
ARPIA: a High-Level Evolutionary
Test Signal Generator

F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24 I-10129, Torino, Italy
http://www.cad.polito.it/

Abstract. The integrated circuits design flow is rapidly moving towards higher
description levels. However, test-related activities are lacking behind this trend,
mainly since effective fault models and test signals generators are still missing.
This paper proposes ARPIA, a new simulation-based evolutionary test
generator. ARPIA adopts an innovative high-level fault model that enables
efficient fault simulation and guarantees good correlation with gate-level
results. The approach exploits an evolutionary algorithm to drive the search of
effective patterns within the gigantic space of all possible signal sequences.
ARPIA operates on register-transfer level VHDL descriptions and generates
effective test patterns. Experimental results show that the achieved results are
comparable or better than those obtained by high-level similar approaches or
even by gate-level ones.

1 Background

In recent years the application specific integrated circuit (ASIC) design flow
experienced radical changes. Deep sub-micron integrated circuit (IC) manufacturing
technology is enabling designers to put millions of transistors on a single integrated
circuit. Following Moore’s law, design complexity is doubling every 12-18 months.
In addition, there is an ever-increasing demand on reducing time to market. With
complexity skyrocketing and such a competitive pressure, designing at high levels of
abstraction has become more of a necessity than an option.

At the present time, exploiting design-partitioning techniques, register-transfer
level (RT-level) automatic logic synthesis tools can be successfully adopted in many
ASIC design flows. However, not all activities have already migrated from gate- to
RT-level and are not yet mature enough to.

High-level design for testability, testable synthesis and test pattern generation are
increasing their industrial relevance [1]. During the development of ASIC, designers
would like to be able to foresee its testability before starting the logic synthesis
process. Furthermore, RT-level automatic test signals generators are expected to
exploit higher-level compact information about design structure and behavior, and to
be able to produce more effective sequences within reduced CPU time. The test
signals may possibly be completed after synthesis by ad-hoc gate-level tools.

However, despite the big effort of electronic design automation (EDA) industries,
tackling test issues at high levels is still an unsolved problem. The lack of a common
fault model is probably the hardest theoretical barrier. Over the years, the computer
aided design (CAD) community agreed on some well-defined gate-level fault models.
The most popular is the permanent single stuck-at fault, and all commercial products
are able to use it. On the contrary, up to now it was unable to agree on any high-level
fault model.

The most important technical barrier, on the other side, is the lack of efficient
algorithms to generate effective test signals. As a matter of fact, at the present time
even simulating RT-level test signals is a challenging task. Fault simulation
algorithms for RT-level designs are known since more than a decade [2], but
commercial tools usually don’t include these capabilities. Furthermore, classical
algorithms are difficult to integrate in simulators, mainly due to the complexity and to
the several peculiarities of hardware description languages. Some prototypical fault
simulators were proposed [3] [4], but until some fault model becomes widely
accepted EDA industries have no good reason to invest and this situation is not likely
to change.

Even so, researchers and pioneering design groups already need test signals on
their RT-level designs. Many generators were proposed. Nevertheless, since any
attempt of backward justification must take into account all structural, behavioral and
timing specifications [5], traditional algorithms are almost unusable. Researchers
sometimes achieved good results, but they were generally limited to specific classes
of circuits. However, interesting successful results have been reported using
evolutionary algorithms [6]. These approaches exploit natural evolution principles to
drive the search of effective patterns within the gigantic space of all possible signal
sequences. Evolutionary heuristics begin to appear a reasonable alternative to
traditional techniques.

This paper presents ARPIA, a high-level evolutionary automatic test signals
generator. Experimental results gathered using the prototypical implementation is
remarkable. The effectiveness of the generated test signals is at least comparable with
(and in several cases higher than) that of previously proposed approaches.
Additionally, thanks to the evolutionary algorithm and to a fault dropping mechanism,
computational requirements of the new system are lower.

Next Session details ARPIA. An analysis of the proposed approach is illustrated in
Section 4. Section 5 draws some conclusions.

