introduction

Technological advances in data gathering and storage have led to a rapid proliferation of big data in diverse
areas such as climate studies, cosmology, medicine, the Internet, and engineering [29]. The data involved in
many of these modern applications are large and grow quickly. Therefore, parallel computational approaches
are needed. This paper introduces a new approach to asynchronous parallel computing with convergence
guarantees.

In a synchronous(sync) parallel iterative algorithm, the agents must wait for the slowest agent to finish
an iteration before they can all proceed to the next one (Figure 1a). Hence, the slowest agent may cripple
the system. In contract, the agents in an asynchronous(async) parallel iterative algorithm run continuously
with little idling (Figure 1b). However, the iterations are disordered, and an agent may carry out an iteration
without the newest information from other agents.

Agent 1

Agent 2

Agent 3

t0 t1 t2

idle idle

idle

idle

(a) Sync-parallel computing

Agent 1

Agent 2

Agent 3

t0 t1 t2 t3 t4 t5 t6 t7 t10t8 t9

(b) Async-parallel computing

Fig. 1: Sync-parallel computing (left) versus async-parallel computing (right).

Asynchrony has other advantages [9]: the system is more tolerant to computing faults and communication
glitches; it is also easy to incorporate new agents.

On the other hand, it is more difficult to analyze asynchronous algorithms and ensure their convergence.
It becomes impossible to find a sequence of iterates that one completely determines the next. Nonetheless, we
let any update be a new iteration and propose an async-parallel algorithm (ARock) for the generic fixed-point
iteration. It converges if the fixed-point operator is nonexpansive (Def. 1) and has a fixed point.

Let H1, . . . ,Hm be Hilbert spaces and H := H1×· · ·×Hm be their Cartesian product. For a nonexpansive
operator T : H → H, our problem is to

find x∗ ∈ H such that x∗ = Tx∗. (1)

Finding a fixed point to T is equivalent to finding a zero of S ≡ I − T, denoted by x∗ such that 0 = Sx∗.
Hereafter, we will use both S and T for convenience.

Problem (1) is widely applicable in linear and nonlinear equations, statistical regression, machine learning,
convex optimization, and optimal control. A generic framework for problem (1) is the Krasnosel’skĭi–Mann
(KM) iteration [32]:

xk+1 = xk + α (Txk − xk), or equivalently, xk+1 = xk − αSxk, (2)

where α ∈ (0, 1) is the step size. If FixT — the set of fixed points of T (zeros of S) — is nonempty,
then the sequence (xk)k≥0 converges weakly to a point in FixT and (Txk − xk)k≥0 converges strongly to
0. The KM iteration generalizes algorithms in convex optimization, linear algebra, differential equations,

ARock: Async-Parallel Coordinate Updates 3

and monotone inclusions. Its special cases include the following iterations: alternating projection, gradi-
ent descent, projected gradient descent, proximal-point algorithm, Forward-Backward Splitting (FBS) [43],
Douglas-Rachford Splitting (DRS) [36], a three-operator splitting [19], and the Alternating Direction Method
of Multipliers (ADMM) [36,27].

In ARock, a set of p agents, p ≥ 1, solve problem (1) by updating the coordinates xi ∈ Hi, i = 1, . . . ,m,
in a random and asynchronous fashion. Algorithm 1 describes the framework. Its special forms for several
applications are given in Section 2 below.

Algorithm 1: ARock: a framework for async-parallel coordinate updates

Input : x0 ∈ H, K > 0, a distribution (p1, . . . , pm) > 0 with
∑m
i=1 pi = 1;

global iteration counter k ← 0;
while k < K, every agent asynchronously and continuously do

select ik ∈ {1, . . . ,m} with Prob(ik = i) = pi;
perform an update to xik according to (3);
update the global counter k ← k + 1;

Whenever an agent updates a coordinate, the global iteration counter k increases by one. The kth update
is applied to xik ∈ Hik , where ik ∈ {1, . . . ,m} is an independent random variable. Each coordinate update
has the form:

xk+1 = xk − ηk
mpik

Sik x̂
k, (3)

where ηk > 0 is a scalar whose range will be set later, Sikx := (0, ..., 0, (Sx)ik , 0, ..., 0), and mpik is used to
normalize nonuniform selection probabilities. In the uniform case, namely, pi ≡ 1

m for all i, we have mpik ≡ 1,
which simplifies the update (3) to

xk+1 = xk − ηkSik x̂k. (4)

Here, the point x̂k is what an agent reads from global memory to its local cache and to which Sik is applied,
and xk denotes the state of x in global memory just before the update (3) is applied. In a sync-parallel
algorithm, we have x̂k = xk, but in ARock, due to possible updates to x by other agents, x̂k can be different
from xk. This is a key difference between sync-parallel and async-parallel algorithms. In Subsection 1.2 below,
we will establish the relationship between x̂k and xk as

x̂k = xk +
∑
d∈J(k)(x

d − xd+1), (5)

where J(k) ⊆ {k − 1, . . . , k − τ} and τ ∈ Z+ is the maximum number of other updates to x during the
computation of (3). Equation (5) has appeared in [37].

The update (3) is only computationally worthy if Six is much cheaper to compute than Sx. Otherwise,
it is more preferable to apply the full KM update (2). In Section 2, we will present several applications that
have the favorable structures for ARock. The recent work [44] studies coordinate friendly structures more
thoroughly.

The convergence of ARock (Algorithm 1) is stated in Theorems 3 and 4. Here we include a shortened
version, leaving detailed bounds to the full theorems:

Theorem 1 (Global and linear convergence) Let T : H → H be a nonexpansive operator that has a
fixed point. Let (xk)k≥0 be the sequence generated by Algorithm 1 with properly bounded step sizes ηk. Then,
with probability one, (xk)k≥0 converges weakly to a fixed point of T . This convergence becomes strong if H
has a finite dimension.

4 Z. Peng, Y. Xu, M. Yan, and W. Yin

In addition, if T is demicompact (see Definition 2 below), then with probability one, (xk)k≥0 converges
strongly to a fixed point of T .

Furthermore, if S ≡ I − T is quasi-strongly monotone (see Definition 1 below), then T has a unique
fixed-point x∗, (xk)k≥0 converges strongly to x∗ with probability one, and E‖xk − x∗‖2 converges to 0 at a
linear rate.

In the theorem, the weak convergence result only requires T to be nonexpansive and has a fixed point.
In addition, the computation requires: (a) bounded step sizes; (b) random coordinate selection; and (c) a
finite maximal delay τ . Assumption (a) is standard, and we will see the bound can be O(1). Assumption
(b) is essential to both the analysis and the numerical performance of our algorithms. Assumption (c) is not
essential; an infinite delay with a light tail is allowed (but we leave it to future work). The strong convergence
result applies to all the examples in Section 2, and the linear convergence result applies to Examples 2.2 and
2.4 when the corresponding operator S is quasi-strongly monotone. Step sizes ηk are discussed in Remarks
2 and 4.

1.1 On random coordinate selection

ARock employs random coordinate selection. This subsection discusses its advantages and disadvantages.
Its main disadvantage is that an agent cannot caching the data associated with a coordinate. The variable

x and its related data must be either stored in global memory or passed through communication. A secondary
disadvantage is that pseudo-random number generation takes time, which becomes relatively significant if
each coordinate update is cheap. (The network optimization examples in Subsections 2.3 and 2.6.2 are
exceptions, where data are naturally stored in a distributed fashion and random coordinate assignments are
the results of Poisson processes.)

There are several advantages of random coordinate selection. It realizes the user-specified update fre-
quency pi for every component xi, i = 1, . . . ,m, even when different agents have different computing powers
and different coordinate updates cost different amounts of computation. Therefore, random assignment en-
sures load balance. The algorithm is also fault tolerant in the sense that if one or more agents fail, it will
still converge to a fixed-point of T . In addition, it has been observed numerically on certain problems [12]
that random coordinate selection accelerates convergence.

1.2 Uncoordinated memory access

In ARock, since multiple agents simultaneously read and update x in global memory, x̂k — the result of x
that is read from global memory by an agent to its local cache for computation — may not equal xj for any
j ≤ k, that is, x̂k may never be consistent with a state of x in global memory. This is known as inconsistent
read. In contrast, consistent read means that x̂k = xj for some j ≤ k, i.e., x̂k is consistent with a state of x
that existed in global memory.

We illustrate inconsistent read and consistent read in the following example, which is depicted in Figure
2. Consider x = [x1, x2, x3, x4]T ∈ R4 and x0 = [0, 0, 0, 0]T initially, at time t0. Suppose at time t1, agent
2 updates x1 from 0 to 1, yielding x1 = [1, 0, 0, 0]T ; then, at time t2, agent 3 updates x4 from 0 to 2,
further yielding x2 = [1, 0, 0, 2]T . Suppose that agent 1 starts reading x from the first component x1 at t0.
For consistent read (Figure 2a), agent 1 acquires a memory lock and only releases the lock after finishing
reading all of x1, x2, x3, and x4. Therefore, agent 1 will read in [0, 0, 0, 0]T . Inconsistent read, however,

ARock: Async-Parallel Coordinate Updates 5

allows agent 1 to proceed without a memory lock: agent 1 starts reading x1 at t0 (Figure 2b) and reaches
the last component, x4, after t2; since x4 is updated by agent 3 prior to it is read by agent 1, agent 1 has
read [0, 0, 0, 2]T , which is different from any of x0, x1, and x2.

x1
x2
x3
x4

0
0
0

0
0
0
0

1
0
0
2

1

0 0 0 0
Agent 1

Agent 2 write x1

x1 = 1

Agent 3
write x4

x4 = 2

t0 t1 t2

t0 t1 t2

read x1 read x2 read x3 read x4

x0 x2x1

(a) Consistent read. While agent 1 reads x in memory, it
acquires a global lock.

x1
x2
x3
x4

0
0
0

0
0
0
0

1
0
0
2

1

0 0 0 2

t

2
Agent 1

Agent 2 write x1

x1 = 1

Agent 3 write x4

x4 = 2

t0 t1 t2

ttt0 t1 t2

read x1 read x2 read x3 read x4

x0 x1 x2

(b) Inconsistent read. No lock. Agent 1 reads (0, 0, 0, 2)T , a
non-existing state of x.

Fig. 2: Consistent read versus inconsistent read: A demonstration.

Even with inconsistent read, each component is consistent under the atomic coordinate update assumption,
which will be defined below. Therefore, we can express what has been read in terms of the changes of
individual coordinates. In the above example, the first change is x11−x01 = 1, which is added to x1 just before
time t1 by agent 2, and the second change is x24 − x14 = 2, added to x4 just before time t2 by agent 3. The
inconsistent read by agent 1, which gives the result [0, 0, 0, 2]T , equals x0 + 0× (x1 − x0) + 1× (x2 − x1).

We have demonstrated that x̂k can be inconsistent, but each of its coordinates is consistent, that is, for
each i, x̂ki is an ever-existed state of xi among xki , . . . , x

k−τ
i . Suppose that x̂ki = x

d
i , where d ∈ {k, k−1, . . . , k−

τ}. Therefore, x̂ki can be related to xki through the interim changes applied to xi. Let Ji(k) ⊂ {k−1, . . . , k−τ}
be the index set of these interim changes. If Ji(k) 6= ∅, then d = min{d ∈ Ji(k)}; otherwise, d = k. In addition,

we have x̂ki = x
d
i = xki +

∑
d∈Ji(k)(x

d
i − x

d+1
i). Since the global counter k is increased after each coordinate

update, updates to xi and xj , i 6= j, must occur at different k’s and thus Ji(k)∩Jj(k) = ∅, ∀i 6= j. Therefore,
by letting J(k) := ∪iJi(k) ⊂ {k − 1, . . . , k − τ} and noticing (xdi − x

d+1
i) = 0 for d ∈ Jj(k) where i 6= j,

we have x̂ki = xki +
∑
d∈J(k)(x

d
i − x

d+1
i),∀i = 1, . . . ,m, which is equivalent to (5). Here, we have made two

assumptions:

– atomic coordinate update: a coordinate is not further broken to smaller components during an update;
they are all updated at once.

