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ABSTRACT Currently, the preferred method for implementing H? esti-
mation algorithms is what is called the array form, and includes two main
families: square-root array algorithms which are typically more stable than
conventional ones, and fast array algorithms which, when the system is
time-invariant, typically offer an order of magnitude reduction in the com-
putational effort. Using our recent observation that H> filtering coincides
with Kalman filtering in Krein space, in this paper we develop array algo-
rithms for H filtering. These can be regarded as natural generalizations of
their H? counterparts, and involve propagating the indefinite square-roots
of the quantities of interest. The H> square-root and fast array algorithms
both have the interesting feature that one does not need to explicitly check
for the positivity conditions required for the existence of H filters. These
conditions are built into the algorithms themselves so that an H* esti-
mator of the desired level exists if, and only if, the algorithms can be
executed. However, since H* square-root algorithms predominantly use J-
unitary transformations, rather than the unitary transformations required
in the H? case, further investigation is needed to determine the numerical
behaviour of such algorithms.

*This work was supported in part by DARPA through the Department of Air Force
under contract F49620-95-1-0525-P00001 and by the Joint Service Electronics Program
at Stanford under contract DA AH04-94-G-0058-P00003.
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1 Introduction

Ever since its inception in 1960, the celebrated Kalman filter has played a
central role in estimation. The Kalman filter was first expressed as a recur-
sive algorithm which required the propagation of a certain Riccati recur-
sion. However, for several reasons, current implementations of the Kalman
filter are most often expressed in (what is called) an array form, and do
not propagate this Riccati recursion directly.

The first array forms for the Kalman filter are called the square-root array
algorithms and were devised in the late 1960’s [1, 2, 3]. These algorithms
are closely related to the (so-called) QR method for solving systems of
linear equations [4, 5, 6, 7], and have the properties of better conditioning,
reduced dynamical range, and the use of orthogonal transformations, which
typically lead to more stable algorithms.

Furthermore for constant systems, or in fact for systems where the time-
variation is structured in a certain way, the Riccati recursions and the
square-root recursions, both of which take O(n?) elementary computations
(flops) per iteration (where n is the dimension of the state-space), can
be replaced by more efficient fast recursions, which require only O(n?)
flops per iteration [8, 9, 10]. These recursions are analogous to certain
equations invented in 1943-47 by the astrophysicists Ambartsumian [11]
and Chandrasekhar (see [8]). The resemblance is much more remote in the
discrete-time case, though the name was carried over (see [9, 12, 10]). These
algorithms are also closely related to the concept of displacement structure
[13, 14].

The conventional Kalman filter (and its variants) are H?2-optimal esti-
mators in the sense that they minimize the least-mean-square estimation
errors. Recently, on the other hand, there has been growing interest in
worst-case, or H*, estimation where the goal is to minimize (or, in the
suboptimal case, bound) the worst-case energy gain from the disturbances
to the estimation errors (see e.g., [15, 16, 17, 18]). The rationale for consid-
ering H* estimation is that, unlike the H? case, the resulting estimators
will have more robust performance in the face of model uncertainty and
lack of statistical knowledge on the exogenous signals.

The resulting H° estimators involve propagating a Riccati recursion and
bear a striking resemblance to the conventional Kalman filter. In a series of
papers [19, 20], we have recently shown that H® filters are indeed Kalman
filters, provided we set up estimation problems, not in the usual Hilbert
space of random variables, but in an indefinite-metric (or so-called Krein)
space. This observation leads to a unified approach to H? and H> theory
and has various further ramifications. One major bonus of this unification
is that it shows a way to apply to the H> setting many of the results
developed for Kalman filtering and LQG control over the last three decades.

One immediate fall-out is that it allows one to generalize the square-root
and fast array algorithms of H? estimation to the H* setting. This is the
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topic of the current paper. The hope is that the resulting H array algo-
rithms will be more attractive for actual implementations of H° filters and
controllers. As we shall see, the H> array algorithms have several inter-
esting features. They involve propagating (indefinite) square-roots of the
quantities of interest and guarantee that the proper inertia of these quan-
tities is preserved. Furthermore, the condition required for the existence
of the H filters is built into the algorithms — if the algorithms can be
carried out, then an H® filter of the desired level exists, and if they cannot
be executed then such H° filters do not exist. This can be a significant
simplification of the existing algorithms.

The remainder of the paper is organized as follows. The conventional
square-root array algorithms are introduced in Sec. 2 along with some of
their properties. In Sec. 3 we begin the development of the H® square-
root array algorithms and mention why they are natural extensions of their
conventional counterparts. We initially encounter some difficulties in gen-
eralizing these arrays to the Krein space setting, and in order to alleviate
them we then invoke the concept of indefinite square-roots, and study the
inertia properties of the Gramian matrices in the H* filtering problem in
some detail. These inertia properties are related to the triangularization of
matrices via J-unitary transformations and are crucial for the development
of the H* array algorithms. Finally, the general form of the H* a pos-
teriori and a priori filters are given in Sec. 3.4 and the (so-called) central
filters in Sec. 3.5.

The conventional fast recursions, along with several of their properties,
are given in Sec. 4. Sec. 5.1 extends these recursions to the H™ setting,
and Sec. 5.2 gives the corresponding central H filters.

The Appendix deals with the elementary unitary and hyperbolic trans-
formations that are needed for the implementation of H? and H* array
algorithms. In particular, the three families of Householder, Givens, and
fast Givens transformations are studied.

In closing this introduction we should note that there are many variations
to the conventional square-root and fast array algorithms, of which only
a few have been considered here. In particular, there are those that arise
in finite-horizon control problems. However, the approach adopted here is
of sufficient generality that it should allow a reader to extend any other
variation of these algorithms to the H>° setting.

A brief remark on the notation. To avoid confusion between the various
gain matrices used in this paper, we shall employ the following convention:
K, ; will denote the gain matrix in the usual Krein space, or conventional,
Kalman filter, K ; will denote the gain matrix in the corresponding filtered
form of the Kalman filter, and K ; and K, ; will denote the gain matrices
in the H* a posteriori and a priori filters, respectively.



2 H? Square-Root Array Algorithms

In state-space estimation problems we begin with a (possibly) time-varying
state-space model of the form

yj = Hjzj+v;

where F; € C™*", G; € C™*™ and H; € CP*", and where the {u;,v;} are
disturbances whose nature depends on the criterion being used, and where
the {y;} are the observed outputs. We are typically interested in obtaining

estimates of some given linear combination of the states, say s; = L;x;
(L; € CT*™) and, most frequently, filtered and predicted estimates, denoted
by 8;; and 3;, that use the observations {yx,k < j} and {yx,k < j},
respectively.

2.1 Kalman Filtering

In conventional Kalman filtering the {zo,u;,v;} are assumed to be zero-
mean random variables with

To I, 0 0
v; 0 0 Ry

Moreover, the output covariance of (2.1) is assumed to be positive-definite,
i.e. Ry >0, where [Ry]ij = Eyiy}."

Once the {zo, {u;,v;}} are random, the same will be true of the states,
outputs and desired signals, {x;,yi,s;}. In this setting, the H? criterion
states that the linear estimates 3;; and 8; should be found so as to minimize
the expected estimation error energies,

Z(sj —5j;)"(sj — 8;;) and Z(sj —3;)*(s5 — &), (2.2)

=0

respectively.

Using this criterion, the predicted and filtered estimates are given by
8; = LjZ; and $;; = L;Z;);, respectively, where #; satisfies the predicted
form of the conventional Kalman filter recursions

Tj1 = Fjo; + K, j(y; — Hjzj), 20=0 (2.3)

LOne way to ensure the positive definiteness of the output covariance, Ry, is to assume
that the measurement noise covariance matrix is full rank, i.e., R; > 0. This is often a
very reasonable assumption.



and 7;|; satisfies its filtered form,
Tjt1j+ = Fidjj + K i (i — Hipa Fidg;), &0 =0 (24)

Here #; denotes the predicted estimate of x;, given {yo,...,y; 1}, and &;;
denotes its filtered estimate, given {yo, ...,y;}. The gain matrices K, ; and
Ky ; can be computed in several ways. The most common method uses a
certain Riccati recursion, viz.,

Ky;=PHjR,; , K,;=FjK;; , R.j=R;+H;P;H; (25)
where P; satisfies the Riccati recursion,

Pj+1 = FijFj* + G]Q]G); - Kp,jRe,jK;,ja

Py =Tl,. (2.6)

We should also mention that the invertibility of the R. ; is guaranteed by
the positivity assumption on R,.

2.2 Square-Root Arrays

The matrix P; appearing in the Riccati recursion (2.6) has the physical
meaning of being the variance of the state prediction error, £; = z;—%;, and
therefore has to be positive (semi)definite. Round-off errors can cause a loss
of positive-definiteness, thus throwing all the obtained results into doubt.
For this, and other reasons (reduced dynamic range, better conditioning,
more stable algorithms, etc.) attention has moved in the Kalman filtering
community to the so-called square-root array (or factorized) estimation
algorithms [1, 2] that propagate square-root factors of P;, i.e. a matrix,

le/ 2 say, with positive diagonal entries, and such that

1/2,p1/2 1/2 p*/2
p; = P/*(P}*) = PP},
Square roots can be similarly defined for the system covariances {Q;, R;}.
Then it is in fact not hard to show the following.
Find any orthogonal transformation, say ©;,% that triangularizes the
pre-array shown below

1/2 1/2
R; H;P; 0

(2.7)
0 FP”? GQY°

X 00
@f"{y A 0}'

The resulting post-array entries can be determined, by taking squares and
using the orthogonality of ©;, to obey

XX* = Rj-l-HijH;:Re’j

2By an orthogonal transformation, ©, we mean one for which, ©0* = ©*0 = 1.
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YX* = F,PH;
Z7Z* = F;PiF+G;Q;G; —YY*
FjPF; +G;Q,;G; —YX*(XX*)7' XY™
= F;jP;F; +G,;Q,;G; — F;P;H; R, | H; P;F}
= Pjyi.

