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Arousal and Valence Recognition of Affective

Sounds based on Electrodermal Activity
Alberto Greco, Gaetano Valenza, Luca Citi, and Enzo Pasquale Scilingo

Abstract—Physiological sensors and interfaces for mental
healthcare are becoming of great interest in research and com-
mercial fields. Specifically, biomedical sensors and related ad-hoc
signal processing methods can be profitably used for supporting
objective, psychological assessments. However, a simple system
able to automatically classify the emotional state of a healthy
subject is still missing. To overcome this important limitation,
we here propose the use of convex optimization-based electro-
dermal activity (cvxEDA) framework and clustering algorithms
to automatically discern arousal and valence levels induced by
affective sound stimuli.

EDA recordings were gathered from 25 healthy volunteers,
using only one EDA sensor to be placed on fingers. Standardized
stimuli were chosen from the International Affective Digitized
Sound System database, and grouped into four different levels of
arousal (i.e., the levels of emotional intensity) and two levels of
valence (i.e., how unpleasant/pleasant a sound can be perceived).
Experimental results demonstrated that our system is able
to achieve a recognition accuracy of 77.33% on the arousal
dimension, and 84% on the valence dimension.

Index Terms—Electrodermal Activity, Electrodermal Re-
sponse, Sparse Representation, Convex Optimization, Emotion
Recognition, Affective Digitized Sound System (IADS), K-NN
Classifier.

I. INTRODUCTION

The auditory channel is one of the most powerful means

to induce and communicate emotions to people. It is easy

to understand that speakers can elicit emotions through the

voice tone conveying them to the hearers as well [1]. Music

is another way to enhance orally expressed affective mes-

sages [2], [3]. But speech and music seem to be only a portion

of the sounds that we hear. There are also non-musical and

nonlinguistic sounds [4], which carry affective information in

the audio environment around a listener [5].

Research on emotions indicates that affective stimuli can

automatically elicit central and peripheral autonomic nervous

system (ANS) reactions. Therefore ANS, among other mea-

sures, can offer reliable markers about emotional reactions [6]–

[13]. In particular, several studies have been shown how ANS

activity varies according to affective valence (i.e. pleasantness

of the perception) and arousal (i.e. intensity of the perception),
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which are the two main dimensions of the circumplex model

of affect (CMA) [14]

In the literature there are studies dealing with the relation-

ship among physiological signals and pleasant and unpleasant

sounds or music-induced emotions. PET and fMRI studies on

emotions evoked by auditory stimuli have found that pleasant

sounds lead to the activation of brain areas such as the

orbitofrontal cortex and the anterior insula [15]. Sad music

or unpleasant noises instead lead to the activation of regions

involved in negative emotional states and anxiety-related, such

as the hippocampus, the amygdala and the areas of the medial

temporal lobe [16], [17]. All this brain areas are directly

involved in the control of the human affective system. Other

studies take into account EEG and ANS dynamics [18]–[23],

also to automatically recognize four types of music-induced

emotions [18].

In view of this, it is well known that there are specific

peripheral activation patterns associated with the emotional

valence and arousal of affective sounds. One of the most

powerful peripheral measures of the ANS neural pathway is

the Electrodermal Activity (EDA). This measure has advan-

tages over other measures of the ANS, since EDA is under

direct control of the sympathetic branch of the ANS. In fact,

currently proposed heart rate variability measures, for instance,

have not been proven to be effective in estimating sympathetic

dynamics [24], [25]. Moreover, EDA has been shown to

provide reliable quantification of autonomic expressions of

emotions in the auditory domain [8]. In the literature, several

studies have investigated on EDA dynamics in relationship to

emotional changes elicited by music. A higher electrodermal

reaction has been shown in response to emotionally valenced

stimuli (pleasant or unpleasant) compared to neutral stimuli

[26]. Concerning the arousal dimension, interesting results

have shown that the electrodermal responses can be evoked

and modulated by musical emotional arousal [27]–[29].

These findings have suggested the feasibility of developing

a pattern recognition system to automatically classify arousal

and valence levels of auditory stimuli. In the last decade, sev-

eral studies have applied different classification procedures to

feature-sets extracted from multi-modal recordings (including

EDA) [21], [29], [30]. More specifically, EDA was acquired

with other physiological signals, such as electrocardiogram,

blood volume pulse, respiratory signal and electromyography.

In these studies the feature selection stage showed that the

most relevant features were computed from ECG signal.

However, both the skin conductance mean level [31] and

some statistical measures (e.g., mean, maximum, variance)

computed from the filtered and derived EDA signal [21], [30]
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contributed to increase the accuracy of the pattern recognition

system. In addition, the EDA features looked more significant

for arousal classification than valence [21].