– bounded maximal delay τ : during any update cycle of an agent, x in global memory is updated at most
τ times by other agents.

When each coordinate is a single scalar, updating the scalar is a single atomic instruction on most modern
hardware, so the first assumption naturally holds, and our algorithm is lock-free. The case where a coordinate
is a block that includes multiple scalars is discussed in the next subsection.

6 Z. Peng, Y. Xu, M. Yan, and W. Yin

1.2.1 Block coordinate

In the “block coordinate” case (updating a block of several coordinates each time), the atomic coordinate
update assumption can be met by either employing a per-coordinate memory lock or taking the following
dual-memory approach: Store two copies of each coordinate xi ∈ Hi in global memory, denoting them as

x
(0)
i and x

(1)
i ; let a bit αi ∈ {0, 1} point to the active copy; an agent will only read xi from the active copy

x
(αi)
i ; before an agent updates the components of xi, it obtains a memory lock to the inactive copy x

(1−αi)
i

to prevent other agents from simultaneously updating it; then after it finishes updating x
(1−αi)
i , flip the bit

αi so that other agents will begin reading from the updated copy. This approach never blocks any read of
xi, yet it eliminates inconsistency.

1.3 Straightforward generalization

Our async-parallel coordinate update scheme (3) can be generalized to (overlapping) block coordinate updates
after a change to the step size. Specifically, the scheme (3) can be generalized to

xk+1 = xk − ηk
npik

(Uik ◦ S)x̂k, (6)

where Uik is randomly drawn from a set of operators {U1, . . . , Un} (n ≤ m), Ui : H → H, following the
probability P (ik = i) = pi, i = 1, . . . , n (pi > 0, and

∑n
i=1 pi = 1). The operators must satisfy

∑n
i=1 Ui = IH

and
∑n
i=1 ‖Uix‖2 ≤ C‖x‖2 for some C > 0.

Let Ui : x 7→ (0, . . . , 0, xi, 0, . . . , 0), i = 1, . . . ,m, which has C = 1; then (6) reduces to (3). IfH is endowed
with a metric M such that ρ1‖x‖2 ≤ ‖x‖2M ≤ ρ2‖x‖2 (e.g., the metric in the Condat-Vũ primal-dual splitting
[16,55]), then we have

m∑
i=1

‖Uix‖2M ≤ ρ2
m∑
i=1

‖Uix‖2 = ρ2‖x‖2 ≤
ρ2
ρ1
‖x‖2M .

In general, multiple coordinates can be updated in (6). Consider linear Ui : x 7→ (ai1x1, · · · , aimxm), i =
1, . . . ,m, where

∑n
i=1 aij = 1 for each j. Then, for C := max

{∑n
i=1 a

2
i1, · · · ,

∑n
i=1 a

2
im

}
, we have

n∑
i=1

‖Uix‖2 =

n∑
i=1

m∑
j=1

a2ij‖xj‖2 =

m∑
j=1

n∑
i=1

a2ij‖xj‖2 ≤ C‖x‖2.

1.4 Special cases

If there is only one agent (p = 1), ARock (Algorithm 1) reduces to randomized coordinate update, which
includes the special case of randomized coordinate descent [41] for convex optimization. Sync-parallel coor-
dinate update is another special case of ARock corresponding to x̂k ≡ xk. In both cases, there is no delay,
i.e., τ = 0 and J(k) = ∅. In addition, the step size ηk can be more relaxed. In particular, if pi = 1

m , ∀i, then
we can let ηk = η, ∀k, for any η < 1, or η < 1/α when T is α-averaged (see Definition 2 for the definition of
an α-averaged operator).

ARock: Async-Parallel Coordinate Updates 7

1.5 Related work

Chazan and Miranker [14] proposed the first async-parallel method in 1969. The method was designed for
solving linear systems. Later, async-parallel methods have been successful applied in many fields, e.g., linear
systems [3,10,24,51], nonlinear problems [4,5], differential equations [1,2,13,20], consensus problems [34,
23], and optimization [30,37,38,52,59]. We review the theory for async-parallel fixed-point iteration and its
applications.

General fixed point problems. Totally async-parallel1 iterative methods for a fixed-point problem go
back as early as to Baudet [5], where the operator was assumed to be P-contraction.2 Later, Bertsekas [7]
generalized the P-contraction assumption and showed convergence. Frommer and Szyld [25] reviewed the
theory and applications of totally async-parallel iterations prior to 2000. This review summarized convergence
results under the conditions in [7]. However, ARock can be applied to solve many more problems since our
nonexpansive assumption, though not strictly weaker than P-contraction, is more pervasive. As opposed to
totally asynchronous methods, Tseng, Bertsekas, and Tsitsiklis [8,54] assumed quasi-nonexpansiveness3 and
proposed an async-parallel method, converging under an additional assumption, which is difficult to justify in
general but can be established for problems such as linear systems and strictly convex network flow problems
[8,54].

The above works assign coordinates in a deterministic manner. Different from them, ARock is stochastic,
works for nonexpansive operators, and is more applicable.

Linear, nonlinear, and differential equations. The first async-parallel method for solving linear
equations was introduced by Chazan and Miranker in [14]. They proved that on solving linear systems, P-
contraction was necessary and sufficient for convergence. The performance of the algorithm was studied by
Iain et al. [10,51] on different High Performance Computing (HPC) architectures. Recently, Avron et al. [3]
revisited the async-parallel coordinate update and showed its linear convergence for solving positive-definite
linear systems. Tarazi and Nabih [22] extended the poineering work [14] to solving nonlinear equations,
and the async-parallel methods have also been applied for solving differential equations, e.g., in [1,2,13,20].
Except for [3], all these methods are totally async-parallel with the P-contraction condition or its variants.
On solving a positive-definite linear system, [3] made assumptions similar to ours, and it obtained better
linear convergence rate on that special problem.

Optimization. The first async-parallel coordinate update gradient-projection method was due to Bert-
sekas and Tsitsiklis [8]. The method solves constrained optimization problems with a smooth objective and
simple constraints. It was shown that the objective gradient sequence converges to zero. Tseng [53] further
analyzed the convergence rate and obtained local linear convergence based on the assumptions of isocost
surface separation and a local Lipschitz error bound. Recently, Liu et al. [38] developed an async-parallel
stochastic coordinate descent algorithm for minimizing convex smooth functions. Later, Liu and Wright [37]
suggested an async-parallel stochastic proximal coordinate descent algorithm for minimizing convex com-
posite objective functions. They established the convergence of the expected objective-error sequence for
convex functions. Hsieh et al. [30] proposed an async-parallel dual coordinate descent method for solving
`2 regularized empirical risk minimization problems. Other async-parallel approaches include asynchronous
ADMM [28,56,59,31]. Among them, [56,31] use an asynchronous clock, and [28,59] use a central node to

1 “Totally asynchronous” means no upper bound on the delays; however, other conditions are required, for example: each
coordinate must be updated infinitely many times. By default, “asynchronous” in this paper assumes a finite maximum delay.

2 An operator T : Rn → Rn is P-contraction if |T (x)− T (y)| ≤ P |x− y|, component-wise, where |x| denotes the vector with
components |xi|, i = 1, ..., n, and P ∈ Rn×n is a nonnegative matrix with a spectral radius strictly less than 1.

3 An operator T : H → H is quasi-nonexpansive if ‖Tx− x∗‖ ≤ ‖x− x∗‖, ∀x ∈ H, x∗ ∈ FixT .

8 Z. Peng, Y. Xu, M. Yan, and W. Yin

update the dual variable; they do not deal with delay or inconsistency. Async-parallel stochastic gradient
descent methods have also been considered in [39,48].

Our framework differs from the recent surge of the aforementioned sync-parallel and async-parallel co-
ordinate descent algorithms (e.g., [45,33,38,37,30,49]). While they apply to convex function minimization,
ARock covers more cases (such as ADMM, primal-dual, and decentralized methods) and also provides se-
quence convergence. In Section 2, we will show that some of the existing async-parallel coordinate descent
algorithms are special cases of ARock, through relating their optimality conditions to nonexpansive opera-
tors. Another difference is that the convergence of ARock only requires a nonexpansive operator with a fixed
point, whereas properties such as strong convexity, bounded feasible set, and bounded sequence, which are
seen in some of the recent literature for async-parallel convex minimization, are unnecessary.

Others. Besides solving equations and optimization problems, there are also applications of async-
parallel algorithms to optimal control problems [34], network flow problems [21], and consensus problems of
multi-agent systems [23].

1.6 Contributions

Our contributions and techniques are summarized below:

– ARock is the first async-parallel coordinate update framework for finding a fixed point to a nonexpansive
operator.

– By introducing a new metric and establishing stochastic Fejér monotonicity, we show that, with probabil-
ity one, ARock converges to a point in the solution set; linear convergence is obtained for quasi-strongly
monotone operators.

– Based on ARock, we introduce an async-parallel algorithm for linear systems, async-parallel ADMM al-
gorithms for distributed or decentralized computing problems, as well as async-parallel operator-splitting
algorithms for nonsmooth minimization problems. Some problems are treated in they async-parallel fash-
ion for the first time in history. The developed algorithms are not straightforward modifications to their
serial versions because their underlying nonexpansive operators must be identified before applying ARock.

1.7 Notation, definitions, background of monotone operators

Throughout this paper, H denotes a separable Hilbert space equipped with the inner product 〈·, ·〉 and norm
‖ · ‖, and (Ω,F , P) denotes the underlying probability space, where Ω, F , and P are the sample space,
σ-algebra, and probability measure, respectively. The map x : (Ω,F) → (H,B), where B is the Borel σ-
algebra, is an H-valued random variable. Let (xk)k≥0 denote either a sequence of deterministic points in H
or a sequence of H-valued random variables, which will be clear from the context, and let xi ∈ Hi denote the
ith coordinate of x. In addition, we let X k := σ(x0, x̂1, x1, ..., x̂k, xk) denote the smallest σ-algebra generated
by x0, x̂1, x1, ..., x̂k, xk. “Almost surely” is abbreviated as “a.s.”, and the n product space of H is denoted
by Hn. We use → and ⇀ for strong convergence and weak convergence, respectively.

We define FixT := {x ∈ H | Tx = x} as the set of fixed points of operator T , and, in the product space,
we let X∗ := {(x∗, x∗, ..., x∗) | x∗ ∈ FixT} ⊆ Hτ+1.

Definition 1 An operator T : H → H is c-Lipschitz, where c ≥ 0, if it satisfies ‖Tx − Ty‖ ≤ c‖x − y‖,
∀x, y ∈ H. In particular, T is nonexpansive if c ≤ 1, and contractive if c < 1.

ARock: Async-Parallel Coordinate Updates 9

Definition 2 Consider an operator T : H → H.

– T is α-averaged with α ∈ (0, 1), if there is a nonexpansive operator R : H → H such that T = (1 −
α)IH + αR, where IH : H → H is the identity operator.

