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ABSTRACT
Distributed data processing framework MapReduce is increasingly
deployed in Clouds to leverage the pay-per-usage cloud computing
model. Popular Hadoop MapReduce environment expects that end
users determine the type and amount of Cloud resources for reser-
vation as well as the configuration of Hadoop parameters. How-
ever, such resource reservation and job provisioning decisions re-
quire in-depth knowledge of system internals and laborious but of-
ten ineffective parameter tuning. We propose and develop AROMA,
a system that automates the allocation of heterogeneous Cloud re-
sources and configuration of Hadoop parameters for achieving qual-
ity of service goals while minimizing the incurred cost. It ad-
dresses the significant challenge of provisioning ad-hoc jobs that
have performance deadlines in Clouds through a novel two-phase
machine learning and optimization framework. Its technical core
is a support vector machine based performance model that enables
the integration of various aspects of resource provisioning and auto-
configuration of Hadoop jobs. It adapts to ad-hoc jobs by robustly
matching their resource utilization signature with previously ex-
ecuted jobs and making provisioning decisions accordingly. We
implement AROMA as an automated job provisioning system for
Hadoop MapReduce hosted in virtualized HP ProLiant blade servers.
Experimental results show AROMA’s effectiveness in providing
performance guarantee of diverse Hadoop benchmark jobs while
minimizing the cost of Cloud resource usage.

Categories and Subject Descriptors
C.4 [Computer System Organization]: Performance of Systems;
D.2.6 [Software]: Programming Environments
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MapReduce, resource allocation, auto-configuration

1. INTRODUCTION
Large-scale distributed data processing in enterprises is increas-

ingly facilitated by software frameworks such as Google MapRe-
duce and its open-source implementation Hadoop, which paral-
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lelize and distribute jobs across large clusters [1, 5, 27]. There
are growing interests in deploying such a framework in the Cloud
to harness the unlimited availability of virtualized resources and
pay-per-usage cost model of cloud computing. For example, Ama-
zon’s Elastic MapReduce provides data processing services by us-
ing Hadoop MapReduce framework on top of their compute cloud
EC2, and their storage cloud S3.

Existing MapReduce environments for running Hadoop jobs in a
cloud platform aim to remove the burden of hardware and software
setup from end users. However, they expect end users to determine
the number and type of resource sets to be allocated and also pro-
vide appropriate Hadoop parameters for running a job. A resource
set is a set of virtualized resources rented as a single unit, e.g., vir-
tual machines rented by Amazon web services. Here, we use the
term resource set and virtual machine interchangeably. In the ab-
sence of automation tools, currently end users are forced to make
job provisioning decisions manually using best practices. As a re-
sult, customers may suffer from a lack of performance guarantee
and increased cost of leasing the cloud resources.

In this paper, we propose to enable automated allocation of het-
erogeneous cloud resource sets and configuration of Hadoop pa-
rameters for meeting job completion deadlines while minimizing
the incurred cost at the same time. There are significant chal-
lenges in achieving the goal. First, the heterogeneity of available
resource sets in terms of hardware configurations and different pric-
ing schemes complicate the resource allocation decision for various
jobs and different input data sizes. Second, Hadoop has over 180
configuration parameters that have varying impact on job perfor-
mance. Examples include the number of reducers to be launched,
the size of memory buffer to use while sorting map output, the num-
ber of concurrent connections a reducer should use when fetching
its input from mappers etc. Furthermore, the optimal configuration
of Hadoop parameters is tightly coupled with hardware configura-
tion of selected resource sets as well as the type of jobs submitted.

There are techniques that each addresses resource allocation and
parameter configuration in a Hadoop MapReduce framework sepa-
rately [10, 12, 23]. However, in practice the effectiveness and cost
efficiency of those techniques are often inter-dependent. For in-
stance, a Hadoop parameter such as mapred · tasktracker ·map ·
tasks ·maximum (the maximum number of parallel mappers) is
optimal at different values when the number of virtual CPU cores
of a Hadoop node is different [12]. It is important to consider a
holistic approach that integrates various aspects of resource provi-
sioning and auto-configuration for Hadoop jobs.

We propose and develop AROMA, a system that automates the
allocation of heterogeneous Cloud resources and auto-configuration
of Hadoop MapReduce parameters. It can be applied as a Cloud
service that manages the provisioning of Hadoop jobs. One chal-



lenge in automating the resource allocation and configuration of
jobs in Hadoop is a lack of performance model for such a complex
distributed processing framework. A recent study focused on in-
tensive profiling of routinely executed jobs in the Hadoop environ-
ment in order to estimate their performance for various input data
sizes [23]. However, such an approach is not feasible for ad-hoc
jobs submitted to the system, which have unpredictable execution
characteristics. One possible workaround for ad-hoc jobs is to per-
form intensive job profiling by running them in a staging cluster
that is similar to the target Hadoop cluster in size and configura-
tion. However, there are overheads in terms of resources usage and
the time spent in job profiling. Hence, it is not suitable for ad-hoc
jobs that have deadlines.

