Electronic Supplementary Information

Aromaticity in all-metal annular systems: The counter-ion effect

Arindam Chakraborty¹, Santanab Giri¹, Soma Duley¹, Anakuthil Anoop², Patrick Bultinck³ and Pratim K. Chattaraj^{1,*}

> ¹ Department of Chemistry and Center for Theoretical Studies Indian Institute of Technology, Kharagpur – 721 302, India

² Department of Chemistry Indian Institute of Technology, Kharagpur – 721 302, India

³ Department of Inorganic and Physical Chemistry Ghent University, Krijgslaan, 9000 Gent, Belgium

* Corresponding author: pkc@chem.iitkgp.ernet.in

Table S1. Atomic charge distribution on the different atoms of Na_2Mg_3 molecule with the variation of distance of the Na^+ ion computed at HF/aug-cc-pVDZ and B3LYP/aug-cc-pVDZ levels of theory

HF/aug-cc-pVDZ		B3LYP/aug-cc- pVDZ			MP2/aug-cc-pVDZ		QCISD/aug-cc-pVDZ	
Singlet		Singlet		Distance	Singlet		Singlet	
Mg	Na	Mg	Na	(Å)	Mg	Na	Mg	Na
0.311	-0.467	0.294	-0.441	1.0	0.339	-0.509	0.329	-0.493
0.280	-0.420	0.293	-0.440	1.1	0.310	-0.466	0.299	-0.449
0.252	-0.378	0.300	-0.450	1.2	0.286	-0.429	0.274	-0.411
0.229	-0.343	0.307	-0.460	1.3	0.269	-0.403	0.255	-0.328
0.212	-0.318	0.301	-0.452	1.4	0.259	-0.389	0.243	-0.364
0.197	-0.296	0.282	-0.423	1.5	0.250	-0.375	0.232	-0.349
0.184	-0.275	0.260	-0.389	1.6	0.239	-0.359	0.221	-0.331
0.170	-0.255	0.242	-0.362	1.7	0.229	-0.343	0.209	-0.314
0.157	-0.236	0.229	-0.344	1.8	0.219	-0.329	0.198	-0.298
0.146	-0.218	0.221	-0.332	1.9	0.212	-0.318	0.189	-0.283
0.135	-0.203	0.218	-0.327	2.0	0.210	-0.315	0.182	-0.274
0.128	-0.192	0.220	-0.331	2.1	0.217	-0.326	0.183	-0.274
0.126	-0.189	0.225	-0.338	2.2	0.231	-0.347	0.192	-0.288
0.128	-0.192	0.222	-0.333	2.3	0.234	-0.351	0.203	-0.305