– T is β-cocoercive with β > 0, if 〈x− y, Tx− Ty〉 ≥ β‖Tx− Ty‖2, ∀x, y ∈ H.
– T is µ-strongly monotone, where µ > 0, if it satisfies 〈x− y, Tx−Ty〉 ≥ µ‖x− y‖2, ∀x, y ∈ H. When the

inequality holds for µ = 0, T is monotone.
– T is quasi-µ-strongly monotone, where µ > 0, if it satisfies 〈x− y, Tx〉 ≥ µ‖x− y‖2, ∀x ∈ H, y ∈ zerT :=
{y ∈ H | Ty = 0}. When the inequality holds for µ = 0, T is quasi-monotone.

– T is demicompact [46] at x ∈ H if for every bounded sequence (xk)k≥0 in H such that Txk − xk → x,
there exists a strongly convergent subsequence.

Averaged operators are nonexpansive. By the Cauchy-Schwarz inequality, a β-cocoercive operator is 1
β -

Lipschitz; the converse is generally untrue, but true for the gradients of convex differentiable functions.
Examples are given in the next section.

2 Applications

In this section, we provide some applications that are special cases of the fixed-point problem (1). For each
application, we identify its nonexpansive operator T (or the corresponding operator S) and implement the
conditions in Theorem 1. For simplicity, we use the uniform distribution, p1 = · · · = pm = 1/m, and apply
the simpler update (4) instead of (3).

2.1 Solving linear equations

Consider the linear system Ax = b, where A ∈ Rm×m is a nonsingular matrix with nonzero diagonal
entries. Let A = D + R, where D and R are the diagonal and off-diagonal parts of A, respectively. Let
M := −D−1R and T (x) := Mx + D−1b. Then the system Ax = b is equivalent to the fixed-point problem
x = D−1(b − Rx) =: T (x), where T is nonexpansive if the spectral norm ‖M‖2 satisfies ‖M‖2 ≤ 1. The
iteration xk+1 = T (xk) is widely known as the Jacobi algorithm. Let S = I −T . Each update Sik x̂

k involves
multiplying just the ikth row of M to x and adding the ikth entry of D−1b, so we arrive at the following
algorithm.

Algorithm 2: ARock for linear equations

Input : x0 ∈ Rn, K > 0.
set the global iteration counter k = 0;
while k < K, every agent asynchronously and continuously do

select ik ∈ {1, . . . ,m} uniformly at random;

subtract ηk
aikik

(
∑
j aikj x̂

k
j − bik) from the component xik of the variable x;

update the global counter k ← k + 1;

Proposition 1 [6, Example 22.5] Suppose that T is c-Lipschitz continuous with c ∈ [0, 1). Then, I − T is
(1− c)-strongly monotone.

Suppose ‖M‖2 < 1. Since T is ‖M‖2-Lipschitz continuous, by Proposition 1, S is (1 − ‖M‖2)-strongly
monotone. By Theorem 4, Algorithm 2 converges linearly.

10 Z. Peng, Y. Xu, M. Yan, and W. Yin

2.2 Minimize convex smooth function

Consider the optimization problem

minimize
x∈H

f(x), (7)

where f is a closed proper convex differentiable function and ∇f is L-Lipschitz continuous, L > 0. Let
S := 2

L ∇f . As f is convex and differentiable, x is a minimizer of f if and only if x is a zero of S. Note
that S is 1

2 -cocoercive. By Lemma 1, T ≡ I − S is nonexpansive. Applying ARock, we have the following
iteration:

xk+1 = xk − ηkSik x̂k, (8)

where Sikx = 2
L (0, ..., 0,∇ikf(x), 0, ..., 0)T . Note that ∇f needs a structure that makes it cheap to compute

∇ikf(x̂k). Let us give two such examples: (i) quadratic programming: f(x) = 1
2x

TAx− bTx, where ∇f(x) =

Ax−b and∇ikf(x̂k) only depends on a part of A and b; (ii) sum of sparsely supported functions: f =
∑N
j=1 fj

and ∇f =
∑N
j=1∇fj , where each fj depends on just a few variables.

Theorem 3 below guarantees the convergence of (xk)k≥0 if ηk ∈ [ηmin,
1

2τ/
√
m+1

). In addition, If f(x) is

restricted strongly convex, namely, for any x ∈ H and x∗ ∈ X∗, where X∗ is the solution set to (7), we have
〈x−x∗,∇f(x)〉 ≥ µ‖x−x∗‖2 for some µ > 0, then S is quasi-strongly monotone with modulus µ. According
to Theorem 4, iteration (8) converges at a linear rate if the step size meets the condition therein.

Our convergence and rates are given in term of the distance to the solution set X∗. In comparison, the
results in the work [38] are given in terms of objective error under the assumption of a uniformly bounded
(xk)k≥0. In addition, their step size decays like O(1

τρτ) for some ρ > 1 depending on τ , and our O(1
τ) is

better. Under similar assumptions, Bertsekas and Tsitsiklis [8, Section 7.5] also describes an algorithm for (7)
and proves only subsequence convergence [8, Proposition 5.3] in Rn.

2.3 Decentralized consensus optimization

Consider that m agents in a connected network solve the consensus problem of minimizing
∑m
i=1 fi(x), where

x ∈ Rd is the shared variable and the convex differentiable function fi is held privately by agent i. We assume
that ∇fi is Li-Lipschitz continuous for all i. A decentralized gradient descent algorithm [40] can be developed
based on the equivalent formulation

minimize
x1,...,xm∈Rd

f(x) :=
∑m
i=1 fi(xi), subject to Wx = x, (9)

where x = (x1, ..., xm)T ∈ Rm×d and W ∈ Rm×m is the so-called mixing matrix satisfying: Wx = x if
and only if x1 = · · · = xm. For i 6= j, if wi,j 6= 0, then agent i can communicate with agent j; otherwise
they cannot. We assume that W is symmetric and doubly stochastic. Then, the decentralized consensus
algorithm [40] can be expressed as xk+1 = Wxk − γ∇f(xk) = xk − γ(∇f(xk) + 1

γ (I − W)xk), where

∇f(x) ∈ Rm×d is a matrix with its ith row equal to (∇fi(xi))T ; see [58]. The computation of Wxk involves
communication between agents, and ∇fi(xi) is independently computed by each agent i. The iteration is
equivalent to the gradient descent iteration applied to minx

∑m
i=1 fi(xi) + 1

2γxT (I − W)x. To apply our

algorithm, we let S := 2
L∇F = 2

L (∇f + 1
γ (I −W)) with L = maxi Li + (1− λmin(W))/γ, where λmin(A) is

the smallest eigenvalue of W . Computing Six̂
k reduces to computing ∇fi(x̂ki) and the ith entry of W x̂k or

ARock: Async-Parallel Coordinate Updates 11∑
j wi,j x̂

k
j , which involves only x̂ki and x̂kj from the neighbors of agent i. Note that since each agent i can

store its own xi locally, we have x̂ki ≡ xki .
If the agents are p independent Poisson processes and that each agent i has activation rate λi, then

the probability that agent i activates before other agents is equal to λi∑p
i=1 λi

[35] and therefore our random

sample scheme holds and ARock applies naturally. The algorithm is summarized as follows:

Algorithm 3: ARock for decentralized optimization (9)

Input : Each agent i sets x0i ∈ Rd, K > 0.
while k < K do

when an agent i is activated, xk+1
i = xki −

ηk
L (∇fi(xki) + 1

γ (xki −
∑
j wi,j x̂

k
j));

increase the global counter k ← k + 1;

2.4 Minimize smooth + nonsmooth functions

Consider the problem

minimize
x∈H

f(x) + g(x), (10)

where f is closed proper convex and g is convex and L-Lipschitz differentiable with L > 0. Problems in the
form of (10) arise in statistical regression, machine learning, and signal processing and include well-known
problems such as the support vector machine, regularized least-squares, and regularized logistic regression.
For any x ∈ H and scalar γ ∈ (0, 2

L), define the proximal operator proxf : H → H and the reflective-proximal
operator reflf : H → H as

proxγf (x) := arg min
y∈H

f(y) +
1

2γ
‖y − x‖2 and reflγf := 2proxγf − IH, (11)

respectively, and define the following forward-backward operator TFBS := proxγf ◦ (I − γ∇g). Because

proxγf is 1
2 -averaged and (I − γ∇g) is γL

2 -averaged, TFBS is α-averaged for α ∈ [23 , 1) [6, Propositions 4.32
and 4.33]. Define S := I − TFBS = I − proxγf ◦ (I − γ∇g). When we apply Algorithm 1 to T = TFBS to
solve (10), and assume f is separable in all coordinates, that is, f(x) =

∑m
i=1 fi(xi), the update for the ikth

selected coordinate is

xk+1
ik

= xkik − ηk
(
x̂kik − proxγfik

(x̂kik − γ∇ikg(x̂k))
)
, (12)

Examples of separable functions include `1 norm, `2 norm square, the Huber function, and the indicator func-
tion of box constraints, i.e., {x|ai ≤ xi ≤ bi, ∀i}. They all have simple prox maps. If ηk ∈ [ηmin,

1
2τ/
√
m+1

),

then the convergence is guaranteed by Theorem 3. To show linear convergence, we need to assume that
g(x) is strongly convex. Then, Proposition 2 below shows that proxγf ◦ (I − γ∇g) is a quasi-contractive
operator, and by Proposition 1, operator I − proxγf ◦ (I − γ∇g) is quasi-strongly monotone. Finally, linear
convergence and its rate follow from Theorem 4.

Proposition 2 Assume that f is a closed proper convex function, and g is L-Lipschitz differentiable and
strongly convex with modulus µ > 0. Let γ ∈ (0, 2

L). Then, both I − γ∇g and proxγf ◦ (I − γ∇g) are
quasi-contractive operators.

12 Z. Peng, Y. Xu, M. Yan, and W. Yin

Proof We first show that I − γ∇g is a quasi-contractive operator. Note

‖(x− γ∇g(x))− (x∗ − γ∇g(x∗))‖2

=‖x− x∗‖2 − 2γ〈x− x∗,∇g(x)−∇g(x∗)〉+ γ2‖∇g(x)−∇g(x∗)‖2

≤‖x− x∗‖2 − γ(2− γL)〈x− x∗,∇g(x)−∇g(x∗)〉
≤(1− 2γµ+ µγ2L)‖x− x∗‖2,

where the first inequality follows from the Baillon-Haddad theorem4 and the second one from the strong
convexity of g. Hence, I − γ∇g is quasi-contractive if 0 < γ < 2/L. Since f is convex, proxγf is firmly
nonexpansive, and thus we immediately have the quasi-contractiveness of proxγf ◦ (I − γ∇g) from that of
I − γ∇g.

2.5 Minimize nonsmooth + nonsmooth functions

Consider

minimize
x∈H

f(x) + g(x), (13)

where both f(x) and g(x) are closed proper convex and their prox maps are easy to compute. Define the
Peaceman-Rachford [36] operator:

TPRS := reflγf ◦ reflγg.

Since both reflγf and reflγg are nonexpansive, their composition TPRS is also nonexpansive. Let S :=
I − TPRS. When applying ARock to T = TPRS to solve problem (13), the update (6) reduces to:

zk+1 = zk − ηk Uik ◦
(
I − reflγf ◦ reflγg

)
ẑk, (14)

where we use z instead of x since the limit z∗ of (zk)k≥0 is not a solution to (13); instead, a solution must be
recovered via x∗ = proxγgz

∗. The convergence follows from Theorem 3 and that TPRS is nonexpansive. If
either f or g is strongly convex, then TPRS is contractive and thus by Theorem 4, ARock converges linearly.
Finer convergence rates follow from [17,18]. A naive implementation of (14) is

x̂k = proxγg(ẑ
k), (15a)

ŷk = proxγf (2x̂k − ẑk), (15b)

zk+1 = zk + 2ηk Uik(ŷk − x̂k), (15c)

where x̂k and ŷk are intermediate variables. Note that the order in which the proximal operators are applied
to f and g affects both zk [57] and whether coordinate-wise updates can be efficiently computed. Next, we
present two special cases of (13) in Subsections 2.5.1 and 2.6 and discuss how to efficiently implement the
update (15).