Despite of these large number of results, only one of these

studies has reported on an emotion recognition analysis using

only the EDA signal with a very low accuracy (i.e., 56.5% for

the arousal dimension and 50.5 % for the valence dimension)

[30].

A crucial aspect for extracting suitable information from EDA

analysis is the methodological approach, which may determine

a large variability of results. Empirical evidences suggest that

model-based methods (e.g., Pspm, CDA, cvxEDA .. ) [32]–

[34] have a greater validity compared to operational (i.e.,

heuristic and ad-hoc analyses) approaches [35]. In model-

based approaches, models describe and estimate the underlying

psychological process (i.e. ANS activity) that generates the

observed data (i.e., EDA measurements). The model based

analysis of EDA has fundamental advantages, such as a

propensity to reduce the effects of measurement noise and the

essential ability to improve the temporal resolution of infer-

ence in rapid event-related paradigms [33], [36]. In addition,

statistical inference on the central autonomic network made by

the EDA causal models is generally more powerful than statis-

tical comparisons of observed data performed by operational

approaches (e.g., standard peak detection). Furthermore, the

model-based analysis gives explicit and quantitative descrip-

tion of assumptions that are, instead, implicit in operational

approaches [35], [37], [38]. This allows a rigorous testing

of those assumptions. In fact, operational approaches can be

considered as implicit causal models that are not described in

analytic terms. Model-based approaches explicate the implicit

operational assumptions (e.g., the explicit modeling (and es-

timation) of observation noise) [35]. Among these models in

the literature, cvxEDA algorithm [34] provides a window on

the ANS activity, incorporating the physiological characteristic

of the EDA by means of prior probabilities and constraints,

without requiring pre- or post- processing steps and heuristic

or ah-doc solutions.

The proposal of this computational study is to automati-

cally recognize arousal and valence levels of the standardized

affective acoustic stimuli, gathered from the International

Affective Digitized Sound system (IADS) [39] dataset, using

only the EDA analysis. Likewise the more used International

Affective Picture System (IAPS) database [40], [41], IADS

is a collection of sounds characterized in terms of valence

and arousal [39]. Of note, the use of standardized stimuli

(instead of, e.g., music) allows replicating studies in a more

reliable fashion, making also easier the comparison of the

results with future studies. IADS sounds have been already

used in the literature (often jointly with IAPS picture) showing

changes in ANS dynamic [10], [11] and a relationship with

EDA variations [12], [13].

In order to perform this study we designed an experiment

where twenty-five healthy subjects listened to IADS sounds.

During the experimental sessions, EDA signal was continu-

ously monitored. As will be explained in detail, EDA was

processed using a recently validated approach called cvxEDA

[34] in order to extract features strictly related to arousal

and valence levels of the affective sounds and to perform an

automatic pattern recognition.

In the next section, we will explain the rationale of the

cvxEDA algorithm and the experimental protocol. Then, each

processing stage will be described in detail, including feature

extraction, statistical analysis and classification procedures.

Section III will show the experimental results of both the

statistical analysis and the pattern recognition analysis. Finally,

results will be discussed in Section IV along with possible

perspectives for future applications.

II. MATERIALS AND METHODS

The EDA is a general term that indicates variations in

the electrical properties of the skin, which is specifically

referred to as skin conductance (SC), due to the eccrine sweat

gland activity. These glands are directly innervated by the

sympathetic branch of the ANS and more specifically by

the sudomotor nerve. Changes in the skin conductance of

particular sites of the human body, such as fingers or palms

of the hands, where the concentration of the eccrine glands

is much higher than other body parts, can be related to both

the psycho-physiological state of a person and the interaction

with exogenous events [42]. The frequency band of the SC

signal is in the range 0 − 2 Hz [43] and can be split into a

slowly-varying component, the so-called tonic component, and

a superposed phasic component [9], [42], [44].

Tonic component corresponds to the baseline level of the

SC signal (i.e., skin conductance level, SCL), and contains

information about the subject’s general psycho-physiological

state, and his autonomic regulation [42]. The phasic compo-

nent represents changes of the SC over a short time response

window (1 − 5 s after stimulus onset [33]), in reaction to

exogenous stimuli such as sounds, pictures, lights, smells. The

skin conductance response (SCR) rises in a short time period

but sometimes is not able to return to tonic levels before a

subsequent response, resulting in an overlap of consecutive

responses, with consequent loss of information. Sometimes,

there are SCRs, which are significant from their background

but not tied to a specific stimulus, typically referred to as Non-

specific-SCR (NsSCR). They have the same characteristics

as stimulus-related SCRs, but are considered tonic measures

because they occur in the absence of external stimuli and in

the absence of artifacts, e.g., movements [45].

In this section, we briefly report on the cvxEDA model,

which is described in detail in [34]. Of note, this method is

able to discern overlapping consecutive SCRs, likely to be

present in case of an inter-stimulus interval shorter than the

SCR recovery time.