0.132	-0.197	0.208	-0.311	2.4	0.222	-0.332	0.201	-0.302
0.128	-0.192	0.189	-0.283	2.5	0.199	-0.299	0.184	-0.276
0.112	-0.169	0.171	-0.257	2.6	0.170	-0.256	0.157	-0.235
0.087	-0.130	0.155	-0.233	2.7	0.136	-0.204	0.124	-0.186
0.054	-0.081	0.140	-0.210	2.8	0.098	-0.148	0.087	-0.130
0.017	-0.025	0.125	-0.188	2.9	0.058	-0.087	0.047	-0.070
-0.023	0.034	0.109	-0.164	3.0	0.016	-0.024	0.005	-0.008
-0.064	0.096	0.093	-0.140	3.1	-0.027	0.041	-0.038	0.057
-0.105	0.157	0.076	-0.114	3.2	-0.071	0.106	-0.081	0.122
-0.145	0.218	0.057	-0.086	3.3	-0.114	0.170	-0.124	0.186
-0.183	0.275	0.039	-0.059	3.4	-0.155	0.232	-0.164	0.246
-0.218	0.327	0.020	-0.029	3.5	-0.194	0.291	-0.202	0.304
-0.247	0.371	0.001	-0.001	3.6	-0.229	0.343	-0.236	0.355
-0.271	0.407	-0.017	0.026	3.7	-0.259	0.388	-0.265	0.398
-0.288	0.433	-0.034	0.051	3.8	-0.283	0.425	-0.288	0.431
-0.299	0.448	-0.048	0.073	3.9	-0.301	0.452	-0.303	0.455
-0.302	0.452	-0.060	0.090	4.0	-0.312	0.469	-0.312	0.469
-0.299	0.448	-0.069	0.103	4.1	-0.317	0.476	-0.315	0.472
-0.291	0.436	-0.075	0.113	4.2	-0.316	0.475	-0.311	0.467
-0.278	0.418	-0.079	0.119	4.3	-0.311	0.466	-0.303	0.454
-0.263	0.395	-0.081	0.122	4.4	-0.301	0.452	-0.290	0.436
-0.246	0.369	-0.082	0.123	4.5	-0.288	0.433	-0.275	0.413
-0.228	0.342	-0.081	0.122	4.6	-0.274	0.411	-0.258	0.388
-0.210	0.314	-0.081	0.121	4.7	-0.258	0.388	-0.240	0.361
-0.191	0.287	-0.079	0.119	4.8	-0.243	0.364	-0.222	0.333
-0.173	0.260	-0.078	0.117	4.9	-0.226	0.340	-0.204	0.306
-0.155	0.233	-0.076	0.114	5.0	-0.211	0.316	-0.187	0.280
-0.032	0.048	-0.050	0.075	0.0	-0.090	0.135	-0.063	0.094
0.004	-0.006	-0.023	0.035	7.0	-0.031	0.046	-0.018	0.027
0.00/	-0.011	-0.009	0.013	8.0	-0.009	0.014	-0.004	0.005
0.006	-0.009	-0.004	0.005	9.0	-0.001	0.002	0.001	-0.001
0.004	-0.000	-0.002	0.003	10	0.001	-0.002	0.002	-0.003
0.280	-0.420	-0.001	0.002	11	0.002	-0.002	0.002	-0.003
0.001	-0.002	-0.001	0.001	12	0.001	-0.002	0.001	-0.002
0.001	0.000	0.000	0.001	14	0.001	-0.001	0.001	-0.001
0.000	0.000	0.000	0.000	15	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	16	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	17	0.000	0.000	a	a
0.000	0.000	0.000	0.000	18	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	19	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	20	0.000	0.000	a	a
0.000	0.000	0.000	0.000	21	0.000	0.000	a	a
0.000	0.000	0.000	0.000	22	0.000	0.000	a	a
0.000	0.000	0.000	0.000	23	0.000	0.000	a	a
0.000	0.000	0.000	0.000	24	0.000	0.000	a	a
0.000	0.000	0.000	0.000	25	0.000	0.000	a	a

----a---- indicates that the calculations on the Na_2Mg_3 molecule in their respective spin states do not converge at the above level of theory.

Table S2 Atomic charge distribution on the different atoms of Na_2Mg_3 molecule with the variation of distance of the Na^+ ion computed at MP2/aug-cc-pVDZ and QCISD/ aug-cc-pVDZ levels of theory