Therefore we can identify

1/2 1/2
z=pP/[; , X=RY (2.8)
and also
Y = F,PH;R, > = K, ;R. (2.9)

Thus the square-root algorithm not only propagates the square-roots of
the Riccati variable, P;, but also gives us quantities useful for the state
estimation recursion

Bj1 = Fjdj + Ky (y; — Hjj). (2.10)

The unitary transformation ©; is highly nonunique and can be computed
in many ways, the simplest ones being to construct it as a sequence of
elementary (Givens or plane) rotations nulling one entry at a time in the
pre-array, or as a sequence of elementary (Householder) reflections nulling
out a block of entries in each row. We refer to [21, 5, 7] and the Appendix for
more details.® The numerical advantages of the square-root transformations
arise from the length preserving properties of unitary transformations, and
from the fact that the dynamic range of the entries in le/ % s roughly
the square-root of the dynamic range of those in P;. Moreover, regular
computational (systolic) arrays can be designed to implement sequences of
elementary unitary transformations [22].

A final result will be useful before we summarize the above discussion in
a theorem. Any unitary transformation ©; that triangularizes the pre-array
in (2.7) also gives the, readily checked, identity,

—R;'?y; P 0}@]-:[1%;;/%3- P %81 X] (2.11)

where x denotes an entry whose exact form is not relevant at the mo-
ment. This gives us an alternative way of computing the state estimates

via Zj41 = leﬁ lell/zﬁsﬁl, rather than the state estimate equation (2.10).

We can summarize the above discussion as follows.

3The above square-root method is closely related to the QR (factorization) method
for solving systems of linear equations.
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Algorithm 1 (Conventional Square-Root Algorithm) The gain ma-
triz Kp ; necessary to obtain the state estimates in the conventional Kalman

filter (2.8)-(2.5)
Tjp = Fj@; + Kp (y; — Hjdj), &0 =0,
can be updated as follows

R 0 0
1/2 1/2
Kp,jRe,/j Pj+/1

1/2 pl/2
Ry H;P 0 ]j: . (2.12)

1/2 1/2
0o EP? G

where ©; is any unitary matriv that triangularizes the above pre-array. The
algorithm is initialized with Py = .

Note that the quantities necessary to update the square-root array, and
to calculate the state estimates, may all be found from the triangularized
post-array.

It will also be useful to quote the filtered form of the square-root array
algorithm, that can be verified in a fashion similar to what was done above.

Algorithm 2 (Conventional Square-Root Alg. - Filtered Form) .

The gain matriz Ky ; necessary to obtain the state estimates in the filtered
form of the conventional Kalman filter

Eip1)j+1 = Fjoj + Kpjra W — Hin Fjeg;),  &-1-1 =0,
can be updated as follows

1/2 1/2
R/ H;P'

1/2 0
J 0, = iz opie | (2.13)
o P J l Ky R P
| B 67 e =[Pt 0] (2.14)

where 9;1) and 6§-2) are any unitary matrices that triangularize the above
pre-arrays. The algorithm is initialized with Py = Il,.

3 H®™ Square-Root Array Algorithms

We now turn our attention to H* filtering. Our goal here is to show that
it is possible to construct square-root array implementations of H° filters,
similar to what was done in the aforementioned H? case.
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3.1 H® Filtering

Consider once more the state-space model (2.1). In the H* approach it is
assumed that disturbances {xo, {u;}, {v;}} are unknown, but nonrandom.
One can therefore not speak of expected values, or attempt to minimize the
average estimation error energy. Instead one can look at the energy gain

from the unknown disturbances {H a:o, {u; }] 0:{vj}i—o} to the filtered
and predicted errors {s; — Sg\g}j:o and {s; — §; }]:O, respectively, i.e.,

2 5—0(85 = 8513)" (55 — 3515
z5llo™ xO*‘E; =0 g“J*‘E; —o V5V

(3.1)

and .
2i=o(85 = 8;)*(s5 = 85)
zpll wO‘*‘E;o JUJ+EJOJ
Here Ilj is a positive definite weighting matrix. It is quite clear that if the
ratios in (3.1-3.2) are small then the estimators perform well, and vice-
versa. However, the problem with these ratios is that they depend on the
disturbances {zo, {u;}, {v;}}, which are not known. To overcome this prob-
lem, we can consider their worst-cases, i.e.,
sup Z;,O(sj — 3j13)" (85 = 3513) (3.3)
zo,{u;},{vi} 3331_[0 To + Z] o Ujuj + Z] 0 ViV

(3.2)

and ,
sup Z; 0(85 —31;)7 (55 — 315 (3.4)
zo,{u;},{v;} I'OH() o + ZJ -0 ]’LL] + ZJ -0 ]

The goal in H* estimation is to bound this worst-case energy gain, and
the claim is that the resulting estimators will be robust with respect to dis-
turbance variation, since no statistical assumptions are being made about
the disturbances, and since we are safe-guarding against the worst-case
scenario. However, the resulting estimators may be over-conservative.

Here we quote the standard solution to the so-called suboptimal H®°
estimation problems using the notation of [19, 20]. (See also [16, 23, 17].)

Theorem 1 (Suboptimal H>* A Posteriori Filter) Given v > 0, an
H® a posteriori filter that achieves

Eo(g— 8. ) (80 — G
sup . EJ 0( J J\J) (s; J\J) < 72, (3.5)
wo,{u; },{v;} ~750H0 Zo +E] 0 JUJ +EJ =0 J

ezists if, and only if, the matrices

I 0 I 0 H; " "
Rj:[op _72[q] ‘deeyJ‘:[ ) }WL[ J]Pj[Hj Lj |
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have the same inertia* for all 0 < j < i, where Py = IIy and P; satisfies
the Riccati recursion

H;
L;

Pj+1 = FijF; +G]'G; - Fij [ H]* L* ] R;] [ :| Pij*. (37)
If this is the case, then all possible H* a posteriori estimators that achieve

(3.5) are given by those 3;; = Fy j(yo,-..y;) that satisfy

— Hji; }* 1[ y; — H;z; ] .
Jol RY| Jol>0, 0<k<i 3.8
2_: { 855 — Ljt; &I 850 — Ly (38)

where Z; is given by the recursion

S A v Hjzg L
Ej1 = Fj&; + K, [ i) — Lty } , & =0 (3.9)
and K, ; = F;P; [ Hf L} |R_;.

One important special choice that guarantees (3.8) is the so-called central
a posteriori filter,

§j\j = Lj\(ii’j + PJH]*(IP + HijH;)il(yj — Hjli’J)) . (310)

~~

Tjli

With this choice of estimate, the recursion (3.9) can be used to obtain the
following recursion for Z;;

Tjprja1 = Fidj; + Ko jra (yjpr — Hip Fidg;), &-q-1=0  (3.11)
with K, j = P;H} (I, + H;P;H;)~". Moreover, the central estimate is sim-
ply 8515 = L;j);-

Theorem 2 (Suboptimal H>* A Priori Filter) Given v > 0, an H*®
a priori filter that achieves

i JUN .
(g —8.)*(s: — &,
. Sials = 855 = ) < am
w0, {u;},{v;} Tpllo ™ $0+E] 0 ]uJ+E] 0 ;

ezists if, and only if, all leading submatrices of the matrices

2 2
_ | = 0] _[_'YIq 0} [Lj] * *
R; = and R, ; = + P | L* H:
J [ 0 Ip €,] 0 Ip Hj J[ J J ]
(3.13)

4By the inertia of a Hermitian matrix, we mean the number of its positive, negative
and zero eigenvalues.



have the same inertia for all 0 < j <14, where P; is the same as in Theorem
1.

If this is the case, then all possible H* a priori estimators that achieve
(3.12) are given by those §; = Fp j(yo, - -.yj—1) that satisfy

sk-1 | 8l — Ly "t [ i = L
J=0 y; — H;Z; el | y; — H;Zy 0<k<i (3.14)
—(8kje — Lidx)* (v I — L Py L)™' > 0,

where Z; is given by the recursion

N . §; — L;x; .
Tjy1 = Fjl’j + K. J |: y; —H]]JAJ]] :| , Zo=0 (3.15)

and K, ;= FiP; [ Ly Hj JR7;.
Once more, an important special choice that guarantees (3.14) is the

so-called central a priori filter,
§ = L;d;. (3.16)
With this choice of estimate, the recursion (3.15) can be rewritten as

Tj = Fjz; + Ko j(y; — Fjgj), %0=0 (3.17)

with K, j = PjH; (I, + H;P;H?)™" and P; = [P —47°L3L;] .

Remark: Note that the existence condition for a priori level-y H filters is
more stringent than the existence condition for a posteriori filters, since the
latter requires that the matrices R; and R, ; have the same inertia, whereas
the former requires that all leading submatrices of R; and R, ; have the
same inertia. This, of course, makes perfect sense, since a posteriori filters
have access to one additional measurement and should therefore outperform
a priori ones.

We can also more explicitly show that one condition is more stringent
than the other. To this end, let us remark that, when IIy > 0, and when
a solution to the level-y H* estimation problem exists, it can be shown
that P; > 0 for all j (see e.g., [19]). In this case, using a simple Schur
complement argument, the inertia condition for the a posteriori problem of
Theorem 1 (cf., Eq. (3.6)) becomes,

I, + HiP;H; >0 and —~°I, + L;(P; '+ HfH;) 'L} <0. (3.18)

Since P; > 0, the first condition is superfluous so that the existence condi-
tion becomes
VI, > Lj(P; ' + H;H;)~' L. (3.19)
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Likewise, using a similar Schur complement argument, the inertia condi-
tion for the a priori problem of Theorem 2 (cf., Eq. (3.13)) becomes,

—?1,+ LjP;L; <0 and I, + H;(P; ' =~ ?LiL;)" " Hy > 0. (3.20)

Now when P; > 0 and —y?I, + L;P;L; < 0, it follows that P; ' —
y72L;L; > 0. Therefore the second condition is superfluous and the exis-
tence condition becomes

v*1, > L;P;L}. (3.21)

Since (Pj_1 + HyH;)~' < Py, it readily follows that condition (3.21) is
more stringent than condition (3.19)

3.2 A Krein Space Formulation

The central H* a priori and a posteriori filters of Eqs. (3.17) and (3.11)
look very similar to their Kalman filter counterparts (2.3) and (2.4). Indeed
the only difference is that the H°® Riccati recursion (3.7) differs from the
Kalman filter Riccati recursion (2.6), since:

1
e We have indefinite “covariance” matrices, [ 02 } .
00—l
e The L; (of the quantity to be estimated) enters the Riccati equation,
(3.7).

e We have an additional condition, (3.6), that must be satisfied for the
filter to exist; in the Kalman filter problem the L; would not appear,
and the P; would be positive semidefinite, so that (3.6) is immediate.