A. EDA Processing using cvxEDA algorithm

CvxEDA proposed a representation of the SCRs as the

output of a linear time-invariant system to a sparse non-

negative driver signal. The model assumes that the observed

SC (y) is the sum of the phasic activity (r), a slow tonic

component (t), and an additive independent and identically

distributed zero-average Gaussian noise term:

y = r + t+ ǫ. (1)
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Physiologically-plausible characteristics (temporal scale and

smoothness) of the tonic input signal can be achieved by

means of a cubic spline with equally-spaced knots every 10 s,

an offset and a linear trend term:

t = Bℓ+ Cd, (2)

where:

• B is a tall matrix whose columns are cubic B-spline basis

functions,

• ℓ is the vector of spline coefficients,

• C is a N×2 matrix (where N is the length of the SC

time series) with Ci,1 = 1 and Ci,2 = i/N ,

• d is a 2×1 vector with the offset and slope coefficients

for the linear trend.

The phasic component is the result of a convolution between

the sudomotor nerve activity (SMNA), p, and an impulse

response h(t) shaped like a biexponential Bateman func-

tion [46]–[48]:

h(t) = (e−
t

τ1 − e−
t

τ2 ) u(t) (3)

where τ1 and τ2 are, respectively, the slow and the fast time

constants of the phasic curve shape, and u(t) is the unitary

step function.

Taking the Laplace transform of (3) and then its discrete-

time approximation with sampling time δ (using a bilinear

transformation), we obtain an autoregressive moving average

(ARMA) model (see details in [34]) that can be represented

in matrix form as

H = M−1A, (4)

where M and A are tridiagonal matrices with the MA and AR

coefficients along the diagonals. Using an auxiliary variable q
such that

q = A−1 p, r = M q, (5)

we write the final observation model as

y = Mq +Bℓ+ Cd+ ǫ. (6)

Given the EDA model (6), the goal is to identify the

maximum a posteriori (MAP) neural driver SMNA (p) and

tonic component (t) parametrized by [q, ℓ, d], for the measured

SC signal (y). CvxEDA rewrites the MAP problem as a

constrained minimization QP convex problem (see details in

[34]):

minimize
1

2
‖Mq +Bℓ+ Cd− y‖

2

2
+αδ ‖Aq‖

1
+
γ

2
‖ℓ‖

2

2

subj. to Aq ≥ 0.
(7)

After some matrix algebra, this optimization problem can be

re-written in the standard QP form and solved efficiently using

one of the many sparse-QP solvers available. After finding

the optimal [q, ℓ, d], the tonic component t can be derived

from (2) while the sudomotor nerve activity driving the phasic

component can be easily found as p = Aq.

The objective function (7) to be minimized is a quadratic

measure of misfit or prediction error between the observed data

and the values predicted by the model. Moreover, the prior
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Fig. 1. Application of the cvxEDA decomposition procedure to the SC signal
recorded during the affective sound stimulation for a representative subject.
(Top) Raw SC signal, (Middle) Estimated slow tonic component t, (Bottom)
Estimated sparse phasic driver component p.

knowledge about the spiking sparse nature and nonnegativity

of the SMNA (p) and the smoothness of the tonic component

are accounted for by the regularizing terms and the constraint.

The strength of the penalty is regulated by α and γ terms. A

sparser estimate is yielded by large values of α. Concerning γ,

higher values mean a stronger penalization of ℓ, i.e. a smoother

tonic curve.

Of note, an example application of the cvxEDA algorithm to

an EDA signal acquired during affective sound stimulations is

shown in Figure 1. It is worthwhile noting the smoothed nature

of the tonic component as well as the sparse representation of

the phasic component, which represent the neural sudomotor

response to the external stimulation.

B. Subjects Recruitment, Experimental protocol and Acquisi-

tion set-up

In this study, we enrolled twenty-five healthy subjects

(aged 25–35) who voluntarily underwent the experiment. All

subjects signed a written informed consent prior to taking

part in the study, and the protocol was approved by the

local Ethics Committee. Moreover, according to the self-

report questionnaires, none of them had a history of injury

of the auditory canal or partial or full incapability of hearing.

Moreover, none of them suffered from any mental or chronic

disease.

In order to avoid any bias, subjects were informed about the

purpose of the study and the kind of emotional stimulation
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which was going to be administered, but they were not

aware of the level of intensity (i.e. arousal) and pleasantness

(i.e. valence) they would have been listened to. During the

experiment, participants were seated in a comfortable chair

in a controlled environment while listening to the IADS

sounds. Each subject was left alone in the room where the

experiment took place for the whole duration (29 minutes).

