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ABSTRACT Currently� the preferred method for implementing H� esti�
mation algorithms is what is called the array form� and includes two main
families� square�root array algorithms which are typically more stable than
conventional ones� and fast array algorithms which� when the system is
time�invariant� typically o�er an order of magnitude reduction in the com�
putational e�ort� Using our recent observation that H� �ltering coincides
with Kalman �ltering in Krein space� in this paper we develop array algo�
rithms for H� �ltering� These can be regarded as natural generalizations of
their H� counterparts� and involve propagating the inde�nite square�roots
of the quantities of interest� The H� square�root and fast array algorithms
both have the interesting feature that one does not need to explicitly check
for the positivity conditions required for the existence of H� �lters� These
conditions are built into the algorithms themselves so that an H� esti�
mator of the desired level exists if� and only if� the algorithms can be
executed� However� since H� square�root algorithms predominantly use J�
unitary transformations� rather than the unitary transformations required
in the H� case� further investigation is needed to determine the numerical
behaviour of such algorithms�

�This work was supported in part by DARPA through the Department of Air Force
under contract F���������	������P����	 and by the Joint Service Electronics Program
at Stanford under contract DAAH������G����
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� Introduction

Ever since its inception in ����� the celebrated Kalman �lter has played a
central role in estimation� The Kalman �lter was �rst expressed as a recur	
sive algorithm which required the propagation of a certain Riccati recur	
sion� However� for several reasons� current implementations of the Kalman
�lter are most often expressed in 
what is called� an array form� and do
not propagate this Riccati recursion directly�
The �rst array forms for the Kalman �lter are called the square	root array

algorithms and were devised in the late �����s �� �� ��� These algorithms
are closely related to the 
so	called� QR method for solving systems of
linear equations �� �� �� ��� and have the properties of better conditioning�
reduced dynamical range� and the use of orthogonal transformations� which
typically lead to more stable algorithms�
Furthermore for constant systems� or in fact for systems where the time	

variation is structured in a certain way� the Riccati recursions and the
square	root recursions� both of which take O
n�� elementary computations

�ops� per iteration 
where n is the dimension of the state	space�� can
be replaced by more e�cient fast recursions� which require only O
n��
�ops per iteration �� �� ���� These recursions are analogous to certain
equations invented in ����	�� by the astrophysicists Ambartsumian ���
and Chandrasekhar 
see ���� The resemblance is much more remote in the
discrete	time case� though the name was carried over 
see �� ��� ����� These
algorithms are also closely related to the concept of displacement structure
��� ����
The conventional Kalman �lter 
and its variants� are H�	optimal esti	

mators in the sense that they minimize the least	mean	square estimation
errors� Recently� on the other hand� there has been growing interest in
worst	case� or H�� estimation where the goal is to minimize 
or� in the
suboptimal case� bound� the worst	case energy gain from the disturbances
to the estimation errors 
see e�g�� ��� ��� ��� ����� The rationale for consid	
ering H� estimation is that� unlike the H� case� the resulting estimators
will have more robust performance in the face of model uncertainty and
lack of statistical knowledge on the exogenous signals�
The resultingH� estimators involve propagating a Riccati recursion and

bear a striking resemblance to the conventional Kalman �lter� In a series of
papers ��� ���� we have recently shown that H� �lters are indeed Kalman
�lters� provided we set up estimation problems� not in the usual Hilbert
space of random variables� but in an inde�nite	metric 
or so	called Krein�
space� This observation leads to a uni�ed approach to H� and H� theory
and has various further rami�cations� One major bonus of this uni�cation
is that it shows a way to apply to the H� setting many of the results
developed for Kalman �ltering and LQG control over the last three decades�
One immediate fall	out is that it allows one to generalize the square	root

and fast array algorithms of H� estimation to the H� setting� This is the
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topic of the current paper� The hope is that the resulting H� array algo	
rithms will be more attractive for actual implementations of H� �lters and
controllers� As we shall see� the H� array algorithms have several inter	
esting features� They involve propagating 
inde�nite� square	roots of the
quantities of interest and guarantee that the proper inertia of these quan	
tities is preserved� Furthermore� the condition required for the existence
of the H� �lters is built into the algorithms � if the algorithms can be
carried out� then an H� �lter of the desired level exists� and if they cannot
be executed then such H� �lters do not exist� This can be a signi�cant
simpli�cation of the existing algorithms�
The remainder of the paper is organized as follows� The conventional