2 ARPIA

ARPIA is a simulation-based evolutionary test signals generator. Being an
evolutionary algorithm, it evolves a population seeking fitter individuals. But, since
individuals are test sequences for a digital circuit, the fitness measures the sequence
ability to detect faults in the design. And it is computed by simulation. Given a fault
model, the fault coverage is defined as the percentage of faults that the test sequence
is able to detect. Thus, the goal of ARPIA can be rephrased as “generate a sequence
of signals that attains maximum fault coverage.”

ARPIA shares the same philosophy with [6]. They are both simulation-based
approaches, and individuals are evaluated resorting to an RT-level fault simulator.
However, the two methodologies exploit different fault models, different fault
simulation techniques and different evolutionary algorithms. Next Sections detail
these three key points.

2.1 Fault Model

Many fault models have been proposed in the past, mainly by borrowing from
software-testing metrics [7]. While software derived metrics are well known and quite
standardized, and they are already implemented in some commercial tools, their
usefulness for hardware testing is quite low. In particular, software metrics neglect
observability issues and the effects of logic synthesis, and thus are not an accurate
indicator of circuit testability.

One successful proposal of a hardware-related fault model is Observability-
Enhanced Statement Coverage [8] [4]: it introduces the concept of tag as the
possibility that an incorrect value is computed at a given location, thus approximating
the effects of fault propagation. Since this fault model does not assume any specific
fault effect, its generality prevents explicit fault simulation.

An extension of observability-enhanced statement coverage was first proposed in
[9] and then refined in [10], where explicit RT-level assignment single-bit stuck-at’s
are used instead of generic tags. An RT-level assignment single-bit stuck-at fault is
defined as a single-bit stuck-at in the effect of an RT-level assignment operation:
when a fault is present, the affected object (signal or variable target of an assignment
statement) loads the correct value, except for one bit that is forced to 0 or 1.

Figure 1 shows the example of a stuck-at fault. The fault affects the third leftmost
bit of the assignment operation, and modifies the result of the expression, after it has
been computed and before it is assigned to the target signal. The faulty signal is
updated as usual, according to propagation rules, but with a faulty value. Other
assignments of the same signal are assumed to be fault-free, since stuck-at faults on
the same signal but on different statements are considered different. More details
about the fault model can be found in [9].

addr <= (tail + reg1) mod 2**8;

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 1 0 1 1 0 11

Figure 1: Stuck-At Fault Example

The current fault model exploits several heuristics to filter out unrepresentative
RT-level stuck-at. This elimination enables the RT-level assignment single-bit stuck-
at fault coverage to be highly correlated with gate-level fault coverage: the correlation

coefficient R, computed over a set of 10 different circuits by simulating the test
sequences generated in three different ways, reaches R=0.77 [10].

2.2 Fault Simulation Technique

Fault simulation is made possible by creating routines that change the target
signal/variable bit value during simulation, using the simulator scripting language
(Tcl), when a given target assignment instruction is executed. The fault injection
procedures, presented in [9], must face various issues derived from the fault model,
from VHDL semantics and from the simulator itself.

This fault simulation environment allows us to compute fault coverage figures at
the RT-level with a minimal CPU time overhead, since the VHDL model of faulty
circuits is simulated at the same speed as the fault-free model. The main time penalty
is at fault activation time instants, where some breakpoints are set and TCL
commands to modify values are executed.

2.3 Algorithm

A fault can be marked as tested only when it is both excited and observed. Given a
fault, the target of the whole process is first to force the corresponding bit to a value
that make the fault visible (excitation), then to propagate the fault effects to some
primary output (observation).

current_sequence = random_sequence(L);
steady_state_factor = 0;
do
{
 new_sequence = mutate(current_sequence);
 if(excited_faults(new_sequence) > excited_faults(current_sequence)) {
 current_sequence = new_sequence;
 steady_state_factor = 0;
 } else {
 increase(steady_state_factor);
 }
} while(excited_faults(current_sequence) == 0 &&
 steady_state_factor < steady_state_limit)

Figure 2: Phase One Pseudo Code

The two problems are tackled separately, with two different strategies. Indeed, test
generation is performed in three phases. The first is aimed at exciting faults, the
second tackle observation, while the third dynamically optimize the fault list.

The goal of the first phase is to produce a set of signals able to excite an untested
fault. The first phase implements a simple first-improvement hill climber (Figure 2).
The local search procedure starts with a random sequence of given length L. In each
step, a new sequence is generated by randomly mutating the current one. If the new
sequence excites a larger number of untested faults, it becomes the current one.