4 Let g be a convex differentiable function. Then, ∇g is L-Lipschitz if and only if it is 1
L

-cocoercive.

ARock: Async-Parallel Coordinate Updates 13

2.5.1 Feasibility problem

Suppose that C1, ..., Cm are closed convex subsets of H with a nonempty intersection. The problem is to find
a point in the intersection. Let ICi be the indicator function of the set Ci, that is, ICi(x) = 0 if x ∈ Ci and
∞ otherwise. The feasibility problem can be formulated as the following

minimize
x=(x1,...,xm)∈Hm

m∑
i=1

ICi(xi) + I{x1=···=xm}(x).

Let zk = (zk1 , . . . , z
k
m) ∈ Hm, ẑk = (ẑk1 , . . . , ẑ

k
m) ∈ Hm, and ˆ̄zk ∈ H. We can implement (15) as follows (see

Appendix A for the step-by-step derivation):

ˆ̄z
k

= 1
m

∑m
i=1 ẑ

k
i , (16a)

ŷkik = ProjCik

(
2ˆ̄z
k − ẑkik

)
, (16b)

zk+1
ik

= zkik + 2ηk(ŷkik − ˆ̄z
k
). (16c)

The update (16) can be implemented as follows. Let global memory hold z1, . . . , zm, as well as z̄ = 1
m

∑m
i=1 zi.

At the kth update, an agent independently generates a random number ik ∈ {1, . . . ,m}, then reads zik
as ẑkik and z̄ as ˆ̄z

k
, and finally computes ŷik and updates zik in global memory according to (16). Since

z̄ is maintained in global memory, the agent updates z̄ according to z̄k+1 = z̄k + 1
m (zk+1

ik
− zkik). This

implementation saves each agent from computing (16a) or reading all z1, . . . , zm. Each agent only reads zik
and z̄, executes (16b), and updates zik (16c) and z̄.

2.6 Async-parallel ADMM

This is another application of (15). Consider

minimize
x∈H1, y∈H2

f(x) + g(y) subject to Ax+By = b, (17)

where H1 and H2 are Hilbert spaces, A and B are bounded linear operators. We apply the update (15) to
the Lagrange dual of (17) (see [26] for the derivation):

minimize
w∈G

df (w) + dg(w), (18)

where df (w) := f∗(A∗w), dg(w) := g∗(B∗w) − 〈w, b〉, and f∗ and g∗ denote the convex conjugates of f
and g, respectively. The proximal maps induced by df and dg can be computed via solving subproblems
that involve only the original terms in (17): z+ = proxγdf (z) can be computed by (see Appendix A for the
derivation) {

x+ ∈ arg minx f(x)− 〈z,Ax〉+ γ
2 ‖Ax‖

2,

z+ = z − γAx+,
(19)

and z+ = proxγdg (z) by {
y+ ∈ arg miny g(y)− 〈z,By − b〉+ γ

2 ‖By − b‖
2,

z+ = z − γ(By+ − b).
(20)

14 Z. Peng, Y. Xu, M. Yan, and W. Yin

Plugging (19) and (20) into (15) yields the following naive implementation

ŷk ∈ arg min
y
g(y)− 〈ẑk, By − b〉+

γ

2
‖By − b‖2, (21a)

ŵkg = ẑk − γ(Bŷk − b), (21b)

x̂k ∈ arg min
x
f(x)− 〈2ŵkg − ẑk, Ax〉+

γ

2
‖Ax‖2, (21c)

ŵkf = 2ŵkg − ẑk − γAx̂k, (21d)

zk+1
ik

= zkik + ηk(ŵkf,ik − ŵ
k
g,ik

). (21e)

Note that 2ηk in (15c) becomes ηk in (21e) because ADMM is equivalent to the Douglas-Rachford operator,
which is the average of the Peaceman-Rachford operator and the identity operator [36]. Under favorable
structures, (21) can be implemented efficiently. For instance, when A and B are block diagonal matrices
and f, g are corresponding block separable functions, steps (21a)–(21d) reduce to independent computation
for each i. Since only ŵkf,ik and ŵkg,ik are needed to update the main variable zk, we only need to com-
pute (21a)–(21d) for the ikth block. This is exploited in distributed and decentralized ADMM in the next
two subsections.

2.6.1 Async-parallel ADMM for consensus optimization

Consider the consensus optimization problem:

minimize
xi,y∈H

∑m
i=1 fi(xi) subject to xi − y = 0, ∀i = 1, ...,m, (22)

where fi(xi) are proper close convex functions. Rewrite (22) to the ADMM form:

minimize
xi,y∈H

∑m
i=1 fi(xi) + g(y)

subject to

IH 0 · · · 0
0 IH · · · 0

. . .

0 0 · · · IH

x1
x2
...
xm

−

IH
IH
...
IH

 y = 0, (23)

where g = 0. Now apply the async-parallel ADMM (21) to (23) with dual variables z1, ..., zm ∈ H. In
particular, the update (21a), (21b), (21c), (21d) reduce to

ŷk = arg miny
{∑m

i=1〈ẑki , y〉+ γm
2 ‖y‖

2
}

= − 1
γm

∑m
i=1 ẑ

k
i

(ŵkdg)i = ẑki + γ ŷk (24)

x̂ki = arg minxi
{
fi(xi)− 〈2(ŵkdg)i − ẑki , xi〉+ γ

2 ‖xi‖
2
}
,

(ŵkdf)i = 2(ŵkdg)i − ẑki − γ x̂ki

ARock: Async-Parallel Coordinate Updates 15

Therefore, we obtain the following async-parallel ADMM algorithm for the problem (22). This algorithm
applies to all the distributed applications in [11].

Algorithm 4: ARock for consensus optimization

Input : set shared variables y0, z0i , ∀i, and K > 0.
while k < K every agent asynchronously and continuously do

choose ik from {1, ...,m} with equal probability;

evaluate (ŵkdg)ik , x̂kik , and (ŵkdf)ik following (24);

update zk+1
ik

= zkik + ηk ((ŵkdf)ik − (ŵkdg)ik);

update yk+1 = yk + 1
γm (zkik − z

k+1
ik

);

update the global counter k ← k + 1;

2.6.2 Async-parallel ADMM for decentralized optimization

Let V = {1, ...,m} be a set of agents and E = {(i, j) | if agent i connects to agent j, i < j} be the set of
undirected links between the agents. Consider the following decentralized consensus optimization problem
on the graph G = (V,E):

minimize
x1,...,xm∈Rd

f(x1, . . . , xm) :=
∑m
i=1 fi(xi), subject to xi = xj , ∀(i, j) ∈ E, (25)

where x1, ..., xm ∈ Rd are the local variables and each agent can only communicate with its neighbors in
G. By introducing the auxiliary variable yij associated with each edge (i, j) ∈ E, the problem (25) can be
reformulated as:

minimize
xi,yij

∑m
i=1 fi(xi), subject to xi = yij , xj = yij , ∀(i, j) ∈ E. (26)

Define x = (x1, ..., xm)T and y = (yij)(i,j)∈E ∈ R|E|d to rewrite (26) as

minimize
x,y

∑m
i=1 fi(xi), subject to Ax+By = 0, (27)

for proper matrices A and B. Applying the async-parallel ADMM (21) to (27) gives rise to the following
simplified update: Let E(i) be the set of edges connected with agent i and |E(i)| be its cardinality. Let
L(i) = {j | (j, i) ∈ E(i), j < i} and R(i) = {j | (i, j) ∈ E(i), j > i}. To every pair of constraints xi = yij
and xj = yij , (i, j) ∈ E, we associate the dual variables zij,i and zij,j , respectively. Whenever some agent i
is activated, it calculates

x̂ki = arg min
xi

fi(xi) +
(∑
l∈L(i)

ẑkli,l +
∑
r∈R(i)

ẑkir,r
)
xi +

γ

2
|E(i)| · ‖xi‖2, (28a)

zk+1
li,i =zkli,i − ηk((ẑkli,i + ẑli,l)/2 + γx̂ki), ∀l ∈ L(i), (28b)

zk+1
ir,i =zkir,i − ηk((ẑkir,i + ẑir,r)/2 + γx̂ki), ∀r ∈ R(i). (28c)

16 Z. Peng, Y. Xu, M. Yan, and W. Yin

We present the algorithm based on (28) for problem (25) in Algorithm 5.

Algorithm 5: ARock for the decentralized problem (26)

Input : Each agent i sets the dual variables z0e,i = 0 for e ∈ E(i), K > 0.

while k < K, any activated agent i do
(previously received ẑkli,l from neighbors l ∈ L(i) and ẑkir,r from r ∈ R(i));

update x̂ki according to (28a);

update zk+1
li,i and zk+1

ir,i according to (28b) and (28c), respectively;

send zk+1
li,i to neighbors l ∈ L(i) and zk+1

ir,i to neighbors r ∈ R(i);

Algorithm 5 activates one agent at each iteration and updates all the dual variables associated with the
agent. In this case, only one-sided communication is needed, for sending the updated dual variables in the
last step. We allow this communication to be delayed in the sense that agent i’s neighbors may be activated
and start their computation before receiving the latest dual variables from agent i.

Our algorithm is different from the asynchronous ADMM algorithm by Wei and Ozdaglar [56]. Their
algorithm activates an edge and its two associated agents at each iteration and thus requires two-sided
communication at each activation. We can recover their algorithm as a special case by activating an edge
(i, j) ∈ E and its associated agents i and j at each iteration, updating the dual variables zij,i and zij,j
associated with the edge, as well as computing the intermediate variables xi, xj , and yij . The updates
are derived from (27) with the orders of x and y swapped. Note that [56] does not consider the situation
that adjacent edges are activated in a short period of time, which may cause overlapped computation and
delay communication. Indeed, their algorithm corresponds to τ = 0 and the corresponding stepsize ηk ≡ 1.
Appendix B presents the steps to derive the algorithms in this subsection.

3 Convergence

We establish weak and strong convergence in Subsection 3.1 and linear convergence in Subsection 3.2. Step
size selection is also discussed.

3.1 Almost sure convergence

Assumption 1 Throughout the our analysis, we assume pmin := mini pi > 0 and

Prob(ik = i | X k) = Prob(ik = i) = pi, ∀i, k. (29)

We let |J(k)| be the number of elements in J(k) (see Subsection 1.2). Only for the purpose of analysis, we
define the (never computed) full update at kth iteration:

x̄k+1 := xk − ηkSx̂k. (30)

Lemma 1 below shows that T is nonexpansive if and only if S is 1/2-cocoercive.

Lemma 1 Operator T : H → H is nonexpansive if and only if S = I−T is 1/2-cocoercive, i.e., 〈x−y, Sx−
Sy〉 ≥ 1

2‖Sx− Sy‖
2,∀ x, y ∈ H.

ARock: Async-Parallel Coordinate Updates 17

Proof See textbook [6, Proposition 4.33] for the proof of the “if” part, and the “only if” part, though missing
there, follows by just reversing the proof.

The lemma below develops an an upper bound for the expected distance between xk+1 and any x∗ ∈ FixT .