square	root array algorithms are introduced in Sec� � along with some of
their properties� In Sec� � we begin the development of the H� square	
root array algorithms and mention why they are natural extensions of their
conventional counterparts� We initially encounter some di�culties in gen	
eralizing these arrays to the Krein space setting� and in order to alleviate
them we then invoke the concept of inde�nite square	roots� and study the
inertia properties of the Gramian matrices in the H� �ltering problem in
some detail� These inertia properties are related to the triangularization of
matrices via J	unitary transformations and are crucial for the development
of the H� array algorithms� Finally� the general form of the H� a pos	
teriori and a priori �lters are given in Sec� ��� and the 
so	called� central
�lters in Sec� ����
The conventional fast recursions� along with several of their properties�

are given in Sec� �� Sec� ��� extends these recursions to the H� setting�
and Sec� ��� gives the corresponding central H� �lters�
The Appendix deals with the elementary unitary and hyperbolic trans	

formations that are needed for the implementation of H� and H� array
algorithms� In particular� the three families of Householder� Givens� and
fast Givens transformations are studied�
In closing this introduction we should note that there are many variations

to the conventional square	root and fast array algorithms� of which only
a few have been considered here� In particular� there are those that arise
in �nite	horizon control problems� However� the approach adopted here is
of su�cient generality that it should allow a reader to extend any other
variation of these algorithms to the H� setting�
A brief remark on the notation� To avoid confusion between the various

gain matrices used in this paper� we shall employ the following convention�
Kp�i will denote the gain matrix in the usual Krein space� or conventional�
Kalman �lter�Kf�i will denote the gain matrix in the corresponding �ltered
form of the Kalman �lter� and Ks�i and Ka�i will denote the gain matrices
in the H� a posteriori and a priori �lters� respectively�
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� H
� Square�Root Array Algorithms

In state	space estimation problems we begin with a 
possibly� time	varying
state	space model of the form�

xj�� � Fjxj �Gjuj � x�
yj � Hjxj � vj


����

where Fj � Cn�n� Gj � Cn�m and Hj � Cp�n� and where the fuj � vjg are
disturbances whose nature depends on the criterion being used� and where
the fyjg are the observed outputs� We are typically interested in obtaining

estimates of some given linear combination of the states� say si
�
� Lixi


Li � Cq�n�� and� most frequently� �ltered and predicted estimates� denoted
by �sjjj and �sj � that use the observations fyk� k � jg and fyk� k � jg�
respectively�

��� Kalman Filtering

In conventional Kalman �ltering the fx�� uj � vjg are assumed to be zero	
mean random variables with

E

�
� x�

ui
vi

�
� � x�� u�j v�j

�
�

�
� �� � �

� Qi�ij
� � Ri�ij

�
� � ��

Moreover� the output covariance of 
���� is assumed to be positive	de�nite�
i�e� Ry � �� where Ry�ij � Eyiy

�
j �
�

Once the fx�� fui� vigg are random� the same will be true of the states�
outputs and desired signals� fxi� yi� sig� In this setting� the H� criterion
states that the linear estimates �sjjj and �sj should be found so as to minimize
the expected estimation error energies�

iX
j��


sj � �sjjj�
�
sj � �sjjj� and

iX
j��


sj � �sj�
�
sj � �sj�� 
����

respectively�
Using this criterion� the predicted and �ltered estimates are given by

�sj � Lj�xj and �sjjj � Lj�xjjj � respectively� where �xj satis�es the predicted
form of the conventional Kalman �lter recursions

�xj�� � Fj �xj �Kp�j
yj �Hj �xj�� �x� � � 
����

�One way to ensure the positive deniteness of the output covariance� Ry� is to assume
that the measurement noise covariance matrix is full rank� i�e�� Ri � �� This is often a
very reasonable assumption�
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and �xjjj satis�es its �ltered form�

�xj��jj�� � Fj �xjjj �Kf�j��
yj�� �Hj��Fj �xjjj�� �x��j�� � �� 
����

Here �xj denotes the predicted estimate of xj � given fy�� � � � � yj��g� and �xjjj
denotes its �ltered estimate� given fy�� � � � � yjg� The gain matricesKp�j and
Kf�j can be computed in several ways� The most common method uses a
certain Riccati recursion� viz��

Kf�j � PjHjR
��
e�j � Kp�j � FjKf�j � Re�j � Rj �HjPjH

�
j 
����

where Pj satis�es the Riccati recursion�

Pj�� � FjPjF
�
j �GjQjG

�
j �Kp�jRe�jK

�
p�j � P� � ��� 
����

We should also mention that the invertibility of the Re�j is guaranteed by
the positivity assumption on Ry�

��� Square�Root Arrays

The matrix Pj appearing in the Riccati recursion 
���� has the physical
meaning of being the variance of the state prediction error� �xj � xj��xj � and
therefore has to be positive 
semi�de�nite� Round	o� errors can cause a loss
of positive	de�niteness� thus throwing all the obtained results into doubt�
For this� and other reasons 
reduced dynamic range� better conditioning�
more stable algorithms� etc�� attention has moved in the Kalman �ltering
community to the so	called square	root array 
or factorized� estimation
algorithms �� �� that propagate square	root factors of Pj � i�e� a matrix�

P
���
j say� with positive diagonal entries� and such that

Pj � P
���
j 
P

���
j �� � P

���
j P

���
j �

Square roots can be similarly de�ned for the system covariances fQj � Rjg�
Then it is in fact not hard to show the following�
Find any orthogonal transformation� say �j �

� that triangularizes the
pre	array shown below�

R
���
j HjP

���
j �

� FjP
���
j GjQ

���
j

	
�j �



X � �
Y Z �

�
� 
����

The resulting post	array entries can be determined� by taking squares and
using the orthogonality of �j � to obey

XX� � Rj �HjPjH
�
j � Re�j

�By an orthogonal transformation� �� we mean one for which� ��� � ��� � I�
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Y X� � FjPjH
�
j

ZZ� � FjPjF
�
j �GjQjG

�
j � Y Y �

� FjPjF
�
j �GjQjG

�
j � Y X�
XX����XY �

� FjPjF
�
j �GjQjG

�
j � FjPjH

�
jR

��
e�jHjPjF

�
j

� Pj���

Therefore we can identify

Z � P
���
j�� � X � R

���
e�j 
����

and also

Y � FjPjH
�
jR

����
e�j � Kp�jR

���
e�j � 
����

Thus the square	root algorithm not only propagates the square	roots of
the Riccati variable� Pj � but also gives us quantities useful for the state
estimation recursion

�xj�� � Fj �xj �Kp�j
yj �Hj �xj�� 
�����

The unitary transformation �j is highly nonunique and can be computed
in many ways� the simplest ones being to construct it as a sequence of
elementary 
Givens or plane� rotations nulling one entry at a time in the
pre	array� or as a sequence of elementary 
Householder� re�ections nulling
out a block of entries in each row� We refer to ��� �� �� and the Appendix for
more details�� The numerical advantages of the square	root transformations
arise from the length preserving properties of unitary transformations� and

from the fact that the dynamic range of the entries in P
���
j is roughly

the square	root of the dynamic range of those in Pj � Moreover� regular
computational 
systolic� arrays can be designed to implement sequences of
elementary unitary transformations ����
A �nal result will be useful before we summarize the above discussion in

a theorem� Any unitary transformation �j that triangularizes the pre	array
in 
���� also gives the� readily checked� identity�h

�R����
j yj P

����
j �xj �

i
�j �

h
R
����
e�j ej P

����
j�� �xj�� �

i

�����

where � denotes an entry whose exact form is not relevant at the mo	
ment� This gives us an alternative way of computing the state estimates

via �xj�� � P
���
j��P

����
j�� �xj��� rather than the state estimate equation 
������

We can summarize the above discussion as follows�

�The above square�root method is closely related to the QR �factorization� method
for solving systems of linear equations�
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Algorithm � �Conventional Square�Root Algorithm� The gain ma�
trixKp�j necessary to obtain the state estimates in the conventional Kalman
�lter ���������	�

�xj�� � Fj �xj �Kp�j
yj �Hj �xj�� �x� � ��

can be updated as follows�
R
���
j HjP

���
j �

� FjP
���
j GjQ

���
j

	
�j �

�
R
���
e�j � �

Kp�jR
���
e�j P

���
j�� �

	
� 
�����

where �j is any unitary matrix that triangularizes the above pre�array� The
algorithm is initialized with P� � ���

Note that the quantities necessary to update the square	root array� and
to calculate the state estimates� may all be found from the triangularized
post	array�
It will also be useful to quote the �ltered form of the square	root array

algorithm� that can be veri�ed in a fashion similar to what was done above�

Algorithm � �Conventional Square�Root Alg� � Filtered Form� �
The gain matrix Kf�j necessary to obtain the state estimates in the �ltered
form of the conventional Kalman �lter