The acoustic stimulation was performed by using headphones

while the subject’s eyes were closed, to avoid any kind of

visual interference.

The experimental protocol consisted of 8 sessions: after

an initial resting session of 5 minutes, three arousal sessions

alternated with neutral sessions (see Figure 2). Each arousal

and neutral session was different from the others in regard

to the arousal level (labeled as N (neutral), L (low), M

(medium) and H (high)). We selected four arousal ranges that

were not overlapped. Such levels were set according to the

IADS scores reported in table I. Within each arousing session,

the acoustic stimuli were selected to have both negative and

positive valence. Each neutral session lasted 1 minute and 28

seconds, while the three arousal sessions had a duration of

3 minutes and 40 seconds, 4 minutes, and 5 minutes and 20

seconds, respectively. The different duration of each arousal

session is due to the different length of acoustic stimuli having

the same range of positive and negative valence.

During the elicitation, the EDA was continuously acquired,

by means of a dedicate hardware module of the BIOPAC

MP150 acquisition system. The two electrodes were placed

on the distal phalanges of the index and middle fingers.

TABLE I
RATING OF IADS SOUNDS USED IN THIS WORK

Session N. of Sounds
Valence

Rating

Valence

Range

Arousal

Rating

Arousal

Range

Neutral 8 5.915±0.68 4.34÷6.44 3.47±0.175 2.88÷3.93

Arousal 1 19 / 2.46÷7.78 5.42±0.22 5.00÷5.89

Arousal 2 26 / 2.04÷7.90 6.48±0.25 6.00÷6.99

Arousal 3 20 / 1.57÷7.67 7.32±0.22 7.03 ÷8.16

Ratings are expressed as median and its absolute deviation.
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Fig. 2. Timeline of the experimental protocol in terms of arousal and valence
levels. The vertical axes relate to the arousal (blue) and valence (black) IADS
score, whereas the horizontal axis relates to the time. The neutral sessions
alternate with the arousal ones, which are marked with blue staircases. The
three arousal sessions have increasing intensity of activation (i.e., L (low), M
(medium) and H (heigh)) over time. The dotted black line indicates the valence
levels within an arousing session (i.e., Pos (positive) and Neg (negative)).
The neutral sessions are characterized by lowest arousal and medium valence
scores. Green line relates to the resting state.

C. Signal Processing

The convex-optimization-based EDA model (cvxEDA) de-

scribed in II-A was applied to each participant’s SC signal.

Before cvxEDA application, each time series was normalized

by means of a Z-score transformation in order to standardize

the dataset and increase the velocity of the optimization

procedure.

Concerning the cvxEDA parameters, the values α = 0.008
and γ = 0.01 were employed for all subjects. Moreover, we

assumed a canonical IRF for all subjects with τ1 = 0.7 and

τ2 = 3. These values were chosen through an exploratory

analysis on simulated data and real signals from a different

dataset. In these exploratory studies, rather than assuming a

canonical IRF for all subjects, we assumed τ1 = 0.7 and

adapted the parameter τ2 on a per-subject basis. After fitting

cvxEDA models for several values of τ2 ∈ [2.0, 4.0], we chose

the one minimizing the L0-“norm”, i.e. leading to the sparsest

solution [9], [34], [49].

It is worthwhile noting that the convex optimization approach

does not need any pre-processing step. In fact, unlike other

approaches in the literature, this model relies exclusively on

the presence and definition of the priors (see [34]) to impose

physiologically sound constraints. All the measurement and

modelling errors are included in the estimated noise term ǫ
without any need of pre-processing step.

Statistical analysis and pattern recognition methodologies

were used in this study to automatically recognize the auto-

nomic response of the subjects to the emotional stimulus, and

to associate the values of the EDA parameters with the kind

of elicitation as expressed in terms of arousal and valence.

D. Feature Extraction and Statistical analysis

The autonomic neural activity was quantified computing

several features from both the tonic and phasic components

that are outputs of the cvxEDA. The mean value of the tonic

component was calculated in order to estimate the general psy-

chophysiological status of the subjects. The characterization

of the stimulus response was achieved from the sparse phasic

signal. Specifically, we calculated the number of the peaks,

their maximum amplitude and the area under curve within a

time response window of 5 sec after each stimulus onset (see

Table II).

TABLE II
LIST OF FEATURES EXTRACTED FROM EDA PHASIC AND TONIC

COMPONENTS.