AROMA addresses the challenges of Hadoop job provisioning
with a novel two-phase machine learning and optimization frame-
work. It exploits an important observation that jobs with similar re-
source consumption pattern would face similar bottlenecks and as a
result they would exhibit similar performance behavior in relation
to the changes in resource allocation and Hadoop configuration. In
the first offline phase, it groups the information about past jobs into
different clusters using the classic k-medoid clustering technique.
Each cluster consists of jobs that exhibit similar CPU, network and
disk utilization patterns. Then for each cluster, it trains a support
vector machine (SVM) model that is able to make accurate and fast
prediction of a job’s performance for various combinations of re-
source allocation, configuration parameters and input data sizes.

In the second online phase, it obtains the resource utilization pat-
tern of a newly submitted job by running it in a staging cluster of
small VMs with default configuration parameters and using only a
fraction of input data to capture its resource utilization signature.
This is a lightweight process both in terms of resource usage and
the time spent in capturing the signature. AROMA matches the re-
source utilization signature to those job clusters and identifies the
performance model to use for finding the best configuration and re-
source allocation. Finally, AROMA applies a pattern search based
optimization technique on the selected job cluster’s performance
model to find close to optimal resource allocation and configura-
tion parameters that meet a Hadoop job’s completion deadline at
the minimal resource cost.

While it sounds intuitive, our approach is non-trivial mainly due
to two reasons. First, it is difficult to define a resource utilization
pattern in a shared multi-tenant cloud environment. The contention
of underlying resources shared between different applications in-
troduces non-negligible disturbance in the resource utilization pat-
tern of the VMs. AROMA addresses this challenge by applying a
Longest Common Subsequence (LCSS) based distance metric. Un-
like a commonly used Euclidean Distance metric, LCSS is robust
against noise and outliers in a resource utilization pattern. It is also
effective in comparing the similarity between patterns that are out
of phase and of different lengths.

Second, jobs with similar resource utilization signatures show
similar changes in the performance in response to the same adjust-
ment in resource allocation and configuration. However in absolute
terms, the job execution times may be different. Hence, a perfor-
mance model for one job can not directly predict the absolute ex-
ecution time of another similar job for a given resource allocation
and configuration. AROMA addresses this challenge by utilizing
the concept of relative performance. For instance, assume that two
jobs A and B have similar resource utilization patterns. Given the
difference between the performance of the two jobs for the same
resource allocation R, we can utilize the performance model of job
A to predict the performance of job B for various resource alloca-
tions. We then evaluate AROMA’s adaptiveness to ad-hoc jobs.

We implement AROMA on a testbed of HP ProLiant BL460C
G6 blade servers hosting Hadoop MapReduce framework. The
testbed uses VMware ESX 4.1 to create a pool of virtual machines
which are run as Hadoop nodes. Experimental results show that
AROMA makes effective and automated job provisioning decisions
to achieve performance guarantee of diverse Hadoop benchmark
jobs while minimizing the cost of Cloud resource usage.

To our best knowledge, AROMA is the first automated job pro-
visioning system that meets all the challenges discussed above for
MapReduce framework in Clouds. The main contributions of AROMA
are as follows:

1. It enables automated job provisioning of Hadoop MapRe-
duce framework in the Cloud so that end users can utilize
cloud services without acquiring in-depth knowledge of sys-
tem internals or going through laborious and time consuming
manual but ineffective configuration tuning.

2. It provides a holistic job provisioning facility that integrates
resource allocation and parameter configuration to meet the
completion deadline guarantee and to improve the cost effi-
ciency of MapReduce jobs.

3. It is able to make effective provisioning decisions for ad-hoc
jobs while avoiding extensive and time-consuming job pro-
filing. It does so through innovative and practical techniques
that combine machine learning and optimization.

In the following, Section 2 discusses related work. Section 3
gives a case study of the cost and performance impact of resource
allocation and parameter configuration in MapReduce. The AROMA
architecture and design is presented in Section 4. Section 5 pro-
vides the system implementation. Section 6 presents experimental
results and analysis. We conclude with future work in Section 7.

2. RELATED WORK
Recently distributed data processing framework MapReduce and

its open source implementation Hadoop have gained much research
[7, 11, 15, 16, 18, 21]. The pay-per-use utility model of Cloud
computing introduces new opportunities as well as challenges in
deploying a MapReduce framework [24]. Lee et al. designed an
architecture to allocate resources to a data analytics cluster in the
cloud, and proposed a metric of share in a heterogeneous cluster
to realize a scheduling scheme that achieves high performance and
fairness [15]. However, their approach allocates resources based
on a simple criteria of job storage requirement without considering
any performance guarantee.

There are a few studies focusing on performance estimation and
guarantee of MapReduce jobs. Polo et al. [18] proposed an online
job completion time estimator that can be used for adjusting the
resource allocations of different jobs. However, their job estimator
tracks the progress of the map stage alone and has no information
or control over the reduce stage. An interesting approach recently
designed by Verma et al. uses job profiles of routinely executed
Hadoop jobs and a MapReduce performance model to determine
the amount of resources required for job completion within a given
deadline [23]. However, such an approach does not guarantee the
performance of ad-hoc jobs submitted to the system. More impor-
tantly, it does not consider the impact of Hadoop configuration pa-
rameters on the effectiveness and efficiency of resource allocation.
Resource allocation efficiency in datacenters is very important from
the economical perspective [8, 25].