�xj��jj�� � Fj �xjjj �Kf�j��
yj�� �Hj��Fj �xjjj�� �x��j�� � ��

can be updated as follows�
R
���
j HjP

���
j

� P
���
j

	
�
��	
j �

�
R
���
e�j �

Kf�jR
���
e�j P

���
jjj

	
� 
�����

h
FjP

���
jjj GjQ

���
j

i
�
��	
j �

h
P
���
j�� �

i

�����

where �
��	
j and �

��	
j are any unitary matrices that triangularize the above

pre�arrays� The algorithm is initialized with P� � ���

� H
� Square�Root Array Algorithms

We now turn our attention to H� �ltering� Our goal here is to show that
it is possible to construct square	root array implementations of H� �lters�
similar to what was done in the aforementioned H� case�
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��� H� Filtering

Consider once more the state	space model 
����� In the H� approach it is
assumed that disturbances fx�� fuig� fvigg are unknown� but nonrandom�
One can therefore not speak of expected values� or attempt to minimize the
average estimation error energy� Instead one can look at the energy gain

from the unknown disturbances f�����
� x�� fujgij��� fvjgij��g to the �ltered

and predicted errors fsj � �sjjjgij�� and fsj � �sjgij��� respectively� i�e��Pi
j��
sj � �sjjj�

�
sj � �sjjj�

x����
��x� �

Pi
j�� u

�
juj �

Pi
j�� v

�
j vj

� 
����

and Pi
j��
sj � �sj�

�
sj � �sj�

x����
��x� �

Pi
j�� u

�
juj �

Pi
j�� v

�
j vj

� 
����

Here �� is a positive de�nite weighting matrix� It is quite clear that if the
ratios in 
���	���� are small then the estimators perform well� and vice	
versa� However� the problem with these ratios is that they depend on the
disturbances fx�� fuig� fvigg� which are not known� To overcome this prob	
lem� we can consider their worst	cases� i�e��

sup
x��fujg�fvjg

Pi
j��
sj � �sjjj�

�
sj � �sjjj�

x����
��x� �

Pi
j�� u

�
juj �

Pi
j�� v

�
j vj

� 
����

and

sup
x��fujg�fvjg

Pi
j��
sj � �sjjj�

�
sj � �sjjj�

x����
��x� �

Pi
j�� u

�
juj �

Pi
j�� v

�
j vj

� 
����

The goal in H� estimation is to bound this worst	case energy gain� and
the claim is that the resulting estimators will be robust with respect to dis	
turbance variation� since no statistical assumptions are being made about
the disturbances� and since we are safe	guarding against the worst	case
scenario� However� the resulting estimators may be over	conservative�
Here we quote the standard solution to the so	called suboptimal H�

estimation problems using the notation of ��� ���� 
See also ��� ��� �����

Theorem � �Suboptimal H� A Posteriori Filter� Given � � �
 an
H� a posteriori �lter that achieves

sup
x��fujg�fvjg

Pi
j��
sj � �sjjj�

�
sj � �sjjj�

x����
��x� �

Pi
j�� u

�
juj �

Pi
j�� v

�
j vj

� ��� 
����

exists if
 and only if
 the matrices

Rj �



Ip �
� ���Iq

�
and Re�j �



Ip �
� ���Iq

�
�



Hj

Lj

�
Pj
�
H�
j L�j

�

����
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have the same inertia
 for all � � j � i
 where P� � �� and Pj satis�es
the Riccati recursion

Pj�� � FjPjF
�
j �GjG

�
j � FjPj

�
H�
j L�j

�
R��
e�j



Hj

Lj

�
PjF

�
j � 
����

If this is the case
 then all possible H� a posteriori estimators that achieve
���	� are given by those �sjjj � Ff�j
y�� � � � yj� that satisfy

kX
j��



yj �Hj �xj
�sjjj � Lj �xj

��
R��
e�j



yj �Hj �xj
�sjjj � Lj �xj

�
� �� � � k � i 
����

where �xj is given by the recursion

�xj�� � Fj �xj �Kp�j



yj �Hj �xj
�sjjj � Lj�xj

�
� �x� � � 
����

and Kp�j � FjPj
�
H�
j L�j

�
R��
e�j �

One important special choice that guarantees 
���� is the so	called central
a posteriori �lter�

�sjjj � Lj

�
�xj � PjH

�
j 
Ip �HjPjH

�
j �
��
yj �Hj �xj�

� �z �
�xjjj

� 
�����

With this choice of estimate� the recursion 
���� can be used to obtain the
following recursion for �xjjj

�xj��jj�� � Fj �xjjj �Ks�j��
yj�� �Hj��Fj �xjjj�� �x��j�� � � 
�����

with Ks�j � PjH
�
j 
Ip�HjPjH

�
j �
��� Moreover� the central estimate is sim	

ply �sjjj � Lj�xjjj �

Theorem � �Suboptimal H� A Priori Filter� Given � � �
 an H�

a priori �lter that achieves

sup
x��fujg�fvjg

Pi
j��
sj � �sj�

�
sj � �sj�

x����
��x� �

Pi
j�� u

�
juj �

Pi
j�� v

�
j vj

� ��� 
�����

exists if
 and only if
 all leading submatrices of the matrices

Rj �


 ���Iq �
� Ip

�
and Re�j �


 ���Iq �
� Ip

�
�



Lj

Hj

�
Pj
�
L�j H�

j

�

�����

�By the inertia of a Hermitian matrix� we mean the number of its positive� negative
and zero eigenvalues�



x

have the same inertia for all � � j � i
 where Pj is the same as in Theorem
��
If this is the case
 then all possible H� a priori estimators that achieve

������ are given by those �sj � Fp�j
y�� � � � yj��� that satisfy

Pk��
j��



�sjjj � Lj �xj
yj �Hj �xj

��
R��
e�j



�sjjj � Lj�xj
yj �Hj �xj

�
�
�skjk � Lk�xk�

�
��Iq � LkPkL
�
k�
�� � ��

� � k � i 
�����

where �xj is given by the recursion

�xj�� � Fj �xj �Kp�j



�sj � Lj �xj
yj �Hj �xj

�
� �x� � � 
�����

and Kp�j � FjPj
�
L�j H�

j

�
R��
e�j �

Once more� an important special choice that guarantees 
����� is the
so	called central a priori �lter�

�sj � Lj�xj � 
�����

With this choice of estimate� the recursion 
����� can be rewritten as

�xj�� � Fj �xj �Ka�j
yj � Fj �xj�� �x� � � 
�����

with Ka�j � �PjH
�
j 
Ip �Hj

�PjH
�
j �
�� and �Pj �

�
P��
j � ���L�jLj

���
�

Remark� Note that the existence condition for a priori level	� H� �lters is
more stringent than the existence condition for a posteriori �lters� since the
latter requires that the matrices Rj and Re�j have the same inertia� whereas
the former requires that all leading submatrices of Rj and Re�j have the
same inertia� This� of course� makes perfect sense� since a posteriori �lters
have access to one additional measurement and should therefore outperform
a priori ones�
We can also more explicitly show that one condition is more stringent

than the other� To this end� let us remark that� when �� � �� and when
a solution to the level	� H� estimation problem exists� it can be shown
that Pj � � for all j 
see e�g�� ����� In this case� using a simple Schur
complement argument� the inertia condition for the a posteriori problem of
Theorem � 
cf�� Eq� 
����� becomes�

Ip �HjPjH
�
j � � and � ��Iq � Lj
P

��
j �H�

jHj�
��L�j � �� 
�����

Since Pj � �� the �rst condition is super�uous so that the existence condi	
tion becomes

��Iq � Lj
P
��
j �H�

jHj�
��L�j � 
�����
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Likewise� using a similar Schur complement argument� the inertia condi	
tion for the a priori problem of Theorem � 
cf�� Eq� 
������ becomes�

���Iq � LjPjL
�
j � � and Ip �Hj
P

��
j � ���L�jLj�

��H�
j � �� 
�����

Now when Pj � � and ���Iq � LjPjL
�
j � �� it follows that P��

j �
���L�jLj � �� Therefore the second condition is super�uous and the exis	
tence condition becomes

��Iq � LjPjL
�
j � 
�����

Since 
P��
j �H�

jHj�
�� � Pj � it readily follows that condition 
����� is

more stringent than condition 
�����

��� A Krein Space Formulation

The central H� a priori and a posteriori �lters of Eqs� 
����� and 
�����
look very similar to their Kalman �lter counterparts 
���� and 
����� Indeed
the only di�erence is that the H� Riccati recursion 
���� di�ers from the
Kalman �lter Riccati recursion 
����� since�

� We have inde�nite  covariance! matrices�



I �
� ���fI

�
�

� The Li 
of the quantity to be estimated� enters the Riccati equation�

�����

� We have an additional condition� 
����� that must be satis�ed for the
�lter to exist" in the Kalman �lter problem the Li would not appear�
and the Pi would be positive semide�nite� so that 
���� is immediate�

Despite these di�erences� we have recently shown that these H� �lters
can in fact be obtained as certain Kalman �lters� not in an H� 
Hilbert�
space� but in a certain inde�nite vector space� called a Krein space ��� ���
���� The inde�nite  covariances! and the appearance of Li in the Riccati
recursions are all easily explained in this framework� The additional condi	
tion 
���� will be seen to arise from the fact that in Krein space� unlike the
usual Hilbert space context� quadratic forms need not always have minima
or maxima� unless certain additional conditions are met�
We shall not go into the details of estimation in inde�nite	metric spaces

here� Instead� we shall use the observation that H� �ltering coincides with
Kalman �ltering in Krein space as a guideline to generalize the square	root
array algorithms of Sec� � to the H� setting�
To this end� recall the conventional square	root array algorithm of Sec� ���

R
���
j HjP

���
j �

� FjP
���
j GjQ

���
j

	
�j �

�
R
���
e�j � �

Kp�jR
���
e�j P

���
j�� �

	
� 
�����
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The �rst problem that occurs if one wants to extend the square	root array
algorithm to the Krein space setting 
of which the H� �ltering problem
is a special case� is that the matrices Ri� Qi� Pi and Re�i are in general
inde�nite and square	roots may not exist� To overcome this problem we
employ the notion of an inde�nite square	root� as de�ned below�

De	nition � �Inde	nite Square�Roots� Suppose A is an arbitrary Her�
mitian matrix� Let the signature matrix S �i�e� a diagonal matrix with di�
agonal elements either �� or ��� represent the number of positive and
negative eigenvalues of A� Then A��� will be called an inde�nite square�
root of A if
 and only
 if

A � A���SA����

Note that when A is non	negative de�nite� then S � I and A��� is the
conventional square	root�
In the Krein space case� however� Ri� Qi� Pi and Re�i may all have arbi	

trary inertia� i�e�

�
Ri � R

���
i S

��	
i R

���
i � Qi � Q

���
i S

��	
i Q

���
i

Pi � P
���
i S

��	
i P

���
i � Re�i � R

���
e�i S

�
	
i R

���
e�i

for arbitrary signature matrices S
�k	
i � k � �� �� �� �� It is thus not obvious

how to incorporate all these di�erent time	variant signature matrices into
a square	root array algorithm of the type 
������ Although this can be done
in the general case� by either introducing non	Hermitian factorizations of
the Gramians� or by keeping track of the inertia� we do not need to pursue
such generalities here� The reason is that� as it turns out� in the special case
of the H� estimation problems that we have been studying� the Gramians
satisfy certain inertia properties that allow us to extend the algorithm of

����� in a very natural way�
Indeed when a solution to the H� �ltering problem exists� we know from

Theorems � and � that Pi � �� and that Re�i and Ri have the same inertia�

Moreover� Qi � Im � � and Ri �



Ip �
� ���Iq

�
have constant inertia


and thus so does Re�i� so that we may write�

Ri � R
���
i JR

���
i � Qi � Q

���
i Q

���
i � Pi � P

���
i P

���
i � Re�i � R

���
e�i JR

���
e�i


�����
with

R
���
i �



Ip �
� �Iq

�
and J �



Ip �
� �Iq

�
� 
�����
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This suggests that in the H� �ltering problem� the pre	array in 
�����
should be replaced by��

�


Ip �
� �Iq

� 

Hj

Lj

�
P
���
j �

� FjP
���
j Gj

�
� � 
�����

Recall that� compared to the H� Riccati� in H� Riccati recursion Hj

is replaced by



Hj

Lj

�
�� Now in the H� case the pre	array in 
����� was

triangularized by a unitary transformation 
or simply by a rotation�� Since
the H� estimation problem can be formulated in a Hilbert space� whereas
the H� estimation problem is most naturally formulated in a Krein space�
it seems plausible that we should attempt to triangularize 
������ not by
an ordinary rotation� but by a hyperbolic rotation� To be more speci�c� we
need to use a J	unitary transformation� as discussed below�

��� J�Unitary Transformations

Let us begin with the de�nition�

De	nition � �J�unitary Matrices� For any signature matrix
 J 
 �a di�
agonal matrix with �� and �� diagonal elements� the matrix � will be
called J�unitary if

�J�� � J� 
�����

Recall that unitary transformations 
or ordinary rotations� preserve the
length 
or ordinary norm� of vectors� J	unitary transformations� on the
other hand� preserve the 
inde�nite� J	norm of vectors� Indeed� if b � a��
with � J	unitary� then

bJb� � a�J��a� � aJa��

The above discussions suggest that we should attempt to triangularize

����� via a J	unitary transformation� with

J �

�
���


Ip �
� �Iq

�
In

Im

�
��� � 
�����

Now it is well known that it is always possible to triangularize arrays using
unitary transformations� But is this also true of J	unitary transformations#
To see if this is the case� consider a simple example where we are given the

two	element� row vector �

a b
�
�
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and are asked to hyperbolically rotate it so that the resulting vector lies
along the direction of the x	axis�� For the time being� assume that such a
transformation can be found� Then we can write��

a b
�
� �

�
c �

�
� 
�����

where

�J�� � J and J �



�

��
�
� 
�����

Since � is J	unitary this implies that�

�
a b

�
J



a�

b�

�
�
�
c �

�
J



c�

�

�
� 
�����

or more explicitly�

jaj� � jbj� � jcj� � �� 
�����

Thus�
�
a b

�
must have nonnegative J	norm� In other words� if the given�

a b
�
has negative J	norm 
i�e�� jaj� � jbj� � �� then it is impossible

to hyperbolically rotate it to lie along the x	axis� This fact is shown in
Fig� �� As can be seen� standard rotations move the vector

�
a b

�
along

the circle� a� � b� � constant� whereas hyperbolic rotations move it along
the hyperbola� a��b� � constant� Thus while it is always possible to rotate�
a b

�
to lie along the x	axis� if jaj� � jbj� � � then it is impossible to

do so with a hyperbolic rotation� Indeed hyperbolic rotations cannot move
vectors from the positive to negative subspaces of a Krein space� or vice
versa��
Thus it is quite obvious that it is not always possible to triangularize

arrays using J	unitary transformations� The precise condition follows�

Lemma � �J�unitary Matrices and Triangularization� Let A and B
be arbitrary n � n and n � m matrices
 respectively
 and suppose J �

S�

S�

�
where S� and S� are n � n and m � m signature matrices�

Then
�
A B

�
can be triangularized by a J�unitary transformation � as�

A B
�
� �

�
L �

�
with L lower triangular
 if and only if
 all leading submatrices of

S� and of AS�A
� �BS�B

�

have the same inertia�

�Note in standard �two�dimensional� Euclidean space this can always be done�
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FIGURE �� Standard rotations vs� hyperbolic rotations�

Proof� To prove one direction suppose there exists a J	unitary transfor	
mation � that triangularizes

�
A B

�
� Consider an arbitrary partitioning

of A� B and L� i�e� 

A��	 B��	

A��	 B��	

�
�



L��	 �
L��	 �

�

where A��	� B��	 and L��	 have r rows� Now

A��	 B��	

A��	 B��	

�
�J��� �z �
�J



A��	� A��	�

B��	� B��	�

�
�



L��	 �
L��	 �

�
J



L��	� L��	�

� �

�

so that

A��	S�A

��	� �B��	S�B
��	� �

� �
�
�



L��	S�L

��	� �
� �

�

�����

where � denotes irrelevant entries� Moreover� since L is lower triangular we
have L��	 �

�
L���	 �

�
� where L���	 is lower triangular and r � r� Thus

if we denote by S
��	
� the leading r � r submatrix of S�� equating the 
�� ��

block entries in 
����� yields

A��	S�A
��	� �B��	S�B

��	� � L���	S
��	
� L���	� 
�����

The LHS of the above equation is the leading r� r submatrix of AS�A
� �

BS�B
�� Thus 
����� shows that the leading r� r submatrices of AS�A

� �
BS�B

� and S� have the same inertia� Since r was arbitrary the same is
true for all leading submatrices�
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To prove the other direction� we assume that all leading submatrices of
AS�A