Otherwise it is discarded. The process ends whenever the current sequence is able to
excite at least k fault, or after a predefined amount of useless steps. It is worth noting
that the number of excited faults is computed over the untested faults only.

Three mutations are currently implemented by ARPIA: add, delete and change.
The first two respectively add and delete a vector of input signals from the test
sequence. The last one randomly changes a vector of input signals in the sequence.

When a test sequence able to excite a sufficient number of faults is found, it is
transferred to the second phase together with the excited faults. The goal of the
second phase is to observe each single fault in the excited set. This stage exploits an
evolutionary algorithm similar to an evolution strategy [11].

First, a target fault ft is selected from the excited set. Then, a population of P
sequences is created by mutating the original sequence and evolved using a (P+P)
strategy. In every evolution step, P new individuals are generated by mutating the P
original ones (each sequence generates exactly one new sequence). The P fitter
individuals are selected for survival among the 2P. The same three mutation operators
of the first phase are adopted.

In the second phase, given a target fault ft, the fitness measures how far a sequence
is able to propagate ft effects. More precisely, it is the maximum number of
differences caused by the fault during the application of a single vector of signals of
the test sequence (1).
 ∑∈

=
objects

Svt objectbitsdifferentMAXfStwoevaluation)(_),(_ (1)

The evolution is halted whenever ft is detected or after a certain amount of
generations. The pseudo code is shown in Figure 3.

The second phase is iterated until all faults in the excited set have been tested or
aborted.

The evolution-strategy approach was chosen because of the complexity of the
encoding. Individuals are sequence of vectors. Each vector of signals is simulated in a
clock cycle. Circuits contain memory elements, thus the behavior in a clock cycle
depends both on current input signals and previous ones. The effect of a traditional
recombination operator, like the uniform crossover, can be very similar to a complete
random mutation at phenotypic level. We shun any risk and exploit an algorithm that
“omits recombination since its philosophy relies on species as evolving entities” [12].

After each successful second phase, an optimization mechanism called fault
dropping is activated. All still untested faults are simulated with the new sequence,
seeking if any additional fault is detected by it. This is more of a possibility than an
expectation, since the starting sequence found in the first phase is required to be able
to excite more than one fault. The fault dropping mechanism greatly enhances overall
algorithm performance.

for t = 1 to P {
 population[t] = mutate(starting_sequence);
}
generations = 0;
success = 0;

do
{
 generations = generations + 1;
 for t = 1 to P {
 population[P + t] = mutate(population[t]);
 if(tested(ft, pupulation[t])
 success = 1;
 }
 sort(population);
} while(not success && generations < generations_limit);

Figure 3: Phase Two Pseudo Code

3 Experimental Analysis

In order to practically evaluate the effectiveness of the proposed approach, we
implemented a prototype. The generator is composed of about 1,500 lines in ANSI C
and interacts with V-System 5.3 VHDL simulator by Model Technology. Special
techniques are adopted to speed-up fault simulation [9]. During experiments we adopt
the following parameter values:

• first-phase initial sequence length of 50 clock cycles (L = 50)
• first phase sequence required to excite 5 different faults (k = 5)
• second phase population of 10 individuals (P = 10).

Tot Det FC% Tot Det FC%
b01 78.80 81 81 100.00% 258 258 100.00%
b02 39.19 43 39 90.70% 150 149 99.33%
b03 1,089.96 213 145 68.08% 822 615 74.82%
b04 1,627.86 424 353 83.25% 3,356 3,035 90.44%
b05 1,932.27 778 244 31.36% 5,552 1,856 33.43%
b06 200.31 110 82 74.55% 5,552 5,387 97.02%
b07 9,297.26 289 146 50.52% 2,404 1,401 58.28%
b08 2,832.38 154 118 76.62% 918 839 91.39%
b09 4,970.53 240 196 81.67% 900 768 85.33%
b10 778.35 172 127 73.84% 1,054 961 91.18%
b11 34,837.11 381 263 69.03% 2,868 2,614 91.14%
b12 7,890.20 870 115 13.22% 5,280 1,105 20.92%
b13 2,801.85 284 224 78.87% 1,818 1,501 82.56%
b14 473,741.90 10,493 9,114 86.86% 28,990 23,708 81.78%
b15 590,611.31 4,900 2,026 41.35% 55,568 18,060 32.50%

Circuit RT FaultsCPU time
[s]

Gate Faults

Table 1: ARPIA Result

Table 1 reports the experiments performed on the ITC99 RT-level benchmarks.
These benchmarks are representative of typical circuits, or circuit parts, that can be
automatically synthesized as a whole with current tools and are described in [13].
Experiments have been run on a Sun Enterprise 250 running at 400 MHz and
equipped with 2 Gbytes of RAM.