Kambatla et al. [12] proposed to select the optimal Hadoop con-
figuration parameters for improving the performance of jobs using



a given set of resources. However, there is no guidance on deciding
the appropriate number and type of resources to be allocated. There
is a need for a holistic system that considers the inter-dependence of
various job provisioning decisions in providing performance guar-
antee in a cost efficient manner.

There are simulation based approaches to systematically under-
standing the performance of MapReduce setups [9] and tuning the
MapReduce configuration parameters [10]. However, designing an
accurate simulator that can comprehensively capture the internal
dynamics of such complex systems is potentially error-prone.

There are recent studies that address the important issue of im-
proving MapReduce query performance [4, 6]. For example, Lee et
al. proposed and developed YSmart, a correlation aware SQL-to-
MapReduce query translator [16]. Those studies are complimen-
tary to our research in this paper.

AROMA’s technical core is based on a novel two-phase statisti-
cal machine learning and optimization framework. Statistical ma-
chine learning techniques have been used for measuring the ca-
pacity of multi-tier Internet sites [20], for online application and
virtual machine auto-configuration [2, 19] and for resource allo-
cation for performance and power control in datacenters [13, 14,
17, 22]. AROMA automates resource allocation and configuration
of MapReduce environment in the Cloud in a novel and practical
way. It is able to provision ad-hoc MapReduce jobs for achieving
performance guarantee in a cost-efficient manner.

3. A CASE STUDY
An interesting artifact of the utility nature of the cloud paradigm

is that the cost of using 1000 virtual machines (VMs) for one hour
is the same as using one virtual machine (VM) of the same capac-
ity for 1000 hours. Thus, a MapReduce job can potentially improve
its performance while incurring the same currency cost by acquir-
ing several machines and executing in parallel. However, a user
submitting jobs to a Cloud service has to choose from a variety of
virtual machines, which have different hardware configurations and
corresponding pricing policies usually expressed as $perhour. For
a given MapReduce job with the certain input data set, it is chal-
lenging to determine how many and what type of virtual machines
should be allocated to meet the job completion deadline while min-
imizing the incurred cost.

Furthermore, the configuration parameters of the Hadoop MapRe-
duce framework for each virtual machine can significantly affect
the performance of a running job. There is no single MapReduce
configuration that can optimize the performance of all types of
VMs and all types of jobs. To illustrate this, we conduct a case
study in a testbed of virtualized Hadoop nodes based on VMware
vSphere 4.1. A MapReduce benchmark job Sort, which does a par-
tial sort of its input, is executed with 20 GB input data on a cluster
of six VMs. We measure the job execution time for various com-
binations of resource type and configuration parameters as shown
in Table 1. For the sake of clarity we use only one configuration
parameter and two types of VMs in this case study. We allocate 1
CPU core with 2 GB RAM to a small VM and 2 CPU cores with 4
GB RAM to a medium VM. The usage costs of small and medium
VMs are assumed to be 0.85$perhour and 1.275$perhour, re-
spectively. We assume that the maximum number of parallel map-
pers and reducers are fixed to 1 slot per node for small VMs and 2
slots per node for medium VMs.

The results in Table 1 illustrate the impact of resource alloca-
tion and configuration on both performance and cost of running a
Hadoop job. We observe that the performance impact of MapRe-
duce parameters significantly varies with resource allocation. For
example when six small VMs are allocated, the optimal configu-

Table 1: Cost and performance impact of resource allocation
and parameter configuration.

Hadoop MapReduce Configuration
small VMs mapred.reduce.tasks Exec.time Cost (cents)
Case 1 7 17.2min 146.2
Case 2 35 14min 119.0
Case 3 70 13min 110.5
medium VMs mapred.reduce.tasks Exec. time Cost (cents)
Case 4 7 11.5min 146.6
Case 5 35 7.36min 93.8
Case 6 70 8min 102.0
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Figure 1: The system architecture of AROMA.

ration is given by case 3 with mapred · reduce · tasks equal to
70. However for six medium VM allocation, the optimal configu-
ration is Case 5 with mapred · reduce · tasks equal to 35. In this
particular study, we have a counter intuitive observation that it may
be cheaper to run a Hadoop job using six medium VMs instead of
six small VMs. However, the situation can be further complicated
by the fact that cost and performance impact can also vary with the
different number of VMs and different input size of jobs running in
a Hadoop cluster. Hence, it is important to consider all these factors
for making a cost efficient and effective job provisioning decision.

4. AROMA ARCHITECTURE AND DESIGN
AROMA is an automated job provisioning system that integrates

resource allocation and parameter configuration to meet job dead-
line guarantee and improve the cost efficiency of Hadoop MapRe-
duce in Clouds. Figure 1 shows the architecture of AROMA. End
users submit jobs as input to AROMA through a command line
interface. AROMA first calculates the number and type of VMs to
be allocated, and assigns appropriate MapReduce configuration pa-
rameters to meet its completion deadline at minimal cost. Then, its
resource allocator powers on a pool of dormant VMs pre-installed
with Hadoop software. Finally, the job manager submits the job to
the Hadoop master node along with its configuration parameters.
Here, the key challenges lie in making fast and effective decisions
at job submission time, allocating the right amount of resources and
finely tuning the MapReduce configuration settings for an ad-hoc
job with unpredictable input data size and completion deadline.