� � BS�B
� and S� have the same inertia� In particular the leading


�� �� submatrices� so that

aS�a
� � bS�b

� � l���s 
�����

where a and b are the leading rows of A and B� s is the leading diagonal
of S� and l�� is a scalar� Now de�ne the vector

v �
�
a b

�
� l��e�

where e� �
�
� � � � � �

�
is the �rst unit row vector� Consider the

matrix

�� � I � �
Jv�v

vJv�
�

A straightforward calculation shows that ��J�
�
� � J so that �� is J	

unitary� Moreover� another direct calculation shows that�
a b

�
�� � l��e� �

�
l�� � � � � �

�
�

We thus far have

�
A B

�
�� �


 �
l�� �

�
��

A�� A�

�
B�

�
� 
�����

Now if all leading submatrices of two given matrices have the same iner	
tia� then their 
�� �� entries should have the same inertia and all leading
submatrices of the Schur complement of their 
�� �� entries should have the
same inertia� Now partition S� as

S� �



s

S��	

�

so that S��	 is the Schur complement of s in S�� Likewise the Schur com	
plement of the 
�� �� entry of AS�A

� � BS�B
� is A�S

��	A�� � B�S�B
�
�

where A� and B� are de�ned in 
������ Therefore all leading submatri	
ces of A�S

��	A�� � B�S�B
�
� and S��	 have the same inertia� We may now

proceed as before to �nd a J	unitary matrix �� that rotates the �rst row
of
�
A�� A� B�

�
to lie along the second unit vector� Continuing in a

similar fashion will result in a J	unitary matrix � � ���� � � ��n�� that
triangularizes

�
A B

�
�

��� may be recognized as an elementary Householder re�ection in the J�metric� See
Appendix A�



xvii

��� Square�Root Array Algorithms

We are now in a position to apply the result of Lemma � to the triangu	
larization of the pre	array 
����� using a J	unitary transformation with J
given by 
������ In fact� we need only consider the condition for the tri	
angularization of the �rst block row 
since setting the block 
�� �� entry
of the post array to be zero can always be done via a standard unitary
transformation�� Thus we need only consider triangularizing
 


Ip �
� �Iq

� 

Hj

Lj

�
P
���
j

�
� 
�����

using a J	unitary transformation with

J �

�
�


Ip �
� �Iq

�
In

�
� � 
�����

From Lemma �� the condition obviously is that all leading submatrices of
J and

Ip 	
	 �Iq

�

Ip 	
	 �Iq

�

Ip 	
	 �Iq

�
� �z �

Rj






Hj

Lj

�
P
���
j P

���
j

�
H�

j L�j
�
� Re�j �

����

have the same inertia� But this is precisely the condition required for the
existence of an H� a posteriori �lter$ 
See Theorem ��� This result is quite
useful � it states that an H� 
a posteriori� �lter exists if� and only if�
the pre	array can be triangularized� i�e�� if� and only if� the square	root
algorithm can be performed and does not break down�
Now that we have settled the existence question� let us return to trian	

gularizing the pre	array 
������ so that we can write�
�


Ip �
� �Iq

� 

Hj

Lj

�
P
���
j �

� FjP
���
j Gj

�
��j �



A � �
B C �

�
� 
�����

where A and C are lower triangular� and where �j is J	unitary with J
as in 
������ The array on the left hand side of 
����� is referred to as the
pre�array and the array on the right hand side as the post�array� To identify
the elements A� B and C in the post array let us square both sides of 
�����
and use the fact that �j is J	unitary� Therefore

�
�


Ip �
� �Iq

� 

Hj

Lj

�
P
���
j �

� FjP
���
j Gj

�
��jJ�

�
j� �z �

�J

�
���



Ip �
� �Iq

�
�

P
���
j

�
H�
j L�j

�
P
���
j F �

j

� G�
j

�
���
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�



A � �
B C �

�
J

�
� A� B�

� C�

� �

�
� � 
�����

Equating the 
�� �� blocks on the left hand and right hand sides of 
�����
yields


Ip �
� ���Iq

�
�



Hj

Lj

�
Pj
�
H�
j L�j

�
� A



Ip �
� �Iq

�
A��

The left hand side of the above relation is simply Re�j � Therefore A is an
inde�nite square	root of Re�j � and we can write

A � R
���
e�j � R

���
e�j



Ip �
� �Iq

�
R
���
e�j � Re�j � 
�����

Equating the 
�� �� blocks on the left hand and right hand sides of 
�����
yields

FjPj
�
H�
j L�j