Despite these differences, we have recently shown that these H filters
can in fact be obtained as certain Kalman filters, not in an H? (Hilbert)
space, but in a certain indefinite vector space, called a Krein space [19, 20,
24]. The indefinite “covariances” and the appearance of L; in the Riccati
recursions are all easily explained in this framework. The additional condi-
tion (3.6) will be seen to arise from the fact that in Krein space, unlike the
usual Hilbert space context, quadratic forms need not always have minima
or maxima, unless certain additional conditions are met.

We shall not go into the details of estimation in indefinite-metric spaces
here. Instead, we shall use the observation that H° filtering coincides with
Kalman filtering in Krein space as a guideline to generalize the square-root
array algorithms of Sec. 2 to the H* setting.

To this end, recall the conventional square-root array algorithm of Sec. 2,
R!? 0 0

e

1/2 1/2
Kp,jRe,/j Pjﬁ{l

J

1/2 pl/2

R; H;P; 0 o (3.22)
1/2 1/2 J

0 F;P; G;Q;
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The first problem that occurs if one wants to extend the square-root array
algorithm to the Krein space setting (of which the H®® filtering problem
is a special case) is that the matrices R;, Q;, P; and R, ; are in general
indefinite and square-roots may not exist. To overcome this problem we
employ the notion of an indefinite square-root, as defined below.

Definition 1 (Indefinite Square-Roots) Suppose A is an arbitrary Her-
mitian matriz. Let the signature matriz S (i.e. a diagonal matriz with di-
agonal elements either +1 or —1) represent the number of positive and
negative eigenvalues of A. Then AY/? will be called an indefinite square-
root of A if, and only, if

A= AY254*/2,

Note that when A is non-negative definite, then S = I and A'/? is the
conventional square-root.

In the Krein space case, however, R;, Q);, P; and R, ; may all have arbi-
trary inertia, ¢.e.

R-RPSORP | 0= qsP;”
jo Pil/QSz@)P' /2 , Rei= Ri7/i2sl(4)R:7/i2

(3

for arbitrary signature matrices ka), k =1,2,3,4. It is thus not obvious
how to incorporate all these different time-variant signature matrices into
a square-root array algorithm of the type (3.22). Although this can be done
in the general case, by either introducing non-Hermitian factorizations of
the Gramians, or by keeping track of the inertia, we do not need to pursue
such generalities here. The reason is that, as it turns out, in the special case
of the H* estimation problems that we have been studying, the Gramians
satisfy certain inertia properties that allow us to extend the algorithm of
(3.22) in a very natural way.

Indeed when a solution to the H®® filtering problem exists, we know from
Theorems 1 and 2 that P; > 0, and that R, ; and R; have the same inertia.
Moreover, ; = I, > 0 and R; = [ Ié’ —’Y021q
(and thus so does R, ;) so that we may write,

} have constant inertia

R, = R\’JR?, Q; = Q;*Q;”*, P,=P!°P}*, R.; = RV} IR/}
(3.23)
with

RZW:{IP 73] and J:[Ip 0 } (3.24)
q
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This suggests that in the H*® filtering problem, the pre-array in (3.22)
should be replaced by,

H% v“ [fj }me o | (3.25)
[ 0 F;pP}/? GjJ

[Recall that, compared to the H? Riccati, in H> Riccati recursion H;
is replaced by { i[J ]] Now in the H? case the pre-array in (3.22) was
J

triangularized by a unitary transformation (or simply by a rotation). Since
the H? estimation problem can be formulated in a Hilbert space, whereas
the H* estimation problem is most naturally formulated in a Krein space,
it seems plausible that we should attempt to triangularize (3.25), not by
an ordinary rotation, but by a hyperbolic rotation. To be more specific, we
need to use a J-unitary transformation, as discussed below.

3.3 J-Unitary Transformations

Let us begin with the definition.

Definition 2 (J-unitary Matrices) For any signature matriz, J, (a di-
agonal matriz with +1 and —1 diagonal elements) the matriz © will be
called J-unitary if

0J0* = J. (3.26)

Recall that unitary transformations (or ordinary rotations) preserve the
length (or ordinary norm) of vectors. J-unitary transformations, on the
other hand, preserve the (indefinite) J-norm of vectors. Indeed, if b = a©,
with © J-unitary, then

bJb* = a®JO*a* = aJa”.

The above discussions suggest that we should attempt to triangularize
(3.25) via a J-unitary transformation, with

J = [ Ié) _OI‘I ] (3.27)

I,
I,

Now it is well known that it is always possible to triangularize arrays using
unitary transformations. But is this also true of J-unitary transformations?
To see if this is the case, consider a simple example where we are given the
(two-element) row vector

[a b],
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and are asked to hyperbolically rotate it so that the resulting vector lies
along the direction of the x-axis.’ For the time being, assume that such a
transformation can be found. Then we can write,

[a b]O=[c 0], (3.28)

where

©J0" =J and J= { b ] (3.29)

Since © is J-unitary this implies that,

*

[ab]J{z*]:[CO]J{CO], (3.30)

or more explicitly,
la|? — [b|* = |c|* > 0. (3.31)

Thus, [ a b ] must have nonnegative J-norm. In other words, if the given
[ @ b ] has negative J-norm (i.e., |a|?> — [b|?> < 0) then it is impossible
to hyperbolically rotate it to lie along the z-axis. [This fact is shown in
Fig. 1. As can be seen, standard rotations move the vector [ a b | along
the circle, a® + b?> = constant, whereas hyperbolic rotations move it along
the hyperbola, a® —b? = constant. Thus while it is always possible to rotate
[ @ b ] to lie along the z-axis, if |a|> — [b]?> < 0 then it is impossible to
do so with a hyperbolic rotation. Indeed hyperbolic rotations cannot move
vectors from the positive to negative subspaces of a Krein space, or vice
versa.]

Thus it is quite obvious that it is not always possible to triangularize
arrays using J-unitary transformations. The precise condition follows.

Lemma 1 (J-unitary Matrices and Triangularization) Let A and B
be arbitrary n X n and n X m matrices, respectively, and suppose J =

S . .
[ ! s ] where S1 and Sy are n X n and m X m signature matrices.
2

Then [ A B ] can be triangularized by a J-unitary transformation © as
[A B]Oe=[L 0]
with L lower triangular, if and only if, all leading submatrices of
S1  and of ASA*+ BS;B*
have the same inertia.

5Note in standard (two-dimensional) Euclidean space this can always be done.
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FIGURE 1. Standard rotations vs. hyperbolic rotations.

Proof: To prove one direction suppose there exists a J-unitary transfor-
mation O that triangularizes [ A B ] Consider an arbitrary partitioning
of A, B and L, i.e.

AQ) B AN
[ A2 B©) ] ’ I L2 o |

where A, B and LM have r rows. Now

A B T AW 4O T o1 [ L+ L@
4@ po |87 o pe |= @ o 7] o 0
=J . -
so that
() g, A+ 4 B g, B (W) g, 1)
[ A SlA + B SzB X j| _ [ L SlL X :| (332)
X X X X

where x denotes irrelevant entries. Moreover, since L is lower triangular we
have L) = [ LY 0 ], where LY is lower triangular and r x r. Thus

if we denote by S{l) the leading r x r submatrix of S;, equating the (1,1)
block entries in (3.32) yields

AW g 4W* 4 p g, pW* — a1 g p )« (3.33)

The LHS of the above equation is the leading r x r submatrix of AS; A* +
BS,B*. Thus (3.33) shows that the leading r x r submatrices of AS; A* +
BS>;B* and S; have the same inertia. Since r was arbitrary the same is
true for all leading submatrices.
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To prove the other direction, we assume that all leading submatrices of
AS1 A* + BS3B* and S; have the same inertia. In particular the leading
(1,1) submatrices, so that

aSia* + bSsb* =135 (3.34)

where a and b are the leading rows of A and B, s is the leading diagonal
of S; and [y is a scalar. Now define the vector

v:[a b]+11161

where e; = [ 1 0 ... 0 ] is the first unit row vector. Consider the
matrix®
Jv*v
0,=1-2 .
! vJu*

A straightforward calculation shows that ©,J07 = J so that ©; is J-
unitary. Moreover, another direct calculation shows that

[0, b]@lzlnel:[hl 0 ... 0]

We thus far have

[ A B]@lzh[/f;l 22]] 1_22}. (3.35)

Now if all leading submatrices of two given matrices have the same iner-
tia, then their (1,1) entries should have the same inertia and all leading
submatrices of the Schur complement of their (1,1) entries should have the
same inertia. Now partition Sy as

S
S1= { s }

so that S is the Schur complement of s in S;. Likewise the Schur com-
plement of the (1,1) entry of AS;A* + BS,B* is AQS(l)A§ + B2S>B;
where A; and B, are defined in (3.35). Therefore all leading submatri-
ces of AySMW A% + ByS, B} and S have the same inertia. We may now
proceed as before to find a J-unitary matrix @, that rotates the first row
of [ Ay Az B, ] to lie along the second unit vector. Continuing in a
similar fashion will result in a J-unitary matrix @ = 010, ...0,_; that
triangularizes [ A B ]

|

6©) may be recognized as an elementary Householder reflection in the J-metric. See
Appendix A.
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3.4 Square-Root Array Algorithms

We are now in a position to apply the result of Lemma 1 to the triangu-
larization of the pre-array (3.25) using a J-unitary transformation with J
given by (3.27). In fact, we need only consider the condition for the tri-
angularization of the first block row (since setting the block (2,3) entry
of the post array to be zero can always be done via a standard unitary
transformation). Thus we need only consider triangularizing

[54] [8]7] o

using a J-unitary transformation with
I, O
J = 0 -1 . (3.37)