The core components of AROMA work in two phases. First the
data collector, clustering and performance modeling components
process Hadoop log files and resource utilization data to learn the
performance models for various types of Hadoop jobs in the of-
fline phase. Next in the online phase, the job profiler, resource sig-
nature matcher and optimizer select the appropriate performance
model for an incoming job based on its resource utilization signa-
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(a) Sort run1. (b) Wordcount run1. (c) Grep run1.
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Figure 2: CPU utilization of Sort, Wordcount and Grep jobs during different runs.
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Disk resources for (i) Sort vs Sort;(ii) Sort vs Wordcount;(iii)
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ture and calculate the optimal resource allocation and configuration
that meet the job completion deadline.

4.1 Machine Learning Performance Modeling
The first challenge for making optimal job provisioning deci-

sions is the lack of the performance models for different Hadoop
jobs. AROMA learns the performance models of various types of
jobs in the offline phase.

4.1.1 Data collection and clustering
The data collector component extracts the execution time, input

data size, resource allocation and MapReduce configuration param-
eters of various past jobs from the Hadoop JobTracker log files. For
each job, it fetches the corresponding series of resource utilization
data of the slave VM nodes. We use dstat tool at each slave VM
to measure CPU usage (in terms of User, System, Idle and Wait
percentages), disk usage (number of blocks in and out) and net-
work usage (bytes/sec into and out of network card) every second.
All the usage measurements are normalized using their respective
maximum values. In our testbed, the JobTracker and slave VM logs
are saved in a repository when a Hadoop cluster is decommissioned
after job completion.

A core principle that enables AROMA’s adaptiveness to ad-hoc
jobs is based on the observation that jobs with similar resource
utilization pattern exhibit similar performance behavior. As a re-
sult, AROMA needs to learn only a single performance model for
a group of similar jobs. The resource utilization signature of each
job is a combination of time series data of average CPU usage, av-
erage memory usage and average disk usage rate. However, it is
difficult to compare the resource signatures of two jobs accurately
in a multi-tenant cloud environment. It is due to the fact that the
contention of shared resources between multiple applications in-
troduces noise and outliers in the resource utilization patterns.

We examine the variability of resource utilization patterns of var-
ious Hadoop jobs running on a small cluster of 2 small VMs and
using 1 GB input data. The Hadoop configuration parameters are
set to the default value. To simulate a multi-tenant cloud environ-



Table 2: Feature Selection for SORT performance model.
Features t-statistic p-value
io.sort.factor -3.6306 0.0211
mapred.job.shuffle.merge.percent 0.9613 0.3423
io.sort.spill.percent 2.13 0.2014
mapred.job.shuffle.input.buffer.percent -1.5352 0.1328
io.sort.record.percent -1.0588 0.0191
mapred.job.reduce.input.buffer.percent 1.4043 0.1682
mapred.reduce.parallel.copies 4.3869 0.0342
io.sort.mb -3.3465 0.0312
mapred.reduce.tasks -6.4583 0.0101
input size 10.8 0.0011
VM type 8.5 0.0045
number of VMs -4.2 0.0021

ment, we host another group of VMs in the same physical server
cluster of our testbed and execute Hadoop jobs in them. Figures 2
(a) and 2(d) compare the CPU utilization patterns of a VM node
when a Sort job is executed twice. Similarly, the CPU utilization
patterns of Wordcount and Grep jobs are also compared. We ob-
served variations in the utilization patterns of the same job when it
is executed at different times.

It is challenging to accurately identify the degree of similarity
between different jobs due to the disturbance in the resource uti-
lization pattern of VMs. We demonstrate this challenge by measur-
ing the difference between the utilization patterns of various job
combinations using a straightforward Euclidean distance metric.
Figure 3 shows the Euclidean distance between the resource uti-
lization signatures of different job combinations. We observe that
the Euclidean distance based resource utilization signature com-
parison is misleading. For instance according to this metric, the
signature distance of CPU and network utilization between two ex-
ecutions of the same Sort job is found to be greater than that of Sort
vs Wordcount job executions.

AROMA addresses this challenge by applying a Longest Com-
mon Subsequence (LCSS) based distance metric. Unlike a com-
monly used Euclidean Distance metric, LCSS is robust against noise
and outliers in a resource utilization pattern. It is also effective in
comparing the similarity between patterns that are out of phase and
of different lengths. Figure (4) shows LCSS distance between the
resource utilization signatures of different job combinations. The
distances between the CPU, disk and network utilization patterns
of two Sort jobs is the smallest and the distances between the uti-
lization patterns of Sort and Grep jobs are the largest.

AROMA applies the classic k-medoid based clustering technique
along with LCSS distance metric to group jobs with similar utiliza-
tion patterns of CPU, network and disk resources. According to
the resource utilization patterns of the three jobs, AROMA groups
Sort and Wordcount jobs in the same cluster and the Grep job be-
longs to a different cluster. Resource signatures implicitly capture
the potential impact of input data content on a job’s behavior.