Lemma 2 Let (xk)k≥0 be the sequence generated by Algorithm 1. Then for any x∗ ∈ FixT and γ > 0 (to
be optimized later), we have

E
(
‖xk+1 − x∗‖2

∣∣X k) ≤‖xk − x∗‖2 + γ
m

∑
d∈J(k) ‖xd − xd+1‖2

+ 1
m

(
|J(k)|
γ + 1

mpmin
− 1

ηk

)
‖xk − x̄k+1‖2.

(31)

Proof Recall Prob(ik = i) = pi. Then we have

E
(
‖xk+1 − x∗‖2 | X k

)
(3)
= E

(
‖xk − ηk

mpik
Sik x̂

k − x∗‖2 | X k
)

= ‖xk − x∗‖2 + E
(

2ηk
mpik

〈
Sik x̂

k, x∗ − xk
〉

+
η2k

m2p2ik
‖Sik x̂k‖2

∣∣X k)
(29)
= ‖xk − x∗‖2 + 2ηk

m

∑m
i=1

〈
Six̂

k, x∗ − xk
〉

+
η2k
m2

∑m
i=1

1
pi
‖Six̂k‖2

= ‖xk − x∗‖2 + 2ηk
m

〈
Sx̂k, x∗ − xk

〉
+

η2k
m2

∑m
i=1

1
pi
‖Six̂k‖2.

(32)

Note that

m∑
i=1

1

pi
‖Six̂k‖2 ≤

1

pmin

m∑
i=1

‖Six̂k‖2 =
1

pmin
‖Sx̂k‖2 (30)

=
1

η2kpmin
‖xk − x̄k+1‖2, (33)

and

〈Sx̂k, x∗ − xk〉
(5)
= 〈Sx̂k, x∗ − x̂k +

∑
d∈J(k)(x

d − xd+1)〉
(30)
= 〈Sx̂k, x∗ − x̂k〉+ 1

ηk

∑
d∈J(k)〈xk − x̄k+1, xd − xd+1〉

≤〈Sx̂k − Sx∗, x∗ − x̂k〉+ 1
2ηk

∑
d∈J(k)

(
1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2
)

(34)

≤− 1
2‖Sx̂

k‖2 + 1
2ηk

∑
d∈J(k)(

1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2)

(30)
= − 1

2η2k
‖xk − x̄k+1‖2 + |J(k)|

2γηk
‖xk − x̄k+1‖2 + γ

2ηk

∑
d∈J(k) ‖xd − xd+1‖2,

where the first inequality follows from the Young’s inequality. Plugging (33) and (34) into (32) gives the
desired result.

We need the following lemma on nonnegative almost supermartingales [50].

18 Z. Peng, Y. Xu, M. Yan, and W. Yin

Lemma 3 ([50, Theorem 1]) Let F = (Fk)k≥0 be a sequence of sub-sigma algebras of F such that ∀k ≥ 0,
Fk ⊂ Fk+1. Define `+(F) as the set of sequences of [0,+∞)-valued random variables (ξk)k≥0, where ξk is
Fk measurable, and `1+(F) := {(ξk)k≥0 ∈ `+(F)|

∑
k ξk < +∞ a.s.}. Let (αk)k≥0, (vk)k≥0 ∈ `+(F), and

(ηk)k≥0, (ξk)k≥0 ∈ `1+(F) be such that

E(αk+1|Fk) + vk ≤ (1 + ξk)αk + ηk.

Then (vk)k≥0 ∈ `1+(F) and αk converges to a [0,+∞)-valued random variable a.s..

Let Hτ+1 =
∏τ
i=0H be a product space and 〈· | ·〉 be the induced inner product:

〈
(z0, . . . , zτ) | (y0, . . . , yτ)

〉
=

τ∑
i=0

〈zi, yi〉, ∀(z0, . . . , zτ), (y0, . . . , yτ) ∈ Hτ+1.

Let M ′ be a symmetric (τ + 1)× (τ + 1) tri-diagonal matrix with its main diagonal as
√
pmin[1√

pmin
+ τ, 2τ −

1, 2τ − 3, . . . , 1] and first off-diagonal as −√pmin[τ, τ − 1, . . . , 1], and let M = M ′ ⊗ IH. Here ⊗ represents
the Kronecker product. For a given (y0, · · · , yτ) ∈ Hτ+1, (z0, · · · , zτ) = M(y0, · · · , yτ) is given by:

z0 = y0 +
√
pmin(y0 − y1),

zi =
√
pmin

(
(i− τ − 1)yi−1 + (2τ − 2i+ 1)yi + (i− τ)yi+1

)
, if 1 ≤ i ≤ τ − 1,

zτ =
√
pmin(yτ − yτ−1).

Then M is a self-adjoint and positive definite linear operator since M ′ is symmetric and positive definite,
and we define 〈· | ·〉M = 〈· |M ·〉 as the M -weighted inner product and ‖ · ‖M the induced norm. Let

xk = (xk, xk−1, . . . , xk−τ) ∈ Hτ+1, k ≥ 0, and x∗ = (x∗, x∗, . . . , x∗) ∈ X∗ ⊆ Hτ+1,

where we set xk = x0 for k < 0. With

ξk(x∗) := ‖xk − x∗‖2M = ‖xk − x∗‖2 +
√
pmin

∑k−1
i=k−τ (i− (k − τ) + 1) ‖xi − xi+1‖2, (35)

we have the following fundamental inequality:

Theorem 2 (Fundamental inequality) Let (xk)k≥0 be the sequence generated by ARock. Then for any
x∗ ∈ X∗, it holds that

E
(
ξk+1(x∗)

∣∣X k)+ 1
m

(
1
ηk
− 2τ

m
√
pmin
− 1

mpmin

)
‖x̄k+1 − xk‖2 ≤ ξk(x∗). (36)

Proof Let γ = m
√
pmin. Since J(k) ⊂ {k − 1, · · · , k − τ}, then (31) indicates

E
(
‖xk+1 − x∗‖2

∣∣X k) ≤‖xk − x∗‖2 + 1√
pmin

∑k−1
i=k−τ ‖xi − xi+1‖2

+ 1
m

(
τ

m
√
pmin

+ 1
mpmin

− 1
ηk

)
‖xk − x̄k+1‖2.

(37)

From (3) and (30), it is easy to have E(‖xk − xk+1‖2|X k) ≤ 1
m2pmin

‖xk − x̄k+1‖2, which together with (37)

implies (36) by using the definition of ξk(x∗).

Remark 1 (Stochastic Fejér monotonicity) From (36), if 0 < ηk ≤ mpmin

2τ
√
pmin+1 , then we have E(‖xk+1 −

x∗‖2M |X k) ≤ ‖xk − x∗‖2M , ∀x∗ ∈ X∗.

ARock: Async-Parallel Coordinate Updates 19

Remark 2 Let us check our step size bound mpmin

2τ
√
pmin+1 . Consider the uniform case: pmin ≡ pi ≡ 1

m . Then,

the bound simplifies to 1
1+2τ/

√
m

. If the max delay is no more than the square root of coordinates, i.e.,

τ = O(
√
m), then the bound is O(1). In general, τ depends on several factors such as problem structure,

system architecture, load balance, etc. If all updates and agents are identical, then τ is proportional to p,
the number of agents. Hence, ARock takes an O(1) step size for solving a problem with m coordinates by
p =
√
m agents under balanced loads.

The next lemma is a direct consequence of the invertibility of the metric M .

Lemma 4 A sequence (zk)k≥0 ⊂ Hτ+1 (weakly) converges to z ∈ Hτ+1 under the metric 〈· | ·〉 if and only
if it does so under the metric 〈· | ·〉M .

In light of Lemma 4, the metric of the inner product for weak convergence in the next lemma is not
specified. The lemma and its proof are adapted from [15].

Lemma 5 Let (xk)k≥0 ⊂ H be the sequence generated by ARock with ηk ∈ [ηmin,
cmpmin

2τ
√
pmin+1] for any ηmin > 0

and 0 < c < 1. Then we have:

(i)
∑∞
k=0 ‖xk − x̄k+1‖2 <∞ a.s..

(ii) xk − xk+1 → 0 a.s. and x̂k − xk+1 → 0 a.s..
(iii) The sequence (xk)k≥0 ⊂ Hτ+1 is bounded a.s..

(iv) There exists Ω̃ ∈ F such that P (Ω̃) = 1 and, for every ω ∈ Ω̃ and every x∗ ∈ X∗, (‖xk(ω)− x∗‖M)k≥0
converges.

(v) Let Z (xk) be the set of weakly convergent cluster points of (xk)k≥0. Then, Z (xk) ⊆ X∗ a.s..

Proof (i): Note that infk

(
1
ηk
− 2τ

m
√
pmin
− 1

mpmin

)
> 0. Also note that, in (36), ‖x̄k+1 − xk‖2 = ‖ηkSx̂k‖2 is

X k-measurable. Hence, applying Lemma 3 with ξk = ηk = 0 and αk = ξk(x∗), ∀k, to (36) gives this result
directly.

(ii) From (i), we have xk− x̄k+1 → 0 a.s.. Since ‖xk−xk+1‖ ≤ 1
mpmin

‖xk− x̄k+1‖, we have xk−xk+1 → 0

a.s.. Then from (5), we have x̂k − xk → 0 a.s..
(iii): From Lemma 3, we have that (‖xk − x∗‖2M)k≥0 converges a.s. and so does (‖xk − x∗‖M)k≥0, i.e.,

limk→∞ ‖xk − x∗‖M = γ a.s., where γ is a [0,+∞)-valued random variable. Hence, (‖xk − x∗‖M)k≥0 must
be bounded a.s. and so is (xk)k≥0.

(iv): The proof follows directly from [15, Proposition 2.3 (iii)]. It is worth noting that Ω̃ in the statement
works for all x∗ ∈ X∗, namely, Ω̃ does not depend on x∗.

(v): By (ii), there exists Ω̂ ∈ F such that P (Ω̂) = 1 and

xk(w)− xk+1(w)→ 0, ∀w ∈ Ω̂. (38)

For any ω ∈ Ω̂, let (xkn(ω))n≥0 be a weakly convergent subsequence of (xk(ω))k≥0, i.e., xkn(ω) ⇀ x, where
xkn(ω) = (xkn(ω), xkn−1(ω)..., xkn−τ (ω)) and x = (u0, ..., uτ). Note that xkn(ω) ⇀ x implies xkn−j(ω) ⇀
uj , ∀j. Therefore, ui = uj , for any i, j ∈ {0, · · · , τ} because xkn−i(ω)− xkn−j(ω)→ 0.

Furthermore, observing ηk ≥ ηmin > 0, we have

lim
n→∞

x̂kn(ω)− T x̂kn(ω) = lim
n→∞

Sx̂kn(ω) = lim
n→∞

1

ηkn
(xkn(ω)− x̄kn+1(ω)) = 0. (39)

20 Z. Peng, Y. Xu, M. Yan, and W. Yin

From the triangle inequality and the nonexpansiveness of T , it follows that∥∥xkn(ω)− Txkn(ω)
∥∥

=
∥∥xkn(ω)− x̂kn(ω) + x̂kn(ω)− T x̂kn(ω) + T x̂kn(ω)− Txkn(ω)

∥∥
≤
∥∥xkn(ω)− x̂kn(ω)

∥∥+
∥∥x̂kn(ω)− T x̂kn(ω)

∥∥+
∥∥T x̂kn(ω)− Txkn(ω)

∥∥
≤2
∥∥xkn(ω)− x̂kn(ω)

∥∥+ ‖x̂kn(ω)− T x̂kn(ω)‖
≤2
∑
d∈J(kn)

∥∥xd(ω)− xd+1(ω)
∥∥+ ‖x̂kn(ω)− T x̂kn(ω)‖.