From Lemma 1, the condition obviously is that all leading submatrices of
J and

I, 0 I, 0 I, 0 Hi | pi2pe/2r pre 7o 1 p
55 S B e 5

(3.38)
have the same inertia. But this is precisely the condition required for the
existence of an H> a posteriori filter! (See Theorem 1). This result is quite
useful — it states that an H* (a posteriori) filter exists if, and only if,
the pre-array can be triangularized, i.e., if, and only if, the square-root
algorithm can be performed and does not break down.
Now that we have settled the existence question, let us return to trian-
gularizing the pre-array (3.25), so that we can write

I, 0 H; | i
P; 0
”0 vlq] [Lj}] 19]-:[;‘33}, (3.39)
[ 0 F;p}/? GjJ

where A and C' are lower triangular, and where ©; is J-unitary with J
as in (3.27). The array on the left hand side of (3.39) is referred to as the
pre-array and the array on the right hand side as the post-array. To identify
the elements A, B and C' in the post array let us square both sides of (3.39)
and use the fact that ©; is J-unitary. Therefore

|: Ip 0 :| |: Hj :|P1/2 0

0 ~I, L; J G)JJ@; %2 N * */2 g

0 EP? G | P [féj Lj | PjG%Fj
J

I, 0
0 ’qu] 0
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A* B*
A0 0 \
_{B CO}J 8 c(; . (3.40)

Equating the (1,1) blocks on the left hand and right hand sides of (3.40)
yields

I, 0 Hilptme o1 4l 07,
5 2]+ [B]ntm 14k 5]

The left hand side of the above relation is simply R, ;. Therefore A is an
indefinite square-root of R, ;, and we can write

I I N R TR CED

Equating the (2,1) blocks on the left hand and right hand sides of (3.40)
yields

* * I 0 *
P, [ H: Lj]:B[é’ _Iq]A.

Therefore

_ * * —*/2 I 0
B=Fp;[ Hf Lj]R,; {60 —Iq]’
so that we can write
B=K,;R/? (3.42)

e,j

Equating the (2, 2) blocks on the left hand and right hand sides of (3.40)
yields

F;P;F +G;G*

L, 0 ],. )
B{ . _Iq]B +CC

= K, ;R [ % _(}q ] R+ CC
= Kp;R.;K,;+CC".
Therefore
CC* = F;PF} + GG} — Ky jR. jK, ; = Pj1,
so that we may write
c=p/; ., PLP =Py (3.43)

We can now summarize our results as follows.
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Theorem 3 (H> A Posteriori Square-Root Algorithm) The H® a
posteriori filtering problem with level v has a solution if, and only if, for
all j =0,...,i there exist J-unitary matrices (with J given by (3.27)), ©;,
such that
I, O H; 1/2
6] Lo e
0 FP” G

R? 0 0
1/2 1/2
Kp,jRe,/j PjJ{I 0
(3.44)
where the algorithm is initialized with, Py = Ily. If this is the case, then
all possible H> a posteriori filters, 5;; = Fy j(yo,---yj), are given by any
choices that yield,

S — T, .4 e,j S — T, .4
" 851 — Lz, T 85 — Lz |

k o - o
|: yj — Hjz; :| R yj — Hji; >0 0<k<i
Jj=0

where & satisfies the recursion,

Yj —ijj ~

Tjp1 = Fjzj + Kpj | o2
L Sild it ]

In the H® a priori filtering problem we need to begin with the pre-array

vl 0 } [ L; }P_l/z 0
|: 0 Ip HJ J s (345)
0 FP? G

-1, 0
S 0 I,

[Note the reversal of the order of the {H;, L;} as compared to the a poste-
riori case.]
Using similar arguments we may prove the following result.

and with

L (3.46)

I,

Theorem 4 (H* A Priori Square-Root Algorithm) The H* a pri-
ori filtering problem with level v has a solution if, and only if, for all
Jj =0,...,i there exist J-unitary matrices (with J given by (3.46)), ©;,
such that

g 0 Li | pz R/ 0 0
0 I H; ! i= K ) pl/2
0 Fjpjl/2 Gj p’jReyj Jj+1 0

(3.47)
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where the algorithm is initialized with, Py = Ily. If this is the case, then
all possible H> a priori filters, 5; = Fr;i(yo,...yj—1), are given by any
choices that yield,

k . ~ * . ~
Z[si_LJ’”ﬁj} R—l.{sf_Lj”ff]>o, 0<k<i
=Ly~ Hixj oy - Hzg |~ -

where T; satisfies the recursion,

R N §; — L;#; R
Tj1 = Fjj+ Ky, [ yj—H]jx]j }, To = 0.

Note that, as in the H? case, the quantities necessary to update the
square-root array and to calculate the desired estimates may all be found
from the triangularized post-array.

In conventional Kalman filtering, square-root arrays are preferred since
the positive-definiteness of the matrices is guaranteed, and since the ©;
are unitary, which improves the numerical stability of the algorithm. In the
H™> gsetting, the square-root arrays guarantee that the various matrices
have their appropriate inertia; however, the ©; are no longer unitary but
J-unitary. Therefore the numerical aspects need further investigation.

An interesting aspect of Theorems 3 and 4 is that there is no need to
explicitly check for the existence conditions required of H° filters (see The-
orems 1 and 2). These conditions are built into the square-root algorithms
themselves: if the algorithms can be performed then an H* estimator of
the desired level exists, and if they cannot be performed such an estimator
does not exist.

3.5 The Central Filters

In the previous section we obtained a square-root version of the parametriza-
tion of all H* a posteriori and a priori filters. Perhaps the most important
filters in these classes are the so-called central filters, which we described in
Egs. (3.11) and (3.17). These filters have the additional properties of being
maximum-entropy and risk-sensitive-optimal filters [25, 26], as well as be-
ing the solution to certain quadratic dynamic games [27]. In this section we
shall develop square-root algorithms for such central filters. As expected,
the observer gains for the central filters turn out to be readily obtainable
from the square-root array algorithms of Theorems 3 and 4.

Let us begin by recalling the central H* a posteriori filter recursions,
of., Eq. (3.11),

Tiyij01 = Fizj; + Ko jr1(yj1 — Hjva Fizy5), (3.48)
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where the desired estimate is given by §;; = L;Z;|;, and where the gain
matrix is given by

Ks’j :PjH;(Ip+HijH;)71. (349)

We will now show how to obtain the above gain matrix from the a posteriori
square-root recursions.

To this end, let us first note that we can rewrite the a posteriori square-
root algorithm of Theorem 3 via the following two-step procedure,

I, 0 H; 1/2 1/2
o] LE R e[ R 0] s
J K;;RY? P2 o
0 P fitte Ly
. 1/2 ) (2) _ 1/2
[ BP? G e =[P o] (3.51)

where 6§-1) is J-unitary, with J = I, ® (=I;) ® I,,, and 9;2) is unitary.
[Note that the above two-step procedure is the H* analog of Algorithm
2.] In the above recursions, we of course have

K;;=P;[ H L} ]R;;, (3.52)
with
I 0 H; * *
Re,j = |: 6) _72[(1 :| —+ |: Lj :|P] [ Hj Lj ] (353)

Now in (3.50), R;/f can be any square-root of R, ;. Let us study the conse-
quences of choosing a lower triangular square-root. To do so, consider the

following triangular factorization of R, ;,
I, 0 I, + .["IJ'.P]'ITZ'}k 0
LiP;H} (I, + H;P;H?)™" I, 0
Ip (Ip +H]P]H]*)_1H]P]L;
0 I, ’

R.,;

J

where we have defined the Schur complement,

A * * *\ — *
—-Aj = —~°I, + L;P;L} — L;P;H; (I, + H; P;H}) 'H; P, L.

Note that the inertia condition on R, ; implies that A; > 0, so that we
may write

R.;=R.’SR!?, (3.54)
with
/2 _ I 0 (I, + H;P;H;)'? 0
e L;iPjH; (I, + H;P;H})™" I, 0 A;ﬂ
(I, + H;P;H*)'/? 0
= Z; o w0\ —k /2 1/2 ’ (355)
L;P;H; (I, + H;P;H}) A;
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and S = [ Iy 7 } . Now the (2, 1) block entry in the post-array of (3.50)
q

is given by
KR = B[ H; L3 )R
= Pj[ Hi(I, + H;P;H})™*/* x ], (3.56)

where x denotes irrelevant entries.
Eqgs. (3.55) and (3.56) now suggest how to compute the desired gain
matrix K ;. Indeed,

-1
(ﬁrst block column of Kf]Rl/Q) : ((1 1) block entry of R1/2) =
PiH; (I, + HjP;H})~ /2. (I, + H;P;H?)~ 1/2

K, ;.
(3.57)
We are thus led to the following result.

Algorithm 3 ( Central H>* A Posteriori Square-Root Algorithm)
The H*> a posteriori filtering problem with level v has a solution if, and
only if, for all j =0,...,i there exist J-unitary (with J = I, ® (—1;) ®1Ip,)
matrices, @5.1), such that

I, O H; 1/2 1/2
P, R 0
[ 0 qu} [Lj } Toel = g me pe | 659
0 p;/? 1 ili
| P G |ef =] leﬁ 0] (3.59)

with R /J lower block triangular, and with G) umtary The gain matriz
K ; needed to update the estimates in the centml filter recursions

Tjij = Fj1&j1pj-1 + K j(y; — HiFj1%;_15-1),  &-1j-1 =0,
s equal to ~
K, ;=K ;(I+H;P;H;)™"/?,

where K ; is given by the first block column of Ky; = Kf7jRi$?, and

I+ H;P;H*)'/? is given by the (1,1) block entry of R'/?. The algorithm
FRNEeY e,
18 initialized with Py = Il.