4.1.2 Performance modeling
AROMA applies a powerful supervised machine learning tech-

nique to learn the performance model for each cluster of jobs. It
constructs a support vector machine (SVM) regression model to es-
timate the completion time of jobs belonging to a cluster for differ-
ent input data sizes, resource allocations and configuration param-
eters. SVM methodology is known to be robust for estimating real-
valued functions (regression problem) from noisy and sparse train-

Table 3: Feature Selection for GREP performance model.
Features t-statistic p-value
io.sort.factor -1.1324 0.2682
mapred.job.shuffle.merge.percent -1.4953 0.1474
io.sort.spill.percent -1.4527 0.1587
mapred.job.shuffle.input.buffer.percent -0.8069 0.4273
io.sort.record.percent 3.8211 0.0007
mapred.job.reduce.input.buffer.percent 3.8016 0.0008
mapred.reduce.parallel.copies -0.1715 0.8652
io.sort.mb 9.487 0.0112
mapred.reduce.tasks -0.7814 0.4419
input size 9.3 0.0033
VM type 7.5 0.0056
number of VMs -4.5 0.0011

ing data having many attributes. This property of SVM makes it a
suitable technique for performance modeling of complex Hadoop
jobs in the Cloud environment.

It is important to create a model that utilizes only the statisti-
cally significant features and avoids "overfitting" the data. For each
job cluster, we apply a stepwise regression technique to determine
which set of features are the best predictors for the job perfor-
mance. It is a systematic method for adding and removing terms
from a model based on their statistical significance in a regression.
The method begins with an initial model and then compares the
explanatory power of incrementally larger and smaller models. At
each step, the p value of a t-statistic is computed to test models
with and without a potential term. If a term is not currently in the
model, the null hypothesis is that the term would have a zero coef-
ficient if added to the model. If there is sufficient evidence to reject
the null hypothesis, the term is added to the model. Conversely, if
a term is currently in the model, the null hypothesis is that the term
has a zero coefficient. If there is insufficient evidence to reject the
null hypothesis, the term is removed from the model.

We conduct stepwise regression on the data sets collected from
our testbed of virtualized Hadoop nodes. For data collection, we
measured the execution times of various Hadoop jobs with differ-
ent input data sizes in the range 5 GB to 50 GB, using different
Hadoop configuration parameters and running on different cluster
sizes of Hadoop nodes comprising of small and medium VMs. Ta-
bles 2 and 3 show the results of stepwise regression for two differ-
ent Hadoop jobs, Sort and Grep respectively. Note that the features
whose p-values are smaller than or equal to the significance level of
0.05 are selected for performance modeling using SVM regression.

The idea of SVM regression is based on the computation of a lin-
ear regression function in a high dimensional feature space where
the input data are mapped via a nonlinear function. The linear
model in an M dimensional feature space f(x, ω) is given by

f(x,ω) =

M∑

m=1

ωmgm(x) + b (1)

where gm(x) denotes a set of nonlinear transformations and b is
the bias term. The input data x for AROMA’s performance model
consists of the features selected by the stepwise regression method.

AROMA applies ε − SV regression technique [3] that aims to
find a function f(x, ω) that has at most ε deviation from the actual
output values y for all the training data points. In this case, the out-
put values of the performance model are the job execution times.
At the same time, it also tries to reduce model complexity by min-



 0

 0.5

 1

 1.5

 2

 2.5

 3

SORT WORDCOUNT GREP

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or

Hadoop jobs

Linear Regression
AROMA
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imizing the term ||ω||2. We apply the LIBSVM [3] library to find
suitable kernel functions and train the SVM regression model.

SVM regression has a good generalization and prediction power
due to the fact that unlike other learning techniques, it attempts to
minimize a generalized error bound so as to achieve generalized
performance. This error bound is the combination of the training
error and a regularization term that controls the complexity of the
model. One approach for assessing how accurately a predictive
model will perform in practice is to perform cross-validation. We
apply leave-one-out cross-validation (LOOCV), which involves us-
ing a single observation from the original data sample as the val-
idation data, and the remaining observations as the training data.
This is repeated such that each observation in the sample is used
once as the validation data. Figure 5 shows the results of cross val-
idation performed for three Hadoop jobs in terms of the root mean
square error in prediction. AROMA’s SVM regression based per-
formance model is able to achieve significantly better prediction
accuracy than a linear regression model.

4.2 Online Job Profiling and Signature Match
A MapReduce environment needs to run ad-hoc jobs with unpre-

dictable resource utilization patterns that make it difficult to apply
performance models. AROMA addresses this challenge by first
running a new job in a small set of Hadoop nodes and using a small
chunk of input data. It collects the resource utilization signature
of the job using dstat tool. Then the signature is compared with
the resource utilization signatures of various job clusters’ centroid.
We observe that signature matching with the cluster centroid rather
than each data point is sufficient since the data points within the
same cluster are similar. As a result, this process can be executed
with less overhead.

However, a straightforward comparison of resource utilization
signatures may cause misleading results due to the presence of
noise and outliers. AROMA applies the LCSS distance metric to
match the signatures corresponding to each resource type for a se-
quence of measurement samples. It is able to make accurate com-
parison between the resource utilization patterns of two jobs.