HF/aug-cc-pVDZ		B3LYP/aug-cc- pVDZ			MP2/aug-cc-pVDZ		QCISD/aug-cc-pVDZ	
Tri	plet	Triplet		Distance	Triplet		Triplet	
Mg	Na	Mg	Na	(Å)	Mg	Na	Mg	Na
0.196	-0.293	0.153	-0.230	1.0	0.184	-0.457	a	a
0.195	-0.293	0.136	-0.204	1.1	0.327	-0.304	a	a
0.126	-0.188	0.123	-0.185	1.2	0.196	-0.293	0.186	-0.279
0.092	-0.139	0.113	-0.170	1.3	0.161	-0.241	0.151	-0.226
0.063	-0.095	0.104	-0.156	1.4	0.131	-0.196	0.120	-0.181
0.038	-0.058	0.094	-0.141	1.5	0.106	-0.160	0.095	-0.143
0.018	-0.027	0.082	-0.124	1.6	0.087	-0.130	0.075	-0.112
0.001	-0.002	0.071	-0.107	1.7	0.070	-0.106	0.058	-0.086
-0.013	0.019	0.062	-0.093	1.8	0.040	-0.060	0.043	-0.065
-0.025	0.037	0.054	-0.080	1.9	0.058	-0.087	0.032	-0.047
-0.035	0.052	0.046	-0.069	2.0	0.048	-0.072	0.021	-0.032
-0.042	0.064	0.040	-0.060	2.1	0.035	-0.053	0.012	-0.018
-0.049	0.073	0.035	-0.053	2.2	0.042	-0.062	0.004	-0.007
-0.052	0.079	0.032	-0.048	2.3	0.068	-0.103	-0.002	0.003
-0.054	0.081	0.031	-0.047	2.4	0.051	-0.076	-0.007	0.011
-0.052	0.078	0.068	-0.102	2.5	0.030	-0.044	0.011	-0.017
-0.007	0.012	0.086	-0.129	2.6	0.027	-0.041	0.025	-0.037
-0.003	0.004	0.103	-0.154	2.7	0.066	-0.099	0.084	-0.126
-0.002	0.003	0.120	-0.180	2.8	0.096	-0.145	0.095	-0.143
-0.002	0.002	0.133	-0.200	2.9	0.094	-0.142	0.091	-0.137
-0.002	0.003	0.140	-0.210	3.0	0.081	-0.121	0.078	-0.117
-0.002	0.002	0.138	-0.207	3.1	0.062	-0.094	0.060	-0.091
-0.002	0.002	0.128	-0.192	3.2	0.042	-0.063	0.041	-0.061
-0.001	0.002	0.112	-0.168	3.3	0.021	-0.032	0.021	-0.031
-0.001	0.002	0.093	-0.140	3.4	0.002	-0.003	0.002	-0.003
-0.001	0.002	0.073	-0.110	3.5	-0.015	0.022	-0.015	0.022
-0.029	0.043	0.054	-0.081	3.6	-0.029	0.043	-0.029	0.043
-0.001	0.002	0.036	-0.054	3.7	-0.040	0.059	-0.040	0.059
-0.001	0.002	0.020	-0.030	3.8	-0.047	0.071	-0.047	0.070
-0.001	0.002	0.006	-0.010	3.9	-0.052	0.078	-0.051	0.077
-0.001	0.002	-0.004	0.010	4.0	-0.053	0.080	-0.052	0.079
-0.001	0.002	-0.013	0.019	4.1	-0.053	0.079	-0.051	0.077
-0.001	0.002	-0.019	0.028	4.2	-0.051	0.076	-0.048	0.073
-0.001	0.002	-0.023	0.034	4.3	-0.047	0.070	-0.045	0.067
-0.001	0.002	-0.025	0.037	4.4	-0.042	0.064	-0.040	0.060
-0.001	0.002	-0.026	0.038	4.5	-0.038	0.056	-0.035	0.053
-0.001	0.002	-0.026	0.038	4.6	-0.033	0.049	-0.030	0.044
-0.002	0.002	-0.025	0.037	4.7	-0.028	0.043	-0.026	0.039
-0.002	0.002	-0.024	0.036	4.8	-0.024	0.036	-0.022	0.033
-0.002	0.002	-0.023	0.034	4.9	-0.020	0.031	-0.019	0.028