We can now proceed with a similar argument to find square-root recur-
sions for the central H*> a priori filters. Let us first recall from Eq. (3.17)
that the central H* a priori filter recursions are

i‘j+1 = Fjii’j + Ka,j(yj — Hji‘j), (360)
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where the desired estimate is given by §; = L;%;, and where the gain
matrix is given by

Kaj=F;P;H;(I, + H;P;H}) ", (3.61)

with R

Pj = P; — P;L}(—’I, + L;P;L})""L; P;. (3.62)
We now show how to obtain the above gain matrix from the a priori square-
root recursions,

1y 0 Litp o R 0 0
U H; ! i= K 67]1/2 pL/2
0 EP” G piftes P 0
(3.63)

Note now that,

K,;=F;P;[ L} H; R}, (3.64)
with )
_ - I 0 L; * *
Re,]-_{ L Ip]+{H;]pj[Lj H ). (3.65)

As mentioned earlier, R;/]? in (3.63) can be any indefinite square-root of R,.
Let us, once more, study the consequences of choosing a lower triangular
square-root. To do so, consider the following block lower-diagonal-upper
triangular factorization of the matrix, R, ;,

I 0 7’1, + L P L] 0 I, —7’L;P;Hj
-y ?H;P,L; I, 0 I, + H;P;Hj 0 I,
(3.66)

where we have used the facts that,
H;P;L(—~*I, + L;P;L}) "' = —y *H; P, L},
and, for the Schur complement,
I, + H;P;H; — H;P;L5(—y*1, + L;P;L})""L;P;H; = I, + H; P;H.

Now the inertia conditions on R j require that —y~>I, + L;P;L% < 0 and
I, + HijH]’-‘ > 0, so that we may write,

R.;=R.ZSR!?, (3.67)
with
/2 _ (VI — LB L})'/? 0
e —y 2H;P;L3(y*1, — L;P;L;)Y? (I, + HyP;H;)'/? |’

(3.68)
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and S = [ 1 I }.Now the (2,1) block entry in the post-array of (3.63)
p
is given by
1/2 " . —x/2
K, R/} = Fp[ Ly H )R}/
x y :L;PjH:(I, + H;P;H}) */?
= F.P L* H* A I 2 J5I50g
J J[ J J ] |: 0 (Ip-‘-HijH;)_*/Q
= Fjpj[ X ('7_2L;Ljpj+In)H;(Ip+HjPJ'H;)_*/2 ]
= Fj[ x PH;(I,+H;P;H)*/? ], (3.69)

where in the last step we have used the (readily verified) identity,
Pi(y *LiL;P; + In) = Pj,

and where x denotes irrelevant entries.
Eqgs. (3.68) and (3.69) now suggest how to compute the desired gain
matrix K, ;. Indeed,

-1
(second block column of Kp,le/Q) . ((2, 2) block entry of Rl/-2) =

e e.j
FjP;H? (I, + H; P;H?)~*/* . (I, + H; P;H})~'/? =

a,j+
(3.70)
We are thus led to the following result.

Algorithm 4 (Central H>* A Priori Square-Root Alg.) The H® a
priori filtering problem with level v has a solution if, and only if, for all
Jj=0,...,i there exist J-unitary matrices (with J = (=I;)® I, d 1, & Ip,),
©;, such that

vl 0 L; 1/2
[0 Ip] {Hj Pj 0

1/2
0 F;p}/ G,

R? 0 0
/2 p1/2
Kp,jRe,/j PjJ{I 0
(3.71)
with Ri{; lower block triangular. The gain matriz K, ; needed to update
the estimates in

J

Tjy1 = Fjij + Ko j(y; — Fjz;), &0 =0,

s equal to - 3

Ko j=Ko;(I+H;PH;) ™2,
where K, ; is given by the second block column of K, ; = Kp,ijjQ, and
I+ HjIBjH;.*)l/2 is given by the (2,2) block entry of R;/jz. The algorithm
is initialized with Py = Ilj.
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4 H? Fast Array Algorithms

The conventional Kalman filter and square-root array recursions of Sec. 2
both require O(n®) operations per iteration (where n is the number of
states in the state-space model). However, when the state-space model is
time-invariant (or if the time-variation is structured in a certain way),
there exist fast recursions that require only O(n?) operations per iteration
[8, 9, 10, 28].

In what follows we shall assume a time-invariant state-space model of
the form
{ Tji+1 = FHZ]’-FGU,]', Lo (4 1)
yj = Hzj+vj '

In the H? case, where the {uj,v;} are zero mean independent random
variables, we shall also assume that the covariances of the {u;,v;} are
constant, i.e. ) = @ > 0 and R; = R > 0, for all j. As before, we
are interested in obtaining estimates of some linear combinations of the
states, s; = Ljr;, and, in particular, the filtered estimates, 8;; = L;Z;;,
and predicted estimates, §; = L;&;, that use the observations {y; }/_, and
{yr}i_4, respectively.
Under the aforementioned assumptions, it turns out that we can write

Pj+1 - Pj = MjSMj, for all j, (42)

where M is a n x d matrix and S is a d x d signature matrix (i.e. a diagonal
matrix with +1 and —1 on the diagonal). Thus, for time-invariant state-
space models, Pjy; — P; has rank d for all j and in addition has constant
inertia. In several important cases, d can be much less than n.

One such case is when Py = 0, where, using the Riccati recursion (2.6),
we have

P = GQG*, (4.3)

so that My = GQ'? and S = I,,,. Thus, here, we have d = m, with m
typically less than n.
Another case is when P, = II, the solution to the (steady-state) Lya-
punov equation,
Il = FIIF* + GQG™, (4.4)

in which case from (2.6) it follows that
P, — Py = —FI(R+ HILH*)"'TIF*, (4.5)

so that My = FTI(R 4+ HIIH*)~*/?> and S = —I,. Thus, here, we have
d = p, with p typically less than n.

In anycase, when d < n, propagating the smaller matrices M;, which is
equivalent to propagating the P;, can offer computational reductions. This
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what is done by the following (so-called Chandrasekhar) recursions (see
[29], App. II).
In the conventional fast recursions, one begins with the pre-array

1/2
B HM; (4.6)
K,; FM,

where R?RY? = R.; = R+ HP;H* and K,; = K,;R,*, and tri-
angularlzes the array using a J-unitary matrix ©; where J is given by

I S S . .
[ P g ] The result of this triangularization gives us the various quan-

tities of interest for propagating the Kalman filter recursions.

Algorithm 5 (Fast H? Recursions) The gain matriz K, ; = K, jR, 1/2
necessary to obtain the state estimates in the conventional Kalman ﬁlter

Ej1 = Fi; + Kpj(y; — HZj), 2o =0,
can be computed using

€,

1/2 1/2
{R 1M, }@ - [ Bej 0 (4.7)
K,; FM;

pitt Mjy |7
where ©; is any J-unitary matric (with J = I, ® S) that triangularizes the
above pre-array. The algorithm is initialized with

Reo = R+ HII H", Ko = FILH*R./;,
and

Py — Iy = FII,F* + GQG* — KpoRe 0K} o — Ty = MoSM;.

Thus, once more, the quantities necessary to update the arrays and to
calculate the state estimates are all found from the triangularized post
array.

The validity of the above algorithm can be readily verified by squaring
both sides of the equation,

R HM, A0
- 4.
{Kpfj FM]@ [B c]’ (48

and using the J-unitarity of ©;, to find the entries of the post array. This
leads to,

RYZRI? +H M;SM; H* = AA*, (4.9)
i Be
R ; Piy1—F;

~ J
e

Re jy1
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1/2

e,j+1> and

from which we conclude that A = R

K, jR.? +F M;SM; H* = BA*, (4.10)
h,-’/ N——
FP;H* P11 —F;

~ v

FP;1H*

from which we conclude that B = FP, .1 H *R;;ﬁ = K, jt+1. Finally, we
have
CSC* = FM;SM;F*+ K, ;K, ; — BB*
F(Piy — P)F* + KK — Ky 1 K
= FPiJrlF* + GQG* - K—p’j+1 7;,j+1 — [FPZF* + GQG* - KPJK;’]-]
= P2 — Pipa,

from which we infer that, C' = M.
If, instead of defining M;SM} = Pj41 — P;, we had defined

N;jSyNj = Pjjj = Pj1jj-1, (4.11)

where Pj; = EI; j:E;| j is the filtered state error variance, which satisfies
the recursion,

Pjjj = FPj_1)j 1 F" + GQG" — Ky ;R ; KF j, (4.12)
with Ky ; = PjHR;]I., then it is also possible to obtain the following (so-
called) filtered form of the fast recursions.”
Algorithm 6 (Fast H? Recursions- Filtered Form) If F is invertible,

the gain matriz Ky ; = K'f,jR;]l./Q necessary to obtain the state estimates
in the filtered form of the conventional Kalman filter

Tj; =Fij_1-1 + Kypj(y; — HFZj4)5-1), 2121 =0,

can be computed using

“e,j

1/2 1/2
R HFN; | o _ | Rl 0
K;; FN; J

4.13
Kfjr1 Njpa | (413
where ©; is any J-unitary matriz (with J = I, ® Sy) that triangularizes
the above pre-array. The algorithm is initialized with

% 1/2
R.o=R+HILH*,  K;o=ILH R,
"Note that in this case if F' is nonsingular it can also be shown that Pj 1)1 — Py

has constant inertia, given by the inertia of the signature matrix, Sy, for all j. This follows
from the fact that Pj+1 = FP]‘JF*+GQG*, so that Pj+1 7P] = F(P]‘J 7Pj,1|]‘,1)F*.
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and

FYPi—Io)F " =Mo+F 'GQG"F " —K;oRe 0K} o—F 'TIoF " = NoS;N;.

Note that compared to the square-root formulas, the size of the pre-
array in the fast recursions has been reduced from (p+n) x (p+mn+m) to
(p+n)x (p+d) where m and p are the dimensions of the driving disturbance
and output, respectively, and where n is the number of the states. Thus
the number of operations for each iteration has been reduced from O(n?)
to O(n%d), with d typically much less than n.

5 H™ Fast Array Algorithms

In this section we shall derive the H* counterparts of the fast H? Chan-
drasekhar recursions of the previous section. We shall essentially see that,
when the underlying state-space model is time-invariant, all the arguments
necessary for the development of these algorithms go through, provided
that we consider the geometry of indefinite spaces. We first give the gen-
eral recursions, and then specialize them to obtain the central filters.