4.3 Cost Efficient Performance Guarantee
It is important but challenging to make effective job provision-

ing decisions to meet performance guarantee in terms of job com-
pletion deadlines and to minimize the cost of resource allocation.
AROMA’s job provisioning decision is based on a non-linear con-
strained optimization problem formulated for a given job with input
size s and completion deadline D as follows:

Minimize
N∑

i=1

ni ∗ ratei ∗ ts (2)

Subject to Constraints:

ts ≤ D (3)

∀j ∈ [1, C], lbj ≤ confj ≤ ubj (4)

Eq. (2) gives the optimization objective to minimize the total cost
of allocating VMs to the Hadoop cluster. Here, ni is the number
of VMs of type i (small,medium) that is charged a cost of ratei at
$perhour and ts is the execution time of the given job with input
data size s. Eq. (3) defines a constraint that the job execution time
must be less than its completion deadline D. Eq. (4) defines the
lower bound lb and upper bound ub values of each MapReduce
configuration parameter under consideration.

In this optimization problem, the relationship between the deci-
sion variables (ni, confj ) and the dependent variable ts is given by
the SVM regression model corresponding to a given job type. We
solve the optimization problem by applying a pattern search algo-
rithm, the generating set search. It is a direct search method that can
optimize complex objective functions that are not differentiable.

It computes a sequence of points that approach an optimal point.
At each step, the algorithm searches a set of points, called a mesh,
around the current point computed at the previous step of the algo-
rithm. The mesh is formed by adding the current point to a scalar
multiple of a set of vectors called a pattern. If the pattern search al-
gorithm finds a point in the mesh that improves the objective func-
tion at the current point, the new point becomes the current point at
the next step of the algorithm.

4.4 Resource Allocator and Job Manager
AROMA’s optimizer sends its solutions to the resource allocator

and the job manager components. The resource allocator is respon-
sible for powering on the appropriate number and types of VMs
with pre-installed Hadoop software. It uses VMware vSphere API
4.1 to issue commands for VM management. Note that a VM in
its powered off state poses negligible infrastructure cost. Once the
VMs are started up, the job manager submits the given job to the
Hadoop master node along with the optimized MapReduce config-
uration parameters. It does so by issuing commands to the hadoop
master node using a java ssh library.

5. SYSTEM IMPLEMENTATION

5.1 The Testbed
We implement AROMA on a testbed consisting of seven HP Pro-

Liant BL460C G6 blade server modules and a HP EVA storage area
network with 10 Gbps Ethernet and 8 Gbps Fibre/iSCSI dual chan-
nels. Each blade server is equipped with Intel Xeon E5530 2.4 GHz
quad-core processor and 32 GB PC3 memory. Virtualization of the
cluster is enabled by VMware ESX 4.1. We create a pool of VMs
with different hardware configurations from the virtualized blade
server cluster and run them as Hadoop nodes. There are small VMs
with 1 vCPU, 2 GB RAM and 50 GB hard disk space. Medium
VMs have 2 vCPUs, 4 GB RAM and 80 GB hard disk space. Each
VM uses Ubuntu Linux version 10.04 and Hadoop 0.20.2.

We designate one blade server to host the master VM node and
use rest of the servers to host the slave VM nodes. The single mas-
ter node runs the JobTracker and the NameNode, while each slave
node runs both the TaskTracker and the DataNode. A small slave
VM is configured with one Map slot, one Reduce slot and 200 MB
memory per task. Whereas, a medium type slave VM is configured
with two Map slots, two Reduce slots and 300 MB memory per
task. The data block size is set to 64 MB. The AROMA job provi-
sioning system can be run either on a separate VM or a standalone
machine as it manages the Hadoop nodes remotely.
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(a) Sort. (b) Wordcount. (c) Grep.

Figure 6: Actual and predicted running times of MapReduce jobs for various VM resource allocations (small VMs).
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Figure 7: Actual and predicted running times of MapReduce jobs for various VM resource allocations (medium VMs).
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Figure 8: Actual and predicted running times of Sort for vari-
ous input data sizes.

As related studies [12, 23], we use a number of benchmark jobs
that come with the Hadoop distribution for performance evaluation,
i.e., Sort, Grep, and Wordcount. We use the RandomWriter and
RandomTextWriter tools in the Hadoop package to generate data
of various sizes for the Sort, WordCount and Grep programs.

6. PERFORMANCE EVALUATION
We evaluate AROMA’s capability for predicting the performance

of Hadoop jobs, auto-configuration of Hadoop MapReduce param-
eters, joint resource allocation with configuration, and adaptiveness
to ad-hoc Hadoop jobs for improving job performance and reduc-
ing the incurred cost. For our experiments, the costs of using a
small VM and a medium VM are assumed to be $0.85 per hour
and $1.275 per hour respectively.