From (38), (39), and the above inequality, it follows limn→∞ xkn(ω)−Txkn(ω) = 0. Finally, the demiclosed-
ness principle [6, Theorem 4.17] implies u0 ∈ FixT .

Theorem 3 Under the assumptions of Lemma 5, the sequence (xk)k≥0 weakly converges to an X∗-valued
random variable a.s.. In addition, if T is demicompact at 0, (xk)k≥0 strongly converges to an X∗-valued
random variable a.s..

Proof The proof for a.s. weak convergence follows from Opial’s Lemma [47,42] and Lemma 5 (iv)-(v). Next we
assume that T is demicompact at 0. From the proof of Lemma 5 (v), there is Ω̂ ∈ F such that P (Ω̂) = 1 and,
for any w ∈ Ω̂ and any weakly convergent subsequence of (xkn(w))n≥0, limn→∞ xkn(w)−Txkn(w) = 0. Since
T is demicompact, (xkn(w))n≥0 has a strongly convergent subsequence, for which we still use (xkn(w))n≥0.
Hence, xkn(w) → x̄(w) ∈ FixT . Lemma 5 (ii) yields xkn(w) → x̄(w) ∈ X∗. Then by Lemma 5 (iv), there
is Ω̃ ∈ F such that P (Ω̃) = 1 and, for every w ∈ Ω̃ and every x∗ ∈ X∗, (‖xk(w) − x∗‖M)k≥0 converges.

Thus, for any w ∈ Ω̂ ∩ Ω̃, we have limk→∞ ‖xk(w)− x̄(w)‖M = 0. Because P (Ω̂ ∩ Ω̃) = 1, we conclude that
(xk)k≥0 strongly converges to an X∗-valued random variable a.s..

Remark 3 For the generalization in Section 1.3, we need to replace (33) by∑m
i=1

1
pi
‖Ui ◦ Sx̂k‖2 ≤ 1

pmin

∑m
i=1 ‖Ui ◦ Sx̂k‖2 ≤

C
pmin
‖Sx̂k‖2 = C

η2kpmin
‖xk − x̄k+1‖2,

and update the step size condition to ηk ∈ [ηmin,
cmpmin

2τ
√
pmin+C

]. Then the proofs of Theorem 3 and Lemma 5

will go through and yield the same convergence result.

3.2 Linear convergence

In this section, we establish linear convergence under the assumption that S is quasi-strongly monotone. We
first present a key lemma.

Lemma 6 Assume that the step size is fixed, i.e., ηk = η, and satisfies

0 < η ≤ η
1

:= (1− 1
ρ)
m
√
pmin

8
ρ1/2−1

ρ(τ+1)/2−1 (40)

for some ρ > 1. Then we have, for all k ≥ 1,

E‖x̄k − xk−1‖2 ≤ ρE‖x̄k+1 − xk‖2. (41)

ARock: Async-Parallel Coordinate Updates 21

Proof We prove (41) by induction. First, based on the inequality ‖a‖2−‖b‖2 ≤ 2‖a‖‖b−a‖ we observe that,
for any k ≥ 1,

‖x̄k − xk−1‖2 − ‖x̄k+1 − xk‖2 ≤ 2‖x̄k − xk−1‖‖x̄k+1 − xk − x̄k + xk−1‖
= 2‖x̄k − xk−1‖‖ηS(x̂k)− ηS(x̂k−1)‖
≤ 4η‖x̄k − xk−1‖‖x̂k − x̂k−1‖. (42)

Applying the triangle inequality and (5) yields

‖x̂k − x̂k−1‖ ≤‖xk − x̂k‖+ ‖xk − xk−1‖+ ‖xk−1 − x̂k−1‖
≤

∑
d∈J(k)

‖xd − xd+1‖+ ‖xk − xk−1‖+
∑

d∈J(k−1)
‖xd − xd+1‖

≤ 2
∑τ
t=0 ‖xk−t − xk−t−1‖. (43)

For the basic case, we have x̂0 = x0, x̂1 ∈ {x0, x1}. Letting k = 1 in (42) gets us

E‖x̄1 − x0‖2 − E‖x̄2 − x1‖2 ≤ 4ηE‖x̄1 − x0‖‖x1 − x0‖
≤ 2η

(
1

m
√
pmin

E‖x̄1 − x0‖2 +m
√
pminE‖x1 − x0‖2

)
= 2η

(
1

m
√
pmin

E‖x̄1 − x0‖2 +m
√
pmin

∑m
i=1 pi

η2

m2p2i
(Six

0)2
)

≤ 2η
(

1
m
√
pmin

E‖x̄1 − x0‖2 + 1
m
√
pmin

E‖x̄1 − x0‖2
)

= 4η
m
√
pmin

E‖x̄1 − x0‖2.

Rearranging the above inequality yields E‖x̄1 − x0‖2 ≤ 1
1− 4η

m
√
pmin

E‖x̄2 − x1‖2. By (40) and ρ > 1, it holds

that 0 < η ≤ (1− 1
ρ)
m
√
pmin

8
ρ1/2−1

ρ(τ+1)/2−1 ≤ (1− 1
ρ)
m
√
pmin

4 . Hence, E‖x̄1 − x0‖2 ≤ ρE‖x̄2 − x1‖2.

For the induction step, applying Young’s inequality gives us

E‖x̄k − xk−1‖‖xk−t − xk−t−1‖ ≤ 1
2E
{
a‖xk−t − xk−t−1‖2 + 1

a‖x̄
k − xk−1‖2

}
≤ 1

2E
{

a
m2pmin

‖x̄k−t − xk−t−1‖2 + 1
a‖x̄

k − xk−1‖2
}

≤ 1
2

{
aρt

m2pmin
+ 1

a

}
E‖x̄k − xk−1‖2

= ρt/2

m
√
pmin

E‖x̄k − xk−1‖2. (letting a = m
√
pminρ

−t/2)

Taking the expectation on (43) and combining it with (42) yield

E‖x̄k − xk−1‖2 − E‖x̄k+1 − xk‖2 ≤ 8η
∑τ
t=0 E‖x̄k − xk−1‖‖xk−t − xk−t−1‖

≤ 8η
m
√
pmin

∑τ
t=0 ρ

t/2E‖x̄k − xk−1‖2 ≤ 8η
m
√
pmin

1−ρ(τ+1)/2

1−ρ1/2 E‖x̄k − xk−1‖2.

Finally, rearranging the above inequality and using (40) lead to E‖x̄k − xk−1‖2 ≤ ρE‖x̄k+1 − xk‖2. This
completes the proof.

With this lemma, we are ready to derive the linear convergence rate of ARock.

22 Z. Peng, Y. Xu, M. Yan, and W. Yin

Theorem 4 (Linear convergence) Assume that S is quasi-µ-strongly monotone with µ > 0. Let β ∈ (0, 1)
and (xk)k≥0 be the sequence generated by ARock with a constant stepsize η ∈ (0,min{η

1
, η

2
}], where η

1
is

given in (40) and

η
2

=
−b+
√
b2+4(1−β)a
2a , a = 2βµτ

m2pmin

ρ(ρτ−1)
ρ−1 , b = 1

mpmin
+ 2

m

√
ρ(ρτ−1)τ
(ρ−1)pmin

. (44)

Then

E
(
‖xk − x∗‖2

)
≤
(

1− βµη
m

)k
‖x0 − x∗‖2. (45)

Proof Following the proof of Lemma 2 and starting from (34), we have

〈Sx̂k, x∗ − xk〉
≤〈Sx̂k − Sx∗, x∗ − x̂k〉+ 1

2η

∑
d∈J(k)

(
1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2
)

≤− βµ‖x̂k − x∗‖2 − 1−β
2 ‖Sx̂

k‖2 + 1
2η

∑
d∈J(k)(

1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2)

=− βµ‖xk − x∗ +
∑
d∈J(k)(x

d − xd+1)‖2 − 1−β
2η2 ‖x

k − x̄k+1‖2

+ |J(k)|
2γη ‖x

k − x̄k+1‖2 + γ
2η

∑
d∈J(k) ‖xd − xd+1‖2

≤− βµ
2 ‖x

k − x∗‖2 + βµ‖
∑
d∈J(k)(x

d − xd+1)‖2 − 1−β
2η2 ‖x

k − x̄k+1‖2

+ |J(k)|
2γη ‖x

k − x̄k+1‖2 + γ
2η

∑
d∈J(k) ‖xd − xd+1‖2

≤− βµ
2 ‖x

k − x∗‖2 + βµ|J(k)|
∑
d∈J(k) ‖xd − xd+1‖2 − 1−β

2η2 ‖x
k − x̄k+1‖2

+ |J(k)|
2γη ‖x

k − x̄k+1‖2 + γ
2η

∑
d∈J(k) ‖xd − xd+1‖2,

where the second inequality holds because S is 1
2 -cocoercive and also quasi-µ-strongly monotone, and the

last one comes from the Cauchy-Schwartz inequality. Plugging the above inequality and (33) into (32) and
noting |J(k)| ⊂ {k − τ, . . . , k − 1} gives

E
(
‖xk+1 − x∗‖2

∣∣X k) ≤(1− βµη
m

)
‖xk − x∗‖2 + 1

m (2βηµτ + γ)
∑k−1
d=k−τ ‖xd − xd+1‖2

+ 1
m

(
τ
γ + 1

mpmin
− 1−β

η

)
‖xk − x̄k+1‖2.

Taking expectation over both sides of the above inequality, noting E‖xd − xd+1‖2 ≤ 1
m2pmin

E‖xd − x̄d+1‖2,
and using Lemma 6, we have

E
(
‖xk+1 − x∗‖2

)
≤
(
1− βµη

m

)
E‖xk − x∗‖2 + 1

m3pmin
(2βηµτ + γ)

∑τ
d=1 ρ

dE‖xk − x̄k+1‖2

+ 1
m

(
τ
γ + 1

mpmin
− 1−β

η

)
E‖xk − x̄k+1‖2

=
(
1− βµη

m

)
E‖xk − x∗‖2 + 1

m3pmin
(2βηµτ + γ) ρ(ρ

τ−1)
ρ−1 E‖xk − x̄k+1‖2

+ 1
m

(
τ
γ + 1

mpmin
− 1−β

η

)
E‖xk − x̄k+1‖2

=
(
1− βµη

m

)
E‖xk − x∗‖2

+ 1
m

(
2βηµτ
m2pmin

ρ(ρτ−1)
ρ−1 + 2

m

√
ρ(ρτ−1)τ
(ρ−1)pmin

+ 1
mpmin

− 1−β
η

)
E‖xk − x̄k+1‖2

≤
(
1− βµη

m

)
E‖xk − x∗‖2,

ARock: Async-Parallel Coordinate Updates 23

where we have let γ = m
√

τ(ρ−1)pmin

ρ(ρτ−1) in the second equality, and the last inequality holds because of the

choice of η. Therefore, (45) holds.

Remark 4 Assume ik is chosen uniformly at random, so pmin = 1
m . We consider the case when m and τ

are large. Let
√
ρ = 1 + 1

τ . Then from the fact that (1 + 1
k)k increasingly converges to the natural number

e, we have from (40) that η
1

= O(
√
m
τ2). In addition, note from (44) that a = O(b2) = O(τ

2

m), and thus

η
2

= O(
√
m
τ). Therefore, if τ = O(m

1
4), then the stepsize in Theorem 4 can be η = O(1). Hence, linear

speedup can be achieved.

4 Experiments

We illustrate the behavior of ARock for solving the `1 regularized logistic regression problem. Our pri-
mary goal is to show the efficiency of the async-parallel implementation compared to the single-threaded
implementation and the sync-parallel implementation.