5.1 The General Case

Consider, once more, the time-invariant state-space model (4.1), and the
corresponding H° Riccati recursion (3.7). Suppose that the matrix Il can
be chosen such that P; — Il has low rank. In other words,

Py — Iy = FIlGF* + GG* — KpoRe oK} — o = MoSMg, (5.1

where My is a n x d matrix (typically d < n) and S is a d X d signature
matrix, and, of course,

K,;=FP;[ H* L* |R]}

€,J 7

Re,j:{fop _YOQIQ ]J{JZ}PJ-[H* L*].
(5.2)

We shall presently show by induction that under the assumptions of a time-
invariant state-space model, if the a posteriori H* filtering problem has a
solution for all j, then P;1; — P; has rank d and constant inertia for all j
and that we can actually write Pjy1 — P; = M;SM;.

Consider the following pre-array

1/2 H
v (7]
K, ; FM;

)

; (5.3)
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which is the obvious extension of the pre-array in (4.7) to the indefinite-
metric setting of the H* a posteriori filtering problem. Now the H> a
posteriori filtering problem will have a solution if, and only if, all leading
submatrices of R and R, ; (or Re j+1, for that matter) have the same
inertia. In view of Lemma 1, this implies that the H> a posteriori filtering
problem with level 7 will have a solution if, and only if, there exists a
J-unitary matrix ©; that triangularizes (5.3) where

I, 0
J = 0 -I, . (5.4)
S
Therefore we can write
1/2 H ,
ftes {L}Mf @z[é g] (5.5)
K, ; FM;

To identify the elements A, B and C in the post-array we square both sides
of (5.5) and use the fact that ©; is J-unitary. Therefore

1/2 H . /2 =
Re,j L M; 0.70* Re,j KPJ'
_ 2| My[ HY L*] M;F*
Kp’j FM] :VJ J J (56)
A 0 7 A* B*
| B C 0o C* |
Equating the (1, 1) blocks in (5.6) yields,
I, 0 « _ pirz| I, O /2 H * T
A[ ; _Iq]A = RV { . }Re,j o[ T onsar [ 1o 1)
H * *
= Re,j+|: I :|(Pj+1—Pj)[H L ]
H
- RJ‘*{L Py [ H L*]
= Rejt1-
Therefore A is an indefinite square-root of R ji1,
A=R/Z. (5.7)
Equating the (2, 1) blocks in (5.6) yields,
I = I * * * *
B[ v —OI,, ]A* — K,,,j[ 7 _qu RY? 4 FMSM; [ B L* ]

= KpjRej+F(Pj1—P) [ H* L* ]
= FP[H* L* |+ F(Pj. —P) [ H* L*]
= FP[H* L*].
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Therefore

B = FPu, [ H* L* A

* * —* I 0 7%
FPi [ H L ]Re,jfl[ 0 — ]:Kp,j+1- (5.8)

Equating the (2,2) blocks in (5.6) yields

* I 0 * [ I 0 [ % * Tk
cscC +B|: 6) _Iq :|B :Kp7j|: 6) _Iq :|Kp7j+FMjSMjF.

Therefore
CcSC* + Kp’j+1R6’j+1K;’j+1 = Kp,jRe’jK;J + F(Pj+1 - Pj)F*.
We can now write

cscr

FPj F* — Ky jr1Re j11 K} 1 + GG”
—(FPF* — Ky jRe ; K, ; + GG¥)
= Pjy2— Pjya,

and finally

C =M. (5.9)
Note that our derivation of C also shows that if P, — Py = MySM{ then
Pj+1 — Pj = ]\41'5’]\4])-k for all ]

We have thus established

H
w5 ] ]e, [ mi o
_ . M )
KpJ' FM] J p,j+1 J+1

from which we can now give the following fast Chandrasekhar version of
the parametrization of all H* a posteriori filters.

Theorem 5 (Fast H>* A Posteriori Recursions) The H* a posteri-
ori filtering problem with level v has a solution if, and only if, all leading
submatrices of

— IP 0 — IP 0 H * *
R—|: 0 _72]-(1:| and R6’0—|: 0 _'72Iq :|+|: L :|H[)|:H L ]

have the same inertia, and if for all j = 0,...,i there exist J-unitary
matrices (with J = I, & (—1;) & S), ©;, such that

1/2 H 1/2

: M; :

€,j L :| ] G)j — e,]+11/2 0 ] (5_10)
K,;R*  FM; Kpj1Blejpr Mjn

e,j
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where the algorithm is initialized with, R. o, Kpo = FIlo [ H* L* ] R;é,
and

Py — Iy = FIlGF* + GQG* — KpoRe oKy — o = MoSMg.  (5.11)

If this is the case, then all possible H> a posteriori filters, ;1 ; = Fy (Yo, - --Yj),
are given by any choices that yield,

k N * R
Z[ ?’j_fij”ij } R;;{ :yj_fij”ij ]zo, 0<k<i
= L Sili — Li# oL 851 — L

where & satisfies the recursion,
N . y; — H;&; .
»"fj+1=Fj$j+K,j[ Y

- < Tog = 0.
855 — Lj@;

In the H> a priori filtering problem, we need instead to start with the
pre-array,
R'/? M;
&d H |77 (5.12)
KPJ'Relz,/jz FM;

where now

K,;=FP;[ L* H* |R.!

’ e

2
- I 0 L * *
R, ; ::{ 0 ! I, ]4'{ H }l%'['L H ]'
(5.13)

Note that the only difference with the a posteriori case is in the order of
the matrices {H, L}.

Proceeding with an argument similar to what was done in the a posteriori
case, we can show the following result.

Theorem 6 (Fast H> A Priori Recursions) The H* a priori filter-
ing problem with level v has a solution if, and only if, all leading submatrices

2 2
_ - Iq 0 _ - Iq 0 L * *
R—[ I,,} and Re,o_[ SR

have the same inertia, and if for all j = 0,...,¢ there exist J-unitary
matrices (with J = (—I;) ® I,  S), ©;, such that

RL/? [ L }M]’ 1/2 0

e,j+1

e,j H
K,; 1R, M,
pj+14te 41 Jj+1

1/2
KPJRe,/j FM;

0, =

] (5.14)
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where the algorithm is initialized with, R. o, Kpo = FIlo [ L* H* ] R;é,
and

Py — Ty = FIIyF* + GQG* — K, oRe 0K} — Ty = MoSM.  (5.15)

If this is the case, then all possible H> a priori filters, §; = Fr (Yo, ---Yj—-1),
are given by any choices that yield,

éj_LJ'”}er—l.{gj_Lj”}j]>o 0<k<i
jz:;[yj—Hji“j 9y —Hjz; | =7 T

where & satisfies the recursion,

Sj — le‘j

'i'j-i-l = Fj'i'j + KPJ’ [ Yy — Hjii’j

|, d=o

Note that compared to the H square-root formulas, the size of the pre-
array in the H* fast recursions has been reduced from (p + ¢+ n) x (p +
g+n+m)to (p+q+n)x(p+q+d) where m, p and ¢q are the dimensions
of the driving disturbance, output and states to be estimated, respectively,
and where n is the number of the states. Thus the number of operations
for each iteration has been reduced from O(n?) to O(n%d) with d typically
much less than n.

As in the square-root case, the fast recursions do not require explicitly
checking the positivity conditions of Theorems 1 and 2 — if the recursions
can be carried out then an H* estimator of the desired level exists, and if
not, such an estimator does not exist.

5.2 The Central Filters

The preceding section gave fast versions of all possible H* a posteriori
and a priori filters. Here we shall specialize these recursions to the central
a posteriori and a priori filters. We shall show that the observer gains for
these filters can be obtained from the post-arrays of Theorems 5 and 6,
provided we insist on (block) lower triangular square-roots for Ri’/f. The
development closely follows that of Sec. 3.5 and uses the important facts
(established in Sec. 3.5) that if R;/jz is lower triangular, then Kj ;, the gain
matrix for the central a posteriori filter, is given by,

e,J
(5.16)
and K, ;, the gain matrix for the central a priori filter, is given by,

-1
Ks;= (ﬁrst block column of Kf,jRi{]?) : ((1, 1) block entry of Rl/g) ,

-1
K. ;= (second block column of Kp,le/z) : ((2, 2) block entry of Rl/.z) .

e,J €,

(5.17)
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The following results are now readily establishable. (The proofs are straight-
forward and will be omitted for brevity.)

Algorithm 7 (Fast Central H* A Posteriori Recursions) If F is in-
vertible, the H* a posteriori filtering problem with level v has a solution
if, and only if, all leading submatrices of

— IP 0 — IP 0 H * *
R—|: 0 —’)/2Iq:| and Re’0—|: 0 _72[(1 :|+|: L :|H[)|:H L ]

have the same inertia, and if for all j = 0,...,i there exist J-unitary
matrices, ©;, (where J =1, ® (—1;) & Sy) such that

1/2 H 1/2
Re,j L FNj R Re,/j-i-l 0
o 0= | (5.18)
KR!/ FN; rifte i Niwa

with R;/]? and Ri{ja_l block lower triangular. The algorithm is initialized
with, Reo, Kfo=1o[ H* L* | R_§, and

FYP—Mo)F " =Mo+F 'GQG"F " —K;oRe 0K} o—F 'TIgF " = NoS;N;.

The gain matriz K, ; needed to update the estimates in the central filter
TeCUrsions

Tj; = Fja2j 121 + Ks j(yj — HiFj_12j1)-1), 2121 =0,

s equal to
K,;=K,;(I+H;P;H;)""/?,

1/2

e » and

where K ; is given by the first block column of K;; = Ky ;R
I+ I-I]'P]-I-I;-*)l/2 is given by the (1,1) block entry of Ri’/f.