6.1 AROMA Performance Model Accuracy
First, we evaluate AROMA’s ability to predict the completion

times of Hadoop jobs when they are executed with different num-

ber of VM nodes of different types and different input data sizes.
We use the default Hadoop configuration for this experiment. Fig-
ures 6 (a), (b) and (c) show the actual and predicted running times
of Sort, Wordcount and Grep jobs respectively as the number of
Hadoop slave nodes are varied. In this case, we use small VMs as
Hadoop nodes and fix the input data to be 20 GB. Figures 7 (a), (b)
and (c) show the results of a similar study using medium VMs. We
observe that AROMA’s SVM regression based performance model
is able to predict the speedup achieved for each job as we increase
the number of VMs. The relative error between the actual and pre-
dicted job completion time is less than 12% on all the cases. We
observed similar prediction accuracy when the input data size is
varied while keeping the number of VMs fixed as shown in Fig-
ure 8. Here, we use six small VMs to run a Sort job.

6.2 Auto-Configuration
We evaluate AROMA’s capability to automatically configure the

Hadoop environment parameters according to variations in the re-
source allocation. We execute the Hadoop Sort benchmark. The
jobs are executed for an input data of 10 GB. Figures 9 (a), (b)
and (c) compare the impact of using the default Hadoop configura-
tion with AROMA’s auto-tuned configuration on the job execution
time and the incurred cost. AROMA’s auto-configuration signifi-
cantly outperforms the default configuration for various allocations
of small VMs. The improvement in job performance and cost due
to AROMA increases from 17% to 30% when using more number
of VMs. It is due to the fact that there are more opportunities for
configuration tuning in case of using more VMs. Figures 10 (a),
(b) and (c) show the job execution results when medium VMs are
used. We observe that using more than six medium VMs shows
little improvement in performance and hence increases the cost. It
is due to the fact that for a moderately small input data of 10 GB,
the overhead of managing a large number of Map/Reduce slots in
the cluster can be significant.
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Figure 9: Impact of AROMA’s auto-configuration on job performance and cost for various VM resource allocations (small VMs).
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Figure 10: Impact of AROMA’s auto-configuration on job performance and cost for various VM resource allocations (medium VMs).

Note that in Figure 9(c) and Figure 10(c), the improvement per-
centage in performance and in cost are the same since the cost of
using a VM depends on how long a job runs.

Table 4 compares the Hadoop configurable parameter values due
to AROMA’s auto-configuration with the default Hadoop values.
AROMA uses this configuration for running Sort benchmark with
six small VMs and input data of 20 GB. We can observe that there
are many differences between two settings. In particular, parame-
ters io · sort · factor, mapred · reduce · tasks, and mapred ·
reduce·parallel·copies have significantly different values. Hadoop
Sort benchmark sets the default value of mapred · reduce · tasks
to 0.9 times the total number of reduce slots in the cluster.

Please note that for the Sort job even if an end user is able to
come up with the same parameter configuration as that of AROMA
based on best practices, such a parameter configuration is not effec-
tive when the Hadoop environment and the submitted jobs change
dynamically. For instance, Table 5 shows the parameter configura-
tion differences for running the Sort job with six medium VM and
input data of 20 GB. It shows there are a few important differences
between two parameter configurations by AROMA.

Next, we evaluate the auto-configuration capability of AROMA
when the input data size is varied. Figures 11(a),(b) and (c) show
the performance improvement due to AROMA for running the Sort
benchmark by using six small VMs.

6.3 Efficient Resource Allocation and Config-
uration

A key feature of AROMA is its holistic job provisioning ap-
proach with optimization for joint resource allocation and auto-
configuration. We demonstrate the merit of this feature by com-
paring the cost efficiency in achieving the job completion deadline
by AROMA with and without the integration of resource allocation
with auto-configuration of Hadoop parameters.

Tables 6 and 7 show the execution time and cost of complet-

Table 4: Hadoop configuration parameters for Sort benchmark
(six small VMs and 20 GB input data).

Hadoop parameters AROMA Default
io.sort.factor 300 10
mapred.job.shuffle.merge.percent 0.66 0.66
io.sort.spill.percent 0.8 0.8
mapred.job.shuffle.input.buffer.percent 0.7 0.7
io.sort.record.percent 0.15 0.05
mapred.job.reduce.input.buffer.percent 0 0
mapred.reduce.parallel.copies 12 5
io.sort.mb 130 100
mapred.reduce.tasks 120 5

Table 5: Hadoop configuration parameters for Sort benchmark
(six medium VMs and 20 GB input data).

Hadoop parameters AROMA Default
io.sort.factor 100 10
mapred.job.shuffle.merge.percent 0.66 0.66
io.sort.spill.percent 0.8 0.8
mapred.job.shuffle.input.buffer.percent 0.7 0.7
io.sort.record.percent 0.3 0.05
mapred.job.reduce.input.buffer.percent 0 0
mapred.reduce.parallel.copies 8 5
io.sort.mb 160 100
mapred.reduce.tasks 120 10



 0

 5

 10

 15

 20

 25

1 5 10 20

Jo
b 

ex
ec

ut
io

n 
tim

e 
(m

in
)

Input data size (GB)

Default
AROMA

 0

 50

 100

 150

 200

1 5 10 20

C
os

t (
ce

nt
s)

Input data size (GB)

Default
AROMA

 0

 5

 10

 15

 20

 25

 30

1 5 10 20

P
er

fo
rm

an
ce

 &
 c

os
t i

m
pr

ov
em

en
t (

%
)

Input data size (GB)

(a) performance. (b) cost. (c) improvement.