Feature Description

Npeak number of significant SMNA SCR wrw

AUC Area under curve of SMNA signal wrw (µSs)

peak maximum amplitude of significant peaks of

SMNA signal wrw1(µS)

stdphasic Standard deviation of SMNA signal wrw (µS)

MeanTonic Mean value of the tonic component
within session windows (µS)

wrw= within response window (i.e., 5 sec after stimulus)

For each feature, the two levels of valence, i.e., positive

and negative, and the three arousal levels (Low, Medium and

High) were statistically compared. Each statistical comparison
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is performed using the nonparametric Wilcoxon tests for paired

samples, given the non-gaussianity of data (p < 0.05 from

Shapiro-Wilk test with null hypothesis of having a Gaussian

sample). The multiple pairwise comparisons among the three

arousal levels was corrected with the Bonferroni’s method,

multiplying the p-values by the number of comparisons, i.e., 3.

Furthermore, the multivariate pattern analysis was performed

in order to classify different levels of arousal and two levels

of valence.

Furthermore, a multivariate pattern analysis was performed

in order to classify the three levels of arousal and the two

levels of valence, as specified in the next paragraph.

Of note, concerning the arousal analysis, we considered

three different datasets:

• Complete Dataset (CD): the features were extracted from

each digital sound of each whole arousal session and then

the values were averaged;

• Positive Dataset (PD): the features were extracted from

each digital sound of the arousal session that have a

positive valence, and then the values were averaged;

• Negative Dataset (ND): the features were extracted from

each digital sound of the arousal session that have a

negative valence, and then the values were averaged;

The comparison among the three arousal levels were per-

formed for each dataset described above, in order to study

eventual effect of the valence in the arousal discrimination.

E. Classification Procedure

The supervised classification of input feature data in the

pattern recognition method was implemented following a

Leave-One-Subject-Out procedure (LOSO) and using a K-NN

Classifier. We applied a feature selection on each training

set comprised of (N − 1) subjects (where N is the total

number of participants) to recognize the emotional responses

of the subject Nth. This procedure was iterated N times. In

consequence of the way the experiment was designed, a paired

dataset had to be considered. Therefore, the matrix of the

input data was transformed in a within-subject rank matrix

(based on the Friedman statistical test). More specifically,

for each feature the examples relative to a single subject

were transformed in ranks. For example, regarding the arousal

classification, for each subject, each of the m features was

represented through a vector of three values corresponding to

the three arousal levels. This vector was ranked from 1 to 3.

The three ranked-values were a coordinate of four points in

the m-dimensional feature-space

Two separate classification algorithms were implemented

for the arousal and valence recognition. For each of the two

classification algorithms, the dimension of the feature space

corresponded to the number of selected EDA parameters. The

final feature set was achieved identifying the combination of

features and classifier parameters that performed the highest

recognition accuracy in the training set. Specifically, on each

(N − 1) training set we applied a nested-LOSO, which

iteratively selected a nested-traning set of (N − 2) subjects to

find out the most accurate combination of features and number

of neighbors. For the arousal recognition problem, the number

of samples (i.e., rows of the dataset) in such a space was

related to the number of subjects multiplied by the number

of arousal levels (i.e., 25x3=75) to be classified. Concerning

the valence classification, instead, we had a negative valence

example and a positive one for each arousal session for each

subject (i.e., 25x3x2=150). Finally, the ranked feature set

was used as input of a K-NN Classifier [50], [51], which

was validated through the Leave-One-Subject-Out (LOSO)

procedure [52]. A block diagram of the proposed recognition

system is illustrated in Figure 3. The classification results were

expressed as recognition accuracy in form of confusion matrix

[53]. A generic element cij of the confusion matrix indicated

the percentage of how many times the feature set belonging

to the class i, was recognized as belonging to the class j.

This means that a higher average of the values on the matrix

diagonal corresponds to a better degree of classification.
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Fig. 3. Overall block scheme of the proposed arousal and valence recognition
system. The EDA is processed in order to extract the phasic and tonic
components using the cvxEDA algorithm. According to the protocol timeline,
several features are extracted and, then, statistically compared. The KNN
classifier is engaged to perform the pattern recognition by adopting a leave-
one-subject-out procedure.

III. EXPERIMENTAL RESULTS

In this section we will describe the results coming from

both the statistical and the pattern recognition analysis applied

separately to the following datasets: Arousal Dataset (CD, PD,

ND), and Valence Dataset (see Tables III, V, VI, and IV).

1) Statistical analysis results: All the features extracted

from the phasic component did not show any significant

difference among the three levels of arousal (as example, Fig. 4

plotted a statistical description of the comparison among the

maximum phasic peaks). The same results were confirmed

even when the dataset were divided in the PD and ND.

Instead, the mean tonic value statistically discriminates the

three arousal and the two valence levels, showing a monotonic

trend, although inverse (Figure 5). Moreover, considering both

the ND and the PD the trend of the tonic feature was the same

as above. In addition, the tonic value showed a significant

statistical difference among the three arousal sessions.
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TABLE III
THE FIRST THREE COLUMNS SHOW THE MEAN ± STANDARD DEVIATION VALUE OF EACH CVXEDA FEATURES AMONG THE SUBJECTS CONSIDERING THE

COMPLETE DATASET (CD). THE LAST THREE COLUMNS SHOW THE P-VALUES OF THE PAIRWISE STATISTICAL COMPARISONS PERFORMED BY MEANS OF

WILCOXON TEST WITH BONFERRONI CORRECTION AMONG THE THREE AROUSAL (I.E., AR1, AR2, AR3) LEVELS.