Algorithm 8 (Fast Central H>* A Priori Recursions) The H* a pri-
ori filtering problem with level v has a solution if, and only if, all leading
submatrices of

_ A2 _ A2
R:[ 7l ?} and Re70:[ 7l 0}+[L]HO[L* H* ]
p

0 0 I, H
have the same inertia, and if for all j = 0,...,¢ there exist J-unitary
matrices, ©;, (where J = (=1I;) ® I, & S) such that
1/2 L , 1/2
fie [ H } Mile, = B 0 (5.19)
1/2 J K, ; Rl/.2 M
KPJRe,j FM] pjt+1lite,j+1 J+1
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with R;/]? and Ri{ja_l block lower triangular. The algorithm is initialized

with, Re, Kpo = FIlo [ L* H* | R, and
Py 1y = FIIoF* + GQG™ — KpoRe oK, o — Ilo = MoSMj.
The gain matriz K, ; needed to update the estimates in
Tjp1 = Fjzj + Ko j(y; — FjZj), 20 =0,

is equal to B .
K, ; = Ko (I + H;P;H}) /2,

where K, is given by the second block column of K, ; = KPJ-RI/2 and

e,j ’
(I+ I-Ijlf’jl-I;.*)l/2 is given by the (2,2) block entry of R;/f.

6 Conclusion

In this paper, we developed square-root and fast array algorithms for the
H® a posteriori and a priori filtering problems. These algorithms involve
propagating the indefinite square-roots of the quantities of interest, and
have the interesting property that the appropriate inertia of these quantities
is preserved. Moreover, the conditions for the existence of the H° filters
are built into the algorithms, so that filter solutions will exist if,and only
if, the algorithms can be executed.

The conventional square-root and fast array algorithms are preferred be-
cause of their better numerical behaviour (in the case of square-root arrays)
and their reduced computational complexity (in the case of the fast recur-
sions). Since the H™ square-root and fast array algorithms are the direct
analogs of their conventional counterparts, they may be more attractive for
numerical implementations of H filters. However, since J-unitary rather
than unitary operations are involved, further numerical investigation is
needed.

Our derivation of the H* square-root and fast array algorithms demon-
strates a virtue of the Krein space approach to H* estimation and con-
trol; the results appear to be more difficult to conceive and prove in the
traditional H*° approaches. We should also mention that there are many
variations of the conventional square-root and fast array algorithms, e.g.
for control problems, and the methods given here are directly applicable
to extending these variations to the H setting as well. Finally, the al-
gorithms presented here are equally applicable to risk-sensitive estimation
and control problems, and to quadratic dynamic games.
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A Unitary and Hyperbolic Rotations

In this appendix we review three families of elementary (unitary and hy-
perbolic) transformations that can be used to annihilate selected entries
in a vector: the Householder, Givens, and fast Givens transformations. For
more details, and historical background, see [30] (Ch. 18). Special care
needs to be taken when dealing with complex-valued data as compared to
real-valued data, as we show in the sequel.

A.1 FElementary Householder Transformations

Suppose we wish to simultaneously annihilate several entries in a row vector
via a unitary transformation, say to transform an n—dimensional vector

.’,L'Z[Z’l Ty ... Z’nfl]

to the form
[oz 0 0 0],

where, for general complex data, the resulting e may be complex as well.

One way to achieve this transformation is to employ a so-called House-
holder reflection ©, which takes a row vector x and aligns it along the
direction of the basis vector

More precisely, it performs the transformation

[ml Ty ... Tp_i ]9: a eg. (A.1)
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Since, as we shall promptly verify, the transformation © that we shall em-
ploy is not only unitary but also Hermitian, we can be more specific about
the resulting a. In particular, it follows from (A.1) that the magnitude of

a must be equal to ||z||, i.e., |a|] = ||z||. This is because
r00*z* = [|z||* = |of*.
——
I

Moreover, it also follows from (A.1) that
zOz* = azxy .

But since ©® will be Hermitian, we conclude that z®z* is a real number
and, hence, az] must be real as well.

This means that by rotating a vector x with a unitary and Hermitian
transformation © we can achieve a post-array of the form [ a 0 ... 0 ] ,
where o will in general be a complex number whose magnitude is the
norm of ||z|| and whose phase is such that axz} is real. For example, a =
+||z||e’?=1 are possible values for a, where ¢,, denotes the phase of ;.
[For real data, & = £||z|| are the possible values for a.]

Now, assume we define

*

g9°g
99*

O=I-2

where g=z+aeg, (A.2)

and « is the complex number chosen above, i.e., @ = £||z||e/?=1. It can be

verified by direct calculation that, for any g, © is a unitary matrix, i.e.,
" =1=0"0.

It is also clearly Hermitian.

Lemma 2 (Complex Householder Transformation) Given a row vec-
tor x with leading entry x1, define © and g as in (A.2) where o is any
complex number that satisfies the following two requirements: |a| = ||z|
and axy is real. Then it holds that

0 = —aeg .

That is, x is rotated and aligned with eqy; the leading entry of the post-array
s equal to —a.

(Algebraic) proof: We shall provide a geometric proof below. Here we
verify our claim algebraically. Indeed, direct calculation shows that

llz||? + a*z1 + ax} + |af?,

2||z||* + 2az7 since |a|? = ||z||* and a*z; = azx}.

99"
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Likewise,

zg*g = z||z|]® + allz]|®eo + @*z17 + |af*z1€0 ,
= aflzl]” + allz]]*eo + a*z17 + a(a*z1 )eo
= a:||:1:||2 +a||a:||2eo+a*x1x+a(axf)eg ,
zgg" = 2zl|z]]* + 2027z,
and we obtain

zgg” —2xg*g _ —(2||z|* + 20a7)aey

7S ol + 2027 O
|
A choice for «, and hence g, is
g=1x+ e ||z e . (A.3)
It leads to
0 = Fel%=1||z|eo. (A.4)

The choice of the sign in (A.4) depends on the choice of the sign in the
expression for g. Usually, the sign in the expression for g is chosen so as
to avoid a vector g of small Euclidean norm, since this norm appears in
the denominator of the expression defining ©. [In the real case, this can be
guaranteed by choosing the sign in the expression for g to be the same as
the sign of the leading entry of the row vector z, viz., the sign of z;.]

A Geometric Derivation

The result of the above lemma has a simple geometric interpretation.
Given a vector z, we would like to rotate it and align it with the vector
eo.This rotation should keep the norm of z unchanged. Hence, the tip of
the vector = should be rotated along a circular trajectory until it becomes
aligned with eg. The vector aligned with eq is equal to aeg. Here, as indi-
cated in Figure 2, we are assuming that the rotation is performed in the
clockwise direction. The triangle with sides x and aey and base g = z —aeg
is then an isosceles triangle.

We thus have aey = x — g. But we can also express this in an alternative
form. If we drop a perpendicular (denoted by g*) from the origin of z to
the vector g, it will divide g into two equal parts. In fact, the upper part
is nothing but the projection of the vector = onto the vector g and is thus
equal to (z,g) ||g|]| 2 g. Therefore,

*
_ Qﬂ],
99*

(€]

aeg =z — 2(z, g)|lgl| ’g = = — 229%(gg*) 'y == {I
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FIGURE 2. Geometric interpretation of the Householder transformation.

which leads to the Householder transformation of (A.4).

Note that a similar argument holds for the choice ¢ = aep + z. The
Householder transformation reflects the vector  across the line g* to the
vector aeg. So it is often called a Householder reflection.

Triangularizing a Matrix

A sequence of Householder transformations of this type can be used to
triangularize a given m x n matrix, say A. For this we first find a trans-
formation ©¢ to rotate the first row to lie along eg, so that we have A©q
of the form (where x denotes entries whose exact values are not of current
interest):

oo . 0 0 0 0
A@O = X
X Al
. X -

Now apply a transformation of the type

01

where ©; rotates the first row of A; so that it lies along ey in an (n —
1)-dimensional space, and so on. This so-called Householder reduction of
matrices has been found to be an efficient and stable tool for displaying rank
information via matrix triangularization and it is widely used in numerical
analysis (see, e.g., [31, 5, 30]).
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A.2  Elementary Circular or Givens Rotations

An elementary 2 x 2 unitary rotation © (also known as Givens or circular
rotation) takes a 1x2row vectorz = [ a b ] and rotates it to lie along the
basis vector eg = [ 1 0 ] . More precisely, it performs the transformation

[a b]O=[a 0], (A.5)

where, for general complex data, a may be complex as well. Furthermore, its
magnitude needs to be consistent with the fact that the pre-array, [ a b ] ,
and the post-array, [ @ 0 |, must have equal Euclidean norms since. In
other words, o must satisfy

o] = Vlal? + [bf -

An expression for © that achieves the transformation (A.5) is given by

1 1 —p :| b
0=—— N here p=—-, a#0. A6
J1+mP[p 1]V P o (4.6)

In the trivial case a = 0, we simply choose © to be the permutation

matrix,
0 1
e_[l 0].

We finally note that, in the special case of real data, a general unitary
rotation as in (A.6) can be expressed in the alternative form:

o[ 7]

where the so-called cosine and sine parameters, ¢ and s, respectively, are
defined by

1 p
C= —F——— , § = —(———— .
V1+|pP V1+|pl?

This justifies the name circular rotation for ©, since the effect of © is
to rotate a vector z along a circle of radius ||z||, by an angle 6 that is
determined by the inverse of the above cosine and/or sine parameters,
6 = tan~" p, in order to align it with the basis vector [ 1 0 ]. The trivial
case a = 0 corresponds to a 90 degrees rotation in an appropriate clockwise
(if b > 0) or anti-clockwise (if b < 0) direction.

Triangularizing a Matrix

Matrix triangularization can also be effected by a product of Givens
transformations, each of which introduces a zero in a particular location.
For example, suppose that

r=1[. ... ,25..,
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and we wish to null out z; using «;. Then let p = x;/x;, and define

1
1
1 —p
1+(p|? V1tlel?
1
0= 1 ,
p* 1

Except for the p terms, all off-diagonal entries are 0. Then we can see that
0 =[..,qa,...,0,..].

where the entries indicated by ... are arbitrary and unchanged by O, while
the resulting a will be of the general form

a = =+ el% a:?—l—a:?

To systematically triangularize a p X p matrix A, apply a sequence of p —1
such transformations to zero all entries in the first row of A expect for
the first element. Proceed to the second row of the thus transformed A
matrix and apply a sequence of p — 2 transformations to zero all entries
after the second one. The first row has a zero in every column affected by
this sequence of transformations, so it will be undisturbed. Continuing in
this fashion for all rows except the last one, we will transform A to lower
triangular form.