-0.002	0.002	-0.021	0.032	5.0	-0.017	0.026	-0.016	0.024
-0.002	0.003	-0.011	0.016	6.0	-0.003	0.005	-0.003	0.005
-0.001	0.002	-0.005	0.008	7.0	-0.001	0.002	-0.001	0.002
-0.001	0.001	-0.003	0.004	8.0	-0.001	0.001	0.000	0.001
0.000	0.001	-0.001	0.002	9.0	0.000	0.000	0.000	0.000
0.000	0.000	-0.001	0.002	10	0.000	0.000	0.000	0.000
0.000	0.000	-0.001	0.001	11	0.000	0.000	0.000	0.000
0.000	0.000	-0.001	0.001	12	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.001	13	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	14	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	15	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	16	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	17	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	18	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	19	0.000	0.000	a	a
0.000	0.000	0.000	0.000	20	0.000	0.000	a	a
0.000	0.000	0.000	0.000	21	0.000	0.000	a	a
0.000	0.000	0.000	0.000	22	0.000	0.000	a	a
0.000	0.000	0.000	0.000	23	0.000	0.000	a	a
0.000	0.000	0.000	0.000	24	0.000	0.000	a	a
0.000	0.000	0.000	0.000	25	0.000	0.000	a	a

----a---- indicates that the calculations on the Na_2Mg_3 molecule in their respective spin states do not converge at the above level of theory.

Na ₂ Mg ₃ (D _{3h})_Singlet	Na ₂ Mg ₃ (D _{3h})_Triplet			
Levels	Figures	Levels	Figures		
HF/aug-cc-pVDZ (NIMAG=0)	Mg-Mg=3.36 Mg-Na=3.46 Na-Na=5.74	HF/aug-cc-pVDZ	@		
B3LYP/aug-cc- pVDZ (NIMAG=0)	Mg-Mg=3.14 Mg-Na=3.30 Na-Na=5.51	B3LYP/aug-cc-pVDZ (NIMAG=2)	Mg-Mg=3.17 Mg-Na=3.70 Na-Na=6.42		
MP2/aug-cc-pVDZ (NIMAG=0)	Mg-Mg=3.05 Mg-Na=3.36 Na-Na=5.71	MP2/aug-cc-pVDZ (NIMAG=2)	Mg-Mg=3.07 Mg-Na=3.21 Na-Na=5.34		
QCISD/aug-cc-pVDZ (NIMAG=0)	Mg-Mg=3.15 Mg-Na=3.37 Na-Na=5.67	QCISD/aug-cc-pVDZ (NIMAG=2)	Mg-Mg=3.17 Mg-Na=3.65 Na-Na=6.31		
CASSCF(8,8)/aug- cc-pVDZ (NIMAG=0)	Mg-Mg=3.15 Mg-Na=3.48 Na-Na=5.94	CASSCF(8,8)/aug- cc-pVDZ	@		

Fig. S1 Geometries of the Na₂Mg₃ molecule (singlet and triplet) optimized at different levels of theory. --@-- implies that no convergence is achieved.

Singlet

Fig. S2 Frontier molecular orbitals (FMOs) generated for the optimized geometry of the Na₂Mg₃ system in its singlet state computed at HF and B3LYP levels of theory.

Is	somer-I(Mg ₃ ²⁻) (3)	3.22)	Isomer-II(Mg_3^{2-}) (3.37)				
Distances	НОМО	LUMO	Distances	HOMO	LUMO		
Na-Na (8.0) Mg-Mg (3.20)		0 , • ,	Na-Na (4.8) Mg-Mg (3.36)				
Na-Na (8.2) Mg-Mg (3.21)		6 ,**, ()	Na-Na (10.0) Mg-Mg (3.32)				
Na-Na (8.4) Mg-Mg (3.22)		6 ,	Na-Na (12.0) Mg-Mg (3.42)		0 ,*, 0		
Na-Na (8.6) Mg-Mg (3.24)		60 +++++ 60					

Fig. S3 Frontier molecular orbitals (FMOs)^{**} of some of the intermediate structures of the Na₂Mg₃ molecule in their singlet state where the Mg – Mg distance corresponds closely to their bond-stretch isomers in the free [Mg₃]²⁻ system. ^{**}All computations are at B3LYP/aug-cc-pVDZ level of theory