Our experiments run on 1 to 32 threads on a machine with eight Quad-Core AMD OpteronTM Processors
(32 cores in total) and 64 Gigabytes of RAM. All of the experiments were coded in C++ and OpenMP. We use
the Eigen library5 for sparse matrix operations. Our codes as well as numerical results for other applications
will be publicly available on the authors’ website.

The running times and speedup ratios of both sync-parallel and async-parallel algorithms are sensitive to
a number of factors, such as the size of each coordinate update (granularity), sparsity of the problem data,
compiler optimization flags, and operations that affect cache performance and memory access contention.
In addition, since all agents in the sync-parallel implementation must wait for the last agent to finish an
iteration, a large load imbalance will significantly degrade the performance. We do not have the space in this
paper to present numerical results under all variations of these cases.

4.1 `1 regularized logistic regression

In this subsection, we apply ARock with the update (12) to the `1 regularized logistic regression problem:

minimize
x∈Rn

λ‖x‖1 +
1

N

N∑
i=1

log
(
1 + exp(−bi · aTi x)

)
, (46)

where {(ai, bi)}Ni=1 is the set of sample-label pairs with bi ∈ {1,−1}, λ = 0.0001, and n and N represent
the numbers of features and samples, respectively. This test uses the datasets6: rcv1 and news20, which are
summarized in Table 1.

Name # samples # features # nonzeros in {a1, . . . , aN}
rcv1 20, 242 47, 236 1, 498, 952

news20 19, 996 1, 355, 191 9, 097, 916

Table 1: Two datasets for sparse logistic regression.

5 http://eigen.tuxfamily.org
6 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://eigen.tuxfamily.org
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

24 Z. Peng, Y. Xu, M. Yan, and W. Yin

0 200 400 600 800 1000
coordinate (each has ~50 features)

101

102

103

104

105

#
 n

o
n
ze

ro
s

rcv1

(a) dataset rcv1

0 5000 10000 15000 20000 25000 30000
coordinate (each has ~50 features)

101

102

103

104

105

#
 n

o
n
ze

ro
s

news20

(b) dataset news20

Fig. 3: The distribution of coordinate sparsity. Each dot represents the total number of nonzeros in the
vectors ai that correspond to each coordinate. The large distribution in (b) is responsible for the large load
imbalance and thus the poor sync-parallel performance.

We let each coordinate hold roughly 50 features. Since the total number of features is not divisible by
50, some coordinates have 51 features. We let each agent draw a coordinate uniformly at random at each
iteration. We stop all the tests after 100 epochs since they have nearly identical progress per iteration. The
step size is set to ηk = 0.9, ∀k. Let A = [a1, . . . , aN]T and b = [b1, ..., bN]T . In global memory, we store A, b,
and x. We also store the product Ax in global memory so that the forward step can be efficiently computed.
Whenever a coordinate of x gets updated, Ax is immediately updated at a low cost. Note that if Ax is not
stored in global memory, every coordinate update will have to compute Ax from scratch, which involves the
entire x and will be very expensive.

Table 2 gives the running times of the sync-parallel and ARock (async-parallel) implementations on the
two datasets. We can observe that ARock achieves almost-linear speedup, but sync-parallel scales very poorly
as we explain below.

In the sync-parallel implementation, all the running cores have to wait for the last core to finish an
iteration, and therefore if a core has a large load, it slows down the iteration. Although every core is
(randomly) assigned to roughly the same number of features (either 50 or 51 components of x) at each
iteration, their ai’s have very different numbers of nonzeros (see Figure 3 for the distribution), and the core
with the largest number of nonzeros is the slowest (Sparse matrix computation is used for both datasets,
which are very large.) As more cores are used, despite that they altogether do more work at each iteration, the
per-iteration time reduces as the slowest core tends to be slower. The very large imbalance of load explains
why the 32 cores only give speedup ratios of 4.0 and 1.3 in Table 2.

On the other hand, being asynchronous, ARock does not suffer from the load imbalance. Its performance
grows nearly linear with the number of cores. In theory, a large load imbalance may cause a large τ , and thus
a small ηk. However, the uniform ηk = 0.9 works well in all the tests, possibly because the ai’s are sparse.

Finally, we have observed that the progress toward solving (46) is mainly a function of the number of
epochs and does not change appreciably when the number of cores increases or between sync-parallel and
async-parallel. Therefore, we always stop at 100 epochs.

ARock: Async-Parallel Coordinate Updates 25

cores
rcv1 news20

Time (s) Speedup Time (s) Speedup
async sync async sync async sync async sync

1 122.0 122.0 1.0 1.0 591.1 591.3 1.0 1.0
2 63.4 104.1 1.9 1.2 304.2 590.1 1.9 1.0
4 32.7 83.7 3.7 1.5 150.4 557.0 3.9 1.1
8 16.8 63.4 7.3 1.9 78.3 525.1 7.5 1.1
16 9.1 45.4 13.5 2.7 41.6 493.2 14.2 1.2
32 4.9 30.3 24.6 4.0 22.6 455.2 26.1 1.3

Table 2: Running times of ARock (async-parallel) and sync-parallel FBS implementations for the `1 regular-
ized logistic regression on two datasets. Sync-parallel has a very poor speedup due to the large distribution
of coordinate sparsity (Figure 3) and thus the large load imbalance across cores.

5 Conclusion

We have proposed an async-parallel framework, ARock, for finding a fixed-point of a nonexpansive operator
by coordinate updates. We establish the almost sure weak and strong convergence, linear convergence rate
and almost-linear speedup of ARock under certain assumptions. Preliminary numerical results on real data
illustrate the high efficiency of the proposed framework compared to the traditional parallel (sync-parallel)
algorithms.

6 Acknowledgements

We would like to thank Brent Edmunds for offering invaluable suggestions on the organization and writing
of this paper. We would also like to thank Robert Hannah for coming up with the dual-memory approach.
The authors are grateful to Kun Yuan for helpful discussions on decentralized optimization.

References

1. Aharoni, D., Barak, A.: Parallel iterative discontinuous galerkin finite-element methods. In: Discontinuous Galerkin Meth-
ods, pp. 247–254. Springer (2000) 1.5

2. Amitai, D., Averbuch, A., Israeli, M., Itzikowitz, S.: Implicit-explicit parallel asynchronous solver of parabolic pdes. SIAM
Journal on Scientific Computing 19(4), 1366–1404 (1998) 1.5

3. Avron, H., Druinsky, A., Gupta, A.: Revisiting asynchronous linear solvers: Provable convergence rate through random-
ization. In: Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp. 198–207. IEEE (2014)
1.5

4. Bahi, J., Miellou, J.C., Rhofir, K.: Asynchronous multisplitting methods for nonlinear fixed point problems. Numerical
Algorithms 15(3-4), 315–345 (1997) 1.5

5. Baudet, G.M.: Asynchronous iterative methods for multiprocessors. Journal of the ACM (JACM) 25(2), 226–244 (1978)
1.5

6. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces. Springer Science &
Business Media (2011) 1, 2.4, 3.1, 3.1

7. Bertsekas, D.P.: Distributed asynchronous computation of fixed points. Mathematical Programming 27(1), 107–120 (1983)
1.5

8. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods, vol. 23. Prentice hall Englewood
Cliffs, NJ (1989) 1.5, 2.2

9. Bertsekas, D.P., Tsitsiklis, J.N.: Some aspects of parallel and distributed iterative algorithmsa survey. Automatica 27(1),
3–21 (1991) 1

26 Z. Peng, Y. Xu, M. Yan, and W. Yin

10. Bethune, I., Bull, J.M., Dingle, N.J., Higham, N.J.: Performance analysis of asynchronous jacobi’s method implemented in
mpi, shmem and openmp. International Journal of High Performance Computing Applications 28(1), 97–111 (2014) 1.5

11. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends R© in Machine Learning 3(1), 1–122 (2011) 2.6.1

12. Chang, K.W., Hsieh, C.J., Lin, C.J.: Coordinate descent method for large-scale l2-loss linear support vector machines. The
Journal of Machine Learning Research 9, 1369–1398 (2008) 1.1

13. Chau, M., Spiteri, P., Guivarch, R., Boisson, H.: Parallel asynchronous iterations for the solution of a 3d continuous flow
electrophoresis problem. Computers & Fluids 37(9), 1126 – 1137 (2008). DOI http://dx.doi.org/10.1016/j.compfluid.2007.
06.006. URL http://www.sciencedirect.com/science/article/pii/S0045793007001995 1.5

14. Chazan, D., Miranker, W.: Chaotic relaxation. Linear algebra and its applications 2(2), 199–222 (1969) 1.5
15. Combettes, P.L., Pesquet, J.C.: Stochastic quasi-fejér block-coordinate fixed point iterations with random sweeping. arXiv

preprint arXiv:1404.7536 (2014) 3.1, 3.1
16. Condat, L.: A primal–dual splitting method for convex optimization involving lipschitzian, proximable and linear composite

terms. Journal of Optimization Theory and Applications 158(2), 460–479 (2013) 1.3
17. Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. arXiv preprint arXiv:1406.4834 (2014) 2.5
18. Davis, D., Yin, W.: Faster convergence rates of relaxed peaceman-rachford and ADMM under regularity assumptions. arXiv

preprint arXiv:1407.5210 (2014) 2.5
19. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. arXiv preprint arXiv:1504.01032

(2015) 1
20. Donzis, D.A., Aditya, K.: Asynchronous finite-difference schemes for partial differential equations. Journal of Computational

Physics 274, 370–392 (2014) 1.5
21. El Baz, D., Spiteri, P., Miellou, J.C., Gazen, D.: Asynchronous iterative algorithms with flexible communication for nonlinear

network flow problems. Journal of Parallel and Distributed Computing 38(1), 1–15 (1996) 1.5
22. El Tarazi, M.N.: Some convergence results for asynchronous algorithms. Numerische Mathematik 39(3), 325–340 (1982)

1.5
23. Fang, L., Antsaklis, P.J.: Information consensus of asynchronous discrete-time multi-agent systems. In: American Control

Conference, 2005. Proceedings of the 2005, pp. 1883–1888. IEEE (2005) 1.5
24. Frommer, A., Schwandt, H., Szyld, D.B.: Asynchronous weighted additive schwarz methods. Electronic Transactions on

Numerical Analysis 5, 48–61 (1997) 1.5
25. Frommer, A., Szyld, D.B.: On asynchronous iterations. Journal of computational and applied mathematics 123(1), 201–216

(2000) 1.5
26. Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. Studies in mathematics and its

applications 15, 299–331 (1983) 2.6
27. Glowinski, R., Marroco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualite

d’une classe de problemes de dirichlet non lineaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique 9(R2), 41–76 (1975) 1

28. Hong, M.: A distributed, asynchronous and incremental algorithm for nonconvex optimization: An admm based approach.
arXiv preprint arXiv:1412.6058 (2014) 1.5

29. House, W.: Big data: Seizing opportunities, preserving values (2014) 1
30. Hsieh, C.J., Yu, H.F., Dhillon, I.S.: Passcode: Parallel asynchronous stochastic dual co-ordinate descent. arXiv preprint

arXiv:1504.01365 (2015) 1.5
31. Iutzeler, F., Bianchi, P., Ciblat, P., Hachem, W.: Asynchronous distributed optimization using a randomized alternating

direction method of multipliers. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 3671–3676.
IEEE (2013) 1.5

32. Krasnosel’skii, M.A.: Two remarks on the method of successive approximations. Uspekhi Matematicheskikh Nauk 10(1),
123–127 (1955) 1

33. Kyrola, A., Bickson, D., Guestrin, C., Bradley, J.K.: Parallel coordinate descent for l1-regularized loss minimization. In:
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 321–328 (2011) 1.5

34. Lang, B., Miellou, J., Spiteri, P.: Asynchronous relaxation algorithms for optimal control problems. Mathematics and
computers in simulation 28(3), 227–242 (1986) 1.5

35. Larson, R.C., Odoni, A.R.: Urban operations research. Monograph (1981) 2.3
36. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis

16(6), 964–979 (1979) 1, 2.5, 2.6
37. Liu, J., Wright, S.J.: Asynchronous stochastic coordinate descent: Parallelism and convergence properties. SIAM Journal

on Optimization 25(1), 351–376 (2015) 1, 1.5
38. Liu, J., Wright, S.J., Ré, C., Bittorf, V., Sridhar, S.: An asynchronous parallel stochastic coordinate descent algorithm.