Feature of CD AR1 AR2 AR3
p-value

AR1-AR2 AR1-AR3 AR2-AR3

Npeak 2.99 ± 4.32 2.85 ± 5.095 3.26 ± 3.61 > 0.05 > 0.05 > 0.05

Peak 63.94 ± 255.094 29.053 ± 94.31 106.45 ± 387.087 > 0.05 > 0.05 > 0.05

AUC 411.94 ± 1719.27 424.44 ± 1825.71 571.46 ± 2090.83 > 0.05 > 0.05 > 0.05

stdphasic 4.67 ± 17.24 2.87± 9.25 10.38 ± 37.90 > 0.05 > 0.05 > 0.05

MeanTonic -2.47 ± 13.31 -2.84 ± 14.56 -3.83 ± 16.53 0.017 5.82 10
−04 0.0036

TABLE IV
THE FIRST TWO COLUMNS SHOW THE MEAN ± STANDARD DEVIATION VALUE OF EACH CVXEDA FEATURES AMONG THE SUBJECTS CONSIDERING THE

COMPLETE DATASET (CD). THE LAST COLUMN SHOW THE P-VALUES OF THE STATISTICAL COMPARISONS PERFORMED BY MEANS OF WILCOXON TEST

WITH BONFERRONI CORRECTION AMONG THE TWO VALENCE (I.E.,POS AND NEG) LEVELS.

Feature of CD Pos Neg p-value

Npeak 3.12 ± 4.22 3.28± 4.55 > 0.05

Peak 59.49 ± 233.81 52.67±240.27 > 0.05

AUC 474.23± 1836.25 429.35 ± 1701.42 > 0.05

stdphasic 5.71 ± 22.40 4.73 ± 20.54 > 0.05

MeanTonic -2.98 ± 14.31 -2.64± 13.25 6.64 10
−04

TABLE V
THE FIRST THREE COLUMNS SHOW THE MEAN ± STANDARD DEVIATION VALUE OF EACH CVXEDA FEATURES AMONG THE SUBJECTS, CONSIDERING

THE NEGATIVE DATASET (ND). THE LAST THREE COLUMNS SHOW THE P-VALUES OF THE PAIRWISE STATISTICAL COMPARISONS PERFORMED BY

MEANS OF WILCOXON TEST WITH BONFERRONI CORRECTION AMONG THE THREE AROUSAL (I.E., AR1, AR2, AR3) LEVELS.

Featureof ND AR1 AR2 AR3
p-value

AR1-AR2 AR1-AR3 AR2-AR3

Npeak 2.97 ± 4.58 2.96 ± 5.33 3.22 ± 3.95 > 0.05 > 0.05 > 0.05

Peak 64.51 ± 255.82 17.31 ± 47.49 96.68 ± 398.87 > 0.05 > 0.05 > 0.05

AUC 403.99 ± 1660.72 412.10 ± 1830.50 509.46 ± 1974.08 > 0.05 > 0.05 > 0.05

stdphasic 4.64 ± 16.78 1.80 ± 5.21 9.09 ± 36.30 > 0.05 > 0.05 > 0.05

MeanTonic -2.43 ± 13.01 -2.69 ± 14.31 -3.42 ± 15.60 0.033 0.0015 0.0027

TABLE VI
THE FIRST THREE COLUMNS SHOW THE MEAN ± STANDARD DEVIATION VALUE OF EACH CVXEDA FEATURES AMONG THE SUBJECTS, CONSIDERING

THE POSITIVE DATASET (PD). THE LAST THREE COLUMNS SHOW THE P-VALUES OF THE PAIRWISE STATISTICAL COMPARISONS PERFORMED BY MEANS

OF WILCOXON TEST WITH BONFERRONI CORRECTION AMONG THE THREE AROUSAL (I.E., AR1, AR2, AR3) LEVELS.