The first column of Table 1 reports the name of the benchmark, while the CPU
time required to generate the test signal sequence is shown in the second column. RT-
level fault figures are reported in the next column block in terms of: total number of
faults [Tot], number of detected faults [Det] and percent fault coverage [FC%]. The
next column block shows gate-level figures: total number of gate-level faults [Tot],
number of detected [Det] and respective fault coverage [FC%].

Results show that ARPIA is able to generate test sequences that are highly
effective both at RT-level and at gate-level, within an acceptable CPU time. However,
to better analyze the tool performance, we need to compare it with different approach
(Table 2).

RT Gate RT Gate RT Gate
b01 100.00% 99.61% 100.00% 100.00% 100.00% 100.00%
b02 90.70% 99.33% 90.70% 99.33% 90.70% 99.33%
b03 56.81% 69.10% 68.08% 74.82% 68.08% 74.82%
b04 69.34% 69.19% 83.79% 91.03% 83.25% 90.44%
b05 11.31% 5.42% 31.36% 33.50% 31.36% 33.43%
b06 70.00% 93.38% 74.80% 97.35% 74.55% 97.02%
b07 47.75% 56.49% 50.52% 58.28% 50.52% 58.28%
b08 52.60% 28.00% 60.10% 71.68% 76.62% 91.39%
b09 62.50% 48.89% 77.84% 81.33% 81.67% 85.33%
b10 46.51% 65.84% 73.69% 90.99% 73.84% 91.18%
b11 43.57% 58.79% 68.64% 90.62% 69.03% 91.14%
b12 2.76% 4.36% 29.06% 45.99% 13.22% 20.92%
b13 31.69% 31.19% n/a n/a 78.87% 82.56%
b14 11.57% 37.91% n/a n/a 86.86% 81.78%
b15 14.69% 12.75% n/a n/a 41.35% 32.50%

ARPIA (no ES) ARTIST ARPIACircuit

Table 2: Comparison with ARTIST and ARPIA without Evolutionary Algorithm

The first column block of Table 2 reports data for the first prototype of ARPIA,
where a simple hill-climber was exploited instead of the evolution strategy. The gap
between the two RT-level figures shows the fundamental role played by the
evolutionary algorithm. The gap between gate-level fault coverage statistics is a mere
consequence.

In the second column group of Table 2 we reported results attained by ARTIST
[6], a highly-optimized tool exploiting a genetic algorithm. The difference between
these two tools can be explained resorting to both the fault model and the new
evolutionary mechanism. A deeper comparison between the results of ARPIA and of
ARTIST (complete data can not be reported here for lack of space) shows that the
former is characterized by a higher efficiency (i.e., it requires a lower CPU time),
thanks to fault dropping and a higher compactness of the generated sequences.

Indeed, ARTIST was not able to tackle some of the benchmarks due its lower
efficiency (marked with “n/a” in the table).

Tot Exc Det Err
b01 81 81 81 0 100.00%
b02 43 43 39 4 100.00%
b03 213 148 145 3 100.00%
b04 424 356 353 3 100.00%
b05 778 340 244 19 76.01%
b06 110 87 82 5 100.00%
b07 289 240 146 20 66.36%
b08 154 118 118 0 100.00%
b09 240 196 196 0 100.00%
b10 172 139 127 12 100.00%
b11 381 289 263 26 100.00%
b12 870 130 115 1 89.15%
b13 284 266 224 16 89.60%
b14 10,493 10,165 9,114 0 89.66%
b15 4,900 2,244 2,026 24 91.26%

Circuit RT-Level Faults Phase2
Efficacy

Table 3: Phase Two Effectiveness

The effectiveness of the evolutionary algorithm can also be seen in Table 3, where
the number of excited faults is shown in column [Exc] together with the number of
detected faults [Det]. The effectiveness of the evolutionary algorithm can be defined
as its ability to observe (i.e., to detect) excited faults, not considering faults that are
certainly unobservable due to incorrect design ([Err] column).