In general, the Givens method of triangularization requires more com-
putations than the Householder method. It requires about 30% more mul-
tiplications, and it requires one scalar square root per zero produced as
opposed to one per column for the Householder method. However, the
Givens method is more flexible in preserving zeros already present in the A
matrix and can require fewer computations than the Householder method
when A is nearly triangular to begin with (see [32]). Moreover, there is a
fast version, presented next, that uses 50% fewer multiplications.

A.8  Fast Givens Transformations

In [32] it is also shown how proper prescaling can be used to avoid arith-
metic square roots in the Givens algorithm. Moreover, the resulting algo-
rithm uses half as many multiplications. The idea is to introduce weighted
norms, so that the rotational invariance is expressed as

pDpp™ = qDyq" , (A7)
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where {p, ¢} are given 1x2 row vectors and {D,,, D, } are diagonal weighting
matrices with positive elements. D, can be arbitrary and D, is selected so
that there are no arithmetic square-roots in the actual transformation.

We will not present the details of the fast Givens transformation here.
Interested readers can refer to [32]. We should remark that there are several
variants of such fast rotations, including some that avoid both arithmetic
square-roots and divisions (see, e.g., [33]). These modified Givens trans-
formations tend to suffer from possible overflow/underflow problems — so
called self-scaling fast Givens rotations have also been studied.

A.J Hyperbolic Transformations

In H* array algorithms, as well as in fast (Chandrasekhar) array algo-
rithms, it is necessary to use hyperbolic transformations, rather than uni-
tary transformations. We therefore exhibit here the necessary modifica-
tions.

Elementary Hyperbolic Rotations

An elementary 2 x 2 hyperbolic rotation © takes a row vector r =
[ a b ] and rotates it to lie either along the basis vector ep = [ 1 0 ]
(if |a| > |b]) or along the basis vector ey = [ 0 1 ] (if |a|] < |b]). More
precisely, it performs either of the transformations:

[a b]O=[a 0] if |a| > |b] (A.8)

[a b]O=[0 a] if |a| <|b (A.9)
where, for general complex data, @ may be complex as well. Furthermore, its
magnitude needs to be consistent with the fact that the pre-array, [ a b ] ,
and the post-array, [ @ 0 ], must have equal Euclidean .J—norms, e.g.,
when |a| > |b] we get

« | a* a*
[a b]0J0O [b*}:[a O]J{ ' ]
J

where

J:H _01 } =(1o-1).

By the J—norm of a row vector x we mean the indefinite quantity zJx*,
which can be positive, negative, or even zero. Hence, for |a| > |b|, a must
satisfy

> = laf* - [b]*,

and its magnitude should therefore be equal to

o] = Vlal? = [bf* -
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When |b] > |a| we should get

o] = Vb —laf?.

An expression for a J—unitary hyperbolic rotation © that achieves (A.8)
or (A.9) is given by

1 _
0= —— [ L ”} where p="2, if [a| > o (A.10)
ViuP L 1 a
1 1 —p a .
0 =— . here p* = —, if |a| < |b A1l
S| e 7] e s =F e <n

For real data, a general hyperbolic rotation as in (A.10) or (A.11) can
be expressed in the alternative form:

ch —sh
0= [ —sh ch }

where the so-called hyperbolic cosine and sine parameters, ch and sh, re-
spectively, are defined by

Ch=——— , sh=——t—.
1—1pl 1L —1p|

This justifies the name hyperbolic rotation for ©, since the effect of O is to
rotate a vector = along the hyperbola of equation

v® —y* = laf* - |bf?,

by an angle # that is determined by the inverse of the above hyperbolic
cosine and/or sine parameters, § = tanh ™" p, in order to align it with
the appropriate basis vector. Note also that the special case |a| = |b| cor-
responds to a row vector # = [ a b | with zero hyperbolic norm since
la|?> — |b|* = 0. It is then easy to see that there does not exist a hyperbolic
rotation that will rotate x to lie along the direction of one basis vector or
the other.

There exist alternative implementations of the hyperbolic rotation © that
exhibit better numerical properties. Here we briefly mention two modifica-
tions.

Mixed Downdating

Assume we apply a hyperbolic rotation © to a row vector [ Ty ], say

[z 0 ] = é[ 1 _’1’}. (A.12)

o L
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Then, more explicitly,

1
v = ———[z—p"y], A13
1_|p|2[ "yl (A.13)

1
y 1_|p|2[ pe +y] (A.14)

Solving for z in terms of z; from the first equation and substituting into
the second equation we obtain

y= —pr1 + V1-|pPy. (A.15)

An implementation that is based on (A.13) and (A.15) is said to be in
mixed downdating form. It has better numerical stability properties than
a direct implementation of © as in (A.12) — see [34].

In the above mixed form, we first evaluate z; and then use it to compute
y1. We can obtain a similar procedure that first evaluates y; and then uses
it to compute z;. For this purpose, we solve for y in terms of y; from (A.14)
and substitute into (A.13) to obtain

1= —p'yr + V1-|pPz. (A.16)

Eqgs. (A.14) and (A.16) represent the second mixed form.

The OD Method

The OD (Orthogonal-Diagonal) procedure is based on using the SVD
of the hyperbolic rotation @. Assume p is real and write p = b/a, where
|a] > |b]. Then it is straightforward to verify that any hyperbolic rotation
of this form admits the following eigen-decomposition:

a+b
1 11 azs O 1 -1]71 a T
0=— — 2 QD
ALl e 1] #emen
(A.17)

where the matrix
1 1 1
o=l 1)
is orthogonal (QQT = I), and T denotes transposition.
Due to the special form of the factors (@, D), a real hyperbolic rota-
tion, with |p| < 1 can then be applied to a row vector [  y | to yield

[ 1 Y1 ] as follows (note that the first and last steps involve simple ad-
ditions and subtractions):
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1 1
[« v )ela w]| g
[m/l yll]<_|:xl yl] % Z_J_rg 0
0 1 Ja=b
2 a+b

(o w el | T

This procedure is numerically stable, as shown in [35]. An alternative so-
called H-procedure is also described in the same reference. It is costlier than
the OD method, but is more accurate and can be shown to be “forward”
stable, which is a very desirable property for finite precision implementa-
tions.

When p is a complex number, the unitary matrix () becomes complex.
If we now write p = b/a, then |p| = |b|/|a| and |a| > |b], and we obtain

. 1 1 la|+1b]

_ . D= la]—[b]
“ V2 | _lals lalb lal—1?]
a 0] a 0] la|+]b|

Hyperbolic Householder Transformations

Let J be an n x n signature matrix such as

_| L 0 _
J—{O _[q} , P+q=n.

We are now interested in a J—unitary Householder transformation © that
takes a 1 x n row vector z and aligns it either along the basis vector
ey = [ 1 0 ] (if zJz* > 0) or along the basis vector e,_; = [ 0 1 ]
(if zJz* < 0).

Hence, we require © to perform either of the transformations

O =tae if zJz* >0 (A.18)
0 =tae,—y if xJzr* <0, (A.19)

where, for general complex data, the resulting a may be complex as well.
When zJx* > 0, we define

Jg*g
gJg*

©O=1-2 where g=z+aep, (A.20)

and « is a complex number that satisfies |a|? = zJz* and az} is real. It
can be verified by direct calculation that © is a J—unitary matrix, i.e.,

0JO" =J=0"J0.
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When zJz* < 0, we use the same expression for © but with
g=zr+ae, 1, (A.21)

and a a complex number that satisfies |a|? = —zJz* and ax}_, is real.

Lemma 3 (Complex Hyperbolic Householder Transformation) .
Given a row vector x with leading entry x1 and xJx* > 0, define © and
g as in (A.20) where « is any complex number that satisfies the following
two requirements (see below): |a| = VaJx* and ax} is real. Then it holds
that
0 = —aeg .

That is, x is rotated and aligned with eqy; the leading entry of the post-array
s equal to —a.

For a vector x that satisfies instead xJz* < 0, and with trailing en-

try n—1, we choose g as in (A.21) where « is any complex number that
satisfies: |a| = /|zJx*| and ax?,_, is real. Then it holds that

20 = —aep_1 .

(Algebraic) proof: We prove the first statement only since the second one
follows from a similar argument. Direct calculation shows that

gJg® = 2zJz" + 2az],
zJg'g = wz(xJz")+a(zJz")eg + a*z1x + alax])ep ,
zgJg* = 2z(xJz")+ 2axiz .
Therefore,
xgJg* —2zJg*g
O0=—"""—= = — —qep .

gJg*

Geometric Derivation

The geometric derivation presented earlier for Householder transforma-
tions still applies provided we use “J-inner products”, i.e., provided we
interpret

(z,9); =xJg".
Then we can write, for example, when ||z||; = VzJz* > 0,

~ Jg"g
-2 P9 =w(l-2
Faeg =z —2(x,9)5 |97 9 a:< ng*) ’

where
A
g=xEtaep.

Table 1 collects the expressions for the several rotations that we have con-
sidered in the earlier discussion.
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TABLE 1. Unitary and hyperbolic rotations.

pr=1%,b#0, |a <b].

Rotation Expression Effect
Circular 0= \/JT { pl* _f ] : [a b]O=]+e\/laP+ B> 0].
or Givens pzs,a#o.
. 0 1
Permutation @:{1 0],@-0 [0 b]O=[Db 0].
Hyperbolic 1| 0= —L— [_lp A } [a b]0=] eite /AP —ToF 0].
p=2,a#0, |a > b].
Hyperbolic IT || © = ﬁ [ _lp* _f } , | [a b]O=[0 Ze/? /2 —]a? ].

zJz* < 0.

Unitary 0=1I,-2 Z;f, [ 2 Tn—1 | © = Fel?=1||z|eo.
Householder g=1z £ el%1||z| ep.
Hyperbolic O=71-2 ﬁ;f, [ 2 Tno1 | O = Fel?=1\/zJz*|eo,
Householder 1 g=2x £ el \/m €0, ep = [ 1 0 0 ] .

xJx* > 0.
Hyperbolic 0O=I-2 ﬁ;;‘f, I Tno1 | O = FelPen V]zTz* e, 1,
Householder IT || g =z £ A \/m €n_1, | En_1 = [ 0 0 1 ] .