Feature of PD AR1 AR2 AR3
p-value

AR1-AR2 AR1-AR3 AR2-AR3

Npeak 3.01 ± 4.15 2.85 ± 4.90 3.32 ± 3.59 > 0.05 > 0.05 > 0.05

Peak 63.37 ± 254.73 41.75 ± 149.26 104.73 ± 359.77 > 0.05 > 0.05 > 0.05

AUC 419.90 ± 1779.27 440.49 ± 1835.30 637.21 ± 2254.75 > 0.05 > 0.05 > 0.05

stdphasic 4.70 ± 17.77 4.045 ± 14.16 11.037 ± 37.99 > 0.05 > 0.05 > 0.05

MeanTonic -2.52 ± 13.61 -2.98 ± 14.80 -4.23 ± 17.51 7.99 10
−04 3.032 10

−04 0.0136

2) Pattern recognition analysis results: Experimental re-

sults of the classification procedure are shown in the form of

confusion matrix and reported in Table VII. The principal di-

agonal represents the percentage of the successful recognition

of each class.

Concerning the arousal levels, the multivariate pattern

recognition analysis showed a high accuracy (80.00%) consid-

ering both the arousal sessions as a whole (Table VII), only

the positive valence stimuli (78.67%) (Table IX), and only the

negative valence stimuli (77.33%) (Table VIII). Although the

average accuracy along the diagonal was the same, the PD

yielded a better discrimination of the first arousal stimulation,

whereas the ND allowed a better recognition of the higher

arousal classes. Moreover, the feature selection procedure

pointed out that for the PD the maximum recognition accuracy

was obtained using a combination of phasic AUC and peak

features and meanTonic, instead for the ND the features

selected were meanTonic and stdphasic.

Concerning the valence levels, the features extracted from

the cvxEDA model showed a good ability in characterization

of the autonomic activity. In fact, the classification procedure

was able to discern the pleasant and unpleasant sounds with

an accuracy of 84% (Table IX).

3) Feature selection results: The feature selection stage

highlighted the most informative features (i.e., those that

achieved the best accuracy in the training phase). Table XI

shows for each dataset the informative power of each feature.

With “informative power” of a specific feature we mean the
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Fig. 4. Within-subject ranks of the maximum of the phasic component for
the three arousal levels (i.e., AR1, AR2, AR3) (top-left), the two valence
levels (i.e., Pos and Neg) (top-right), the three negative arousal levels (i.e.,
AR1Neg, AR2Neg, AR3Neg) (bottom-left), the three positive arousal levels
(i.e., AR1Pos, AR2Pos, AR3Pos) (bottom-right). The dots mark the across-
subject average rank for each level while the wiskers indicate the standard
error. All arousal and valence comparisons were statistical compared by the
Bonferroni-corrected Wilcoxon test that did not show significant differences.
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Fig. 5. Within-subject ranks of the mean tonic value for the three arousal
levels (i.e., AR1, AR2, AR3) (top-left), the two valence levels (i.e., Pos and
Neg) (top-right), the three negative arousal levels (i.e., AR1Neg, AR2Neg,
AR3Neg) (bottom-left), the three positive arousal levels (i.e., AR1Pos,
AR2Pos, AR3Pos) (bottom-right). The dots mark the across-subject average
rank for each level while the wiskers indicate the standard error. Wilcoxon
test and post-hoc Bonferroni-corrected pair-wise comparisons of the peak
amplitudes found significant differences in the cases indicated by asterisks
(∗ : p < 0.05; ∗∗ : p < 0.01; ∗ ∗ ∗ : p < 0.001).

TABLE VII
CONFUSION MATRIX FOR AROUSAL LEVEL (AR1, AR2, AR3)

RECOGNITION BASED ON THE COMPLETE DATASET OF FEATURES

EXTRACTED FROM THE CVXEDA MODEL OUTPUTS

AR1 AR2 AR3

AR1 72% 8% 8%

AR2 12% 88% 12%

AR3 16% 4% 80%

percentage of iterations of the LOSO procedure where that

feature has been selected over the total number N of iterations.

The tonic mean level was always selected in each LOSO

iteration of each input-dataset and resulted to be the most

TABLE VIII
CONFUSION MATRIX FOR NEGATIVE (N) AROUSAL LEVEL (AR1, AR2,

AR3) RECOGNITION BASED ON THE NEGATIVE DATASET (NG) OF

FEATURES EXTRACTED FROM THE CVXEDA MODEL OUTPUTS

AR1 N AR2 N AR3 N

AR1 N 72% 12% 8%

AR2 N 16% 80% 12%

AR3 N 12% 8% 80%

TABLE IX
CONFUSION MATRIX FOR POSITIVE (P) AROUSAL LEVEL (AR1, AR2,

AR3) RECOGNITION BASED ON THE POSITIVE DATASET (PD) OF

FEATURES EXTRACTED FROM THE CVXEDA MODEL OUTPUTS.