Journal of Machine Learning Research 16, 285–322 (2015) 1.5, 2.2

http://www.sciencedirect.com/science/article/pii/S0045793007001995

ARock: Async-Parallel Coordinate Updates 27

39. Nedić, A., Bertsekas, D.P., Borkar, V.S.: Distributed asynchronous incremental subgradient methods. Studies in Compu-
tational Mathematics 8, 381–407 (2001) 1.5

40. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. Automatic Control, IEEE Trans-
actions on 54(1), 48–61 (2009) 2.3, 2.3

41. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization
22(2), 341–362 (2012) 1.4

42. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bulletin of the
American Mathematical Society 73(4), 591–598 (1967). DOI 10.1090/S0002-9904-1967-11761-0 3.1

43. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in hilbert space. Journal of Mathematical
Analysis and Applications 72(2), 383–390 (1979) 1

44. Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.: Coordinate friendly structures, algorithms and applications. arXiv preprint
arXiv:1601.00863 (2016) 1

45. Peng, Z., Yan, M., Yin, W.: Parallel and distributed sparse optimization. In: Signals, Systems and Computers, 2013
Asilomar Conference on, pp. 659–646. IEEE (2013) 1.5

46. Petryshyn, W.: Construction of fixed points of demicompact mappings in hilbert space. Journal of Mathematical Analysis
and Applications 14(2), 276–284 (1966) 2

47. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: Asymptotic analysis in continuous and
discrete time. Journal of Convex Analysis 17, 1113–1163 (2010) 3.1

48. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In:
Advances in Neural Information Processing Systems, pp. 693–701 (2011) 1.5

49. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Mathematical Programming, Series
A pp. 1–52 (2015) 1.5

50. Robbins, H., Siegmund, D.: A convergence theorem for non negative almost supermartingales and some applications. In:
Herbert Robbins Selected Papers, pp. 111–135. Springer (1985) 3.1, 3

51. Rosenfeld, J.L.: A case study in programming for parallel-processors. Communications of the ACM 12(12), 645–655 (1969)
1.5

52. Tai, X.C., Tseng, P.: Convergence rate analysis of an asynchronous space decomposition method for convex minimization.
Mathematics of Computation 71(239), 1105–1135 (2002) 1.5

53. Tseng, P.: On the rate of convergence of a partially asynchronous gradient projection algorithm. SIAM Journal on Opti-
mization 1(4), 603–619 (1991) 1.5

54. Tseng, P., Bertsekas, D.P., Tsitsiklis, J.N.: Partially asynchronous, parallel algorithms for network flow and other problems.
SIAM Journal on Control and Optimization 28(3), 678–710 (1990) 1.5

55. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Advances in Computational
Mathematics 38(3), 667–681 (2013) 1.3

56. Wei, E., Ozdaglar, A.: On the o(1/k) convergence of asynchronous distributed alternating direction method of multipliers.
In: Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE, pp. 551–554. IEEE (2013) 1.5, 2.6.2,
B, B

57. Yan, M., Yin, W.: Self equivalence of the alternating direction method of multipliers. arXiv preprint arXiv:1407.7400 (2014)
2.5

58. Yuan, K., Ling, Q., Yin, W.: On the convergence of decentralized gradient descent. arXiv preprint arXiv:1310.7063 (2013)
2.3

59. Zhang, R., Kwok, J.: Asynchronous distributed admm for consensus optimization. In: Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pp. 1701–1709 (2014) 1.5

A Derivation of certain updates

We show in details how to obtain the updates in (16) and (21).

A.1 Derivation of updates in (16)

Let x = (x1, . . . , xm) ∈ Hm,

f(x) :=

m∑
i=1

ICi (xi), g(x) := I{x1=···=xm}(x),

28 Z. Peng, Y. Xu, M. Yan, and W. Yin

where g(x) equals 0 if x1 = · · · = xm and ∞ otherwise. Then (15a) reduces to

x̂k = arg min
z∈Hm

g(z) +
1

2γ
‖z − ẑk‖2 = arg min

z∈Hm:z1=···=zm
‖z − ẑk‖2

= arg min
z∈Hm:z1=···=zm

m∑
i=1

‖z1 − ẑki ‖2 =

(
1

m

m∑
i=1

ẑki , . . . ,
1

m

m∑
i=1

ẑki

)
∈ Hm,

where the last equality is obtained by noting that z1 = 1
m

∑m
i=1 ẑ

k
i is the unique minimizer of

∑m
i=1 ‖z1 − ẑki ‖2. Next, (15b)

reduces to

ŷk = arg min
z∈Hm

f(z) +
1

2γ
‖z − (2x̂k − ẑk)‖2 = arg min

z:zi∈Ci,∀i

m∑
i=1

‖zi − (2x̂ki − ẑki)‖2.

It is easy to see that ŷki = ProjCi (2x̂
k
i − ẑki), ∀i.

Since (15c) only updates the ikth coordinate of z, we only need x̂kik and ŷkik , and thus in (16a) and (16b), we only compute

x̂kik and ŷkik . Plugging the above x̂k and ŷk into (15c) gives (16c) directly.

A.2 Derivation of (21)

We first show how to get (18). The Lagrangian of (17) is L(x, y, w) = f(x) + g(y)− 〈w,Ax+ By − b〉, and the Lagrange dual
function is

d(w) = min
x∈H1,y∈H2

L(x, y, w)

=
(

min
x∈H1

f(x)− 〈A∗w, x〉
)

+
(

min
y∈H2

g(y)− 〈B∗w, y〉
)

+ 〈w, b〉

=−
(

max
x∈H1

−f(x) + 〈A∗w, x〉
)
−
(

max
y∈H2

−g(y) + 〈B∗w, y〉
)

+ 〈w, b〉

=− f∗(A∗w)− g∗(B∗w) + 〈w, b〉,

where the last equality is from the definition of convex conjugate: f∗(z) = maxx〈z, x〉 − f(x). Hence, the dual problem is
maxw d(w), which is equivalent to (18).

Secondly, we show why z+ = proxγ·dg (z) is given by (20). Note

mins dg(s) + 1
2γ
‖s− z‖2 = mins g∗(B∗s)− 〈s, b〉+ 1

2γ
‖s− z‖2

= mins maxy〈B∗s, y〉 − g(y)− 〈s, b〉+ 1
2γ
‖s− z‖2

= maxy mins〈B∗s, y〉 − g(y)− 〈s, b〉+ 1
2γ
‖s− z‖2

= maxy mins〈s,By − b〉 − g(y) + 1
2γ
‖s− z‖2

= maxy −g(y) + 〈z,By − b〉 − γ
2
‖By − b‖2

=−miny g(y)− 〈z,By − b〉+ γ
2
‖By − b‖2,

where the fifth equality holds because s∗ = z − γ(By − b) = arg mins〈s,By − b〉+ 1
2γ
‖s− z‖2. Hence, by the definition of the

proximal operator and the above arguments, we have that z+ = proxγ·dg (z) can be obtained from (20). Then (19) is from (20)

through replacing g to f , B to A, and b to 0.

Finally, it is straightforward to have (21) by plugging (19) and (20) into (15).

ARock: Async-Parallel Coordinate Updates 29

B Derivation of async-parallel ADMM for decentralized optimization

This section describes how to implement the updates (21) for the model (27).
In (27), g(y) and b vanish and, corresponding to the two constraints xi = yij and xj = yij , the two rows of matrices A and

B are

[
· · · 1 · · · · · · · · ·
· · · · · · · · · 1 · · ·

] [
· · · −1 · · ·
· · · −1 · · ·

]
, where · · · are zeros, the two coefficients 1 correspond to xi and xj , and the two

coefficients −1 correspond to yij . Then, (21a) and (21b) can be calculated as

ŷkli = (ẑkli,l + ẑkli,i)/(2γ) ∀l ∈ L(i),

(ŵkg)li,i = (ẑkli,i − ẑ
k
li,r)/2 ∀l ∈ L(i),

ŷkir = (ẑkir,i + ẑkir,r)/(2γ) ∀r ∈ R(i),

(ŵkg)ir,i = (ẑkir,i − ẑkir,r)/2 ∀r ∈ R(i).

In addition, x̂ki can be obtained by solving (28a), and both zk+1
li,i and zk+1

ir,i can be updated from (28b) and (28c).

Furthermore, as mentioned in Section 2.6.2, we can derive another version of async-parallel ADMM for decentralized
optimization, which reduces to the algorithm in [56], by activating an edge (i, j) ∈ E instead of an agent i each time. In
this version, the agents i and j associated with the edge (i, j) must also be activated. Here we derive the update (21) for the
model (27) with the update order of x and y swapped. Following (21) we obtain the following steps whenever an edge (i, j) ∈ E
is activated:

x̂ki = arg min
xi

fi(xi)−
(∑
l∈L(i)

ẑkli,i +
∑

r∈R(i)

ẑkir,i
)
xi +

γ

2
|E(i)| · ‖xi‖2

x̂kj = arg min
xj

fj(xj)−
(∑
l∈L(j)

ẑklj,j +
∑

r∈R(j)

ẑkjr,j
)
xj +

γ

2
|E(j)| · ‖xj‖2

(ŵkf)ij,i = ẑkij,i − γx̂ki
(ŵkf)ij,j = ẑkij,j − γx̂kj

ŷkij = arg min
yij
〈2(ŵkf)ij,i − ẑkij,i + 2(ŵkf)ij,j − ẑkij,j , yij〉+

γ

2
‖yij‖2

(ŵkg)ij,i = 2(ŵkf)ij,i − ẑkij,i + γŷkij

(ŵkg)ij,j = 2(ŵkf)ij,j − ẑkij,j + γŷkij

zk+1
ij,i = zkij,i + ηk((ŵkg)ij,i − (ŵkf)ij,i)

zk+1
ij,j = zkij,j + ηk((ŵkg)ij,j − (ŵkf)ij,j).

Every agent i in the network maintains the dual variables zli,i, l ∈ L(i), and zir,i, r ∈ R(i), and the variables x, y, w are

intermediate and do not need to be maintained between the activations. When an edge (i, j) is activated, the agents i and j

first compute their {x̂ki , (ŵkf)ij,i} and {x̂kj , (ŵkf)ij,j} independently and respectively, then they collaboratively compute ŷkij , and

finally they update their own zkij,i and zkij,j , respectively. We allow adjacent edges (which share agents) to be activated in a

short period of time when their updates are possibly overlapped in time. When τ = 0, i.e., there is no simultaneous activation

or overlap, it reduces to the algorithm in [56].

	A Derivation of certain updates
	B Derivation of async-parallel ADMM for decentralized optimization
	3 Convergence
	4 Experiments
	5 Conclusion
	6 Acknowledgements