Figure 11: Impact of AROMA auto-configuration on job performance and cost for various input data sizes.

Table 6: Cost of meeting job execution deadline (360 sec).
AROMA w/o auto-configuration

Data VMs Execution Cost
input (number and type) time (sec) (cents)
5 GB 3 small 300 21
10 GB 6 medium 240 51
20 GB 12 medium 358 152

ing a Hadoop Sort job for various input data sizes by AROMA
without and with the integration of resource allocation with auto-
configuration respectively. Results show that both approaches can
complete the job within the completion deadline 360 seconds. How-
ever, AROMA with auto-configuration is much more cost efficient
for meeting the job completion deadline for all different input data
sizes. For example, for the Sort benchmark job with data size 10
GB, AROMA without auto-configuration costs 51 cents to finish
the job within the given deadline using 6 medium VMs. On the
other hand, AROMA with auto-configuration uses only 5 medium
VMs to meet the deadline while incurring the total cost of 36 cents.

The main reason for the cost efficiency of AROMA is two-fold.
First, AROMA is able to fine tune the Hadoop configuration pa-
rameters corresponding to various resource allocations. As a re-
sult, a job running with AROMA’s optimized configuration can fin-
ish faster than a job using the default Hadoop configuration for the
same set of resource allocations. We have observed similar perfor-
mance improvement results for other job completion deadlines but
omitted here due to the space limit.

Second, it performs a cost-aware optimization for the allocation
of heterogeneous resources. As shown in Table 7, when the input
data is 5 GB, AROMA allocates three small VMs that complete the
job in 210 seconds. We note that using two small VMs could still be
able to meet the job completion deadline that is 360 seconds. This
kind of counter intuitive behavior of AROMA is in fact advanta-
geous. This is due to the fact that running three small VMs for 210
seconds is cheaper than running two VMs of the same capacity for
a much longer time, while still meeting the job completion dead-
line. The cost saving is 12% in this case. On average, AROMA
shows cost efficiency of 25%.

6.4 Adaptiveness to Ad-hoc Jobs
We evaluate AROMA’s ability to predict the performance of ad-

hoc jobs. Assuming that an ad-hoc Wordcount job with 10 GB
input data is submitted to the system, AROMA first captures the
resource utilization signature of the job by executing it in a stag-
ing cluster of two small VMs using 1 GB input data and default

Table 7: Cost of meeting job execution deadline (360 sec).
AROMA w auto-configuration

Data VMs Execution Cost
input (number and type) time (sec) (cents)
5 GB 3 small 210 14.8
10 GB 5 medium 205 36
20 GB 10 medium 357 126

Hadoop configuration. As discussed in Section 4.1.1, the resource
utilization signature of Wordcount job is found to be similar to that
of a Sort job. We assume that the performance model of Sort job
is available due to offline data clustering and modeling. AROMA
calculates the difference between the measured execution time of
Wordcount in the staging cluster and the execution time predicted
by the SVM performance model of the Sort job. It applies this
difference value to scale the predictions made by the performance
model for different resource allocations and configurations.

The accuracy of AROMA’s resource signature matching and the
performance of ad-hoc jobs depend on the diversity of existing job
clusters. Job clustering is initially performed offline based on past
data. It can be repeated at regular time intervals to accommodate
diverse new jobs.

Figure 12 demonstrates the accuracy of AROMA’s performance
prediction of Wordcount job for various VM resource allocations.
In this case, we use small VMs with default Hadoop configuration
for performance evaluation. AROMA is able to achieve a very ac-
curate prediction of job execution time with a relative error of less
than 12.5%. Next, we compare the actual and predicted execution
times of Wordcount job running on 4 small VMs with 20 various
Hadoop configurations as shown in Figure 13.

7. CONCLUSIONS
The software framework MapReduce and its open-source im-

plementation Hadoop are increasingly deployed in the Cloud to
harness the unlimited availability of virtualized resources and pay-
per-usage cost model of cloud computing. However, currently end
users have to make job provisioning decisions manually at the Hadoop
environment using best practices. They suffer from a lack of perfor-
mance guarantee and increased cost of leasing the Cloud resources.

AROMA is proposed and developed to enable automated allo-
cation of heterogeneous cloud resource sets and configuration of
Hadoop parameters for meeting job completion deadlines while
minimizing the incurred cost. It addresses the significant chal-
lenges of automated and efficient Hadoop job provisioning with
a novel two-phase machine learning and optimization framework.
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Figure 12: Prediction accuracy for an ad-hoc job for various
VM resource allocations.
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Figure 13: Prediction accuracy for an ad-hoc job for 20 Hadoop
configurations.

It is able to make optimal job provisioning decisions with respect
to resource allocation efficiency in the face of unpredictable input
data sizes and performance expectations. The significance also lies
in the fact that it enables automated job provisioning of Hadoop
MapReduce framework in the Cloud so that end users can utilize
cloud services without acquiring in-depth knowledge about the sys-
tem internals or going through laborious and time consuming man-
ual but ineffective configuration tuning.

AROMA is developed upon the popular Hadoop MapReduce en-
vironment. It is ready to be tailored for other MapReduce running
environments. In the future work, we will extend AROMA for run-
ning multi-stage job workflows.
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