AR1 P AR2 P AR3 P

AR1 P 80% 16% 8%

AR2 P 8% 84% 20%

AR3 P 12% 0% 72%

TABLE X
CONFUSION MATRIX FOR VALENCE LEVEL RECOGNITION BASED ON THE

COMPLETE DATASET OF CVXEDA FEATURES

Positive valence Negative valence

Positive valence 84% 16%

Negative valence 16% 84%

informative feature. Concerning the arousal classification, the

AUC of the SMNA signal was highly informative (84%) when

the input-dataset included the complete set of sounds (i.e.,

CD) and only the positive ones (i.e., PD). Considering the

negative dataset, together with the mean tonic value, the other

most selected features were the stdphasic (informative power

of 92%) and the number of SMNA peaks (informative power

of 20%).

On the other hand, concerning the valence classification prob-

lem, for most of LOSO-iterations, the feature set was complete

with no selection.

TABLE XI
INFORMATIVE POWER OF EACH FEATURE FOR EACH INPUT-DATASET

Classification problem Feature Informative power

Arousal

Npeak 8%
AUC 84%
peak 4%

stdphasic 4%
MeanTonic 100%

Negative Arousal

Npeak 16%
AUC 84%
peak 0%

stdphasic 0%
MeanTonic 100%

Positive Arousal

Npeak 20%
AUC 0%
peak 0%

stdphasic 92%
MeanTonic 100%

Valence

Npeak 72%
AUC 84%
peak 88%

stdphasic 96%
MeanTonic 100%
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IV. DISCUSSION AND CONCLUSIONS

This study aimed at exploring the possibility of obtaining

an automatic recognition of arousal and valence levels in

twenty-five healthy volunteers which were stimulated by sets

of affective sounds gathered from the IADS database. The

automatic recognition procedure was performed on features

coming from the analysis of the electrodermal dynamics

exclusively. Stimuli were expressed in terms of arousal levels

according to the circumplex model of affect, whereas the

EDA was analyzed through a new model previously validated

in [34]. The experimental protocol consisted in three levels

of arousal stimuli, each of which containing pleasant and

unpleasant sounds.

The statistical comparison among the three arousal groups

of stimuli and the two valence levels showed no significant

differences in the phasic feature set. On the contrary, the

mean tonic value was significantly different among the three

arousal levels and the two valence levels. Therefore, we were

not able to statistically discriminate the phasic response to

different stimuli, but the long sessions of stimulation were

able to induce a significant change in the general psycho-

physiological state of the subjects highly correlated with the

tonic component and highlighted by the tonic features.

The classification procedure was applied to four different

datasets, in order to discriminate the two valence levels and

the three arousal levels taking into account only the positive

sounds, only the negative sounds, and both the positive and

negative stimuli without discriminations. Results thanks to the

use of the cvxEDA outputs showed a recognition accuracy

of 80.00% on the arousal dimension. Regarding only the

positive and negative sounds the arousal recognition results

confirmed a high discrimination power (>77%), pointing out

how the arousal classification was minimally affected by

valence dimension. Moreover, very good performance was

obtained also in the valence classification. The-2 class prob-

lem achieved 84% of accuracy on all classes. Likewise the

statistical analysis, the feature selection in the classification

procedure suggested that ANS measures related to the tonic

component are the most effective to discriminate and recognize

emotional states induced by affective sounds. Of note, the

phasic features contributed mostly to the valence classification

rather than arousal recognition.

To our knowledge, this study shows for the first time the

use of a sympathetic nervous system measures, which can be

profitably acquired through a simple EDA sensor placed on

fingers, to automatically recognize emotional states induced

by affective sounds taken from IADS collection. It is also

worthwhile noting that we were able to discern emotional

stimuli by using features from our cvxEDA model, confirm-

ing the applicability of a sparse representation for emotion

recognition.

Of note, cvxEDA applicability and good performance were

already shown in [49] and [34] during affective touch and

affective visual stimulations respectively. In addition, emo-

tion recognition, through EDA features only, was already

performed using visual stimuli, with and without cvxEDA

application [54], [55]. To our knowledge, the use of EDA

exclusively to recognize emotions induced by standardized

auditory stimuli is the major novelty of this study. It is also

worthwhile noting that we were able to discern emotional

stimuli by using features from our cvxEDA model, confirm-

ing the applicability of a sparse representation for emotion

recognition.

Moreover, outcomes of this research might have an impact

in clinical research fields such as psychology or neurology.

The use of visual emotional elicitations [56], in fact, could

not be applied to patients with visual impairment, or patients

with disorder of consciousness. Knowledge on sympathetic

dynamics, as estimated through cvxEDA models, in healthy

subjects might provide useful biomarkers to support clinical

decisions.

Future work will investigate a parameter optimization pro-

cedure for the classifiers, as well as will focus on a rigorous

comparison with other automatic classification methods, to

be benchmarked within a larger sample size. Moreover, we

plan to study the applicability of cvxEDA model on signals

acquired from mobile wearable sensors (where noise filtering

is a crucial step), and to port the cvxEDA algorithm to these

wearable systems.
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