It should be noted that phase two effectiveness is quite high also for b12, a
problematic circuit where ARPIA only manages to get 13.22% RT-level fault
coverage. Thus, primarily the first phase can be hold responsible for the low
performance.

4 Conclusions and Future Works

Due to the wide adoption of logic synthesis tools, high-level techniques are
increasingly necessary in order to shift test-related activities towards the description
level adopted by designers. A crucial point for developing effective high-level test
signal generator lies in the identification of a suitable fault model. Another crucial
point is the availability of a suitable algorithm for test generation.

In this paper we exploit a recent fault model to propose a methodology for
generating high quality test signals. The approach is based on an evolution strategy.
Experimental data show the potential of the proposed approach with regard to similar
techniques, the effectiveness of the fault model, and the convenience of the
evolutionary algorithm.

We are currently improving ARPIA in two directions. First, we are trying to
replace the hill-climber in the first phase with sharper algorithms, solving the issues
stemming from the lack of information concerning the system behavior before fault

excitation. We are also considering the adoption of an evolutionary core similar to the
one exploited in [14]. Secondly, we are tuning the evolution strategy adopted in the
second phase, experimenting more complex selection schemes. We are pondering to
change the algorithm, adding back recombination in some constrained form.

5 References

[1] “High Time for High-Level Test Generation,” Panel at the IEEE International Test
Conference, 1999, pp. 1112-1119

[2] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital systems testing and testable
design, Computer Science Press, 1990

[3] A. Fin, F. Fummi, “A VHDL Error Simulator for Functional Test Generation,” IEEE
European Design, Automation and Test Conference, 2000, pp. 390-395

[4] F. Fallah, S. Devadas, K. Keutzer, “OCCOM: Efficient Computation of Observability-
Based Code Coverage Metrics for Functional Verification,” DAC98: 34th Design
Automation Conference, 1998

[5] F. Ferrandi, F. Fummi, L. Gerli, D. Sciuto, “Symbolic Functional Vector Generation for
VHDL Specifications,” DAC99: 35th Design Automation Conference, 1999, pp. 442-446

[6] F. Corno, M. Sonza Reorda, G. Squillero, “High-Level Observability for Effective High-
Level ATPG,” VTS2000: 18th IEEE VLSI Test Symposium, May 2000, pp. 411-416

[7] B. Beizer, Software Testing Techniques (2nd ed.), Van Nostrand Rheinold, 1990
[8] F. Fallah, P. Ashar, S. Devadas, “Simulation Vector Generation from HDL Descriptions

for Observability-Enhanced Statement Coverage,” DAC99: 35th Design Automation
Conference, 1999, pp. 666-671

[9] F. Corno, G. Cumani, M. Sonza Reorda, Giovanni Squillero, “RT-level Fault Simulation
Techniques based on Simulation Command Scripts,” DCIS 2000: XV Conference on
Design of Circuits and Integrated Systems, November 21-24, 2000

[10] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “An RT-level Fault Model with
High Gate Level Correlation,” IEEE International High Level Design Validation and Test
Workshop, November 8-10, 2000

[11] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strategies.”
Proceedings of the Fourth International Conference on Genetic Algorithms, 1991, pp. 2-9

[12] H.-P. Schwefel, F. Kursawe, On Natural Life’s Tricks to Survive and Evolve, Proceedings
of the 1998 IEEE International Conference on Evolutionary Computation, 1998, pp. 1-8

[13] F. Corno, M. Sonza Reorda, G. Squillero, “RT-Level ITC 99 Benchmarks and First
ATPG Results,” IEEE Design & Test, Special issue on Benchmarking for Design and
Test, July-August 2000, pp. 44-53

[14] F. Corno, M. Sonza Reorda, G. Squillero, “Automatic Validation of Protocol Interfaces
Described in VHDL,” EvoTel2000: European Workshops on Telecommunications,
Edinburgh (UK), May 2000, pp. 205-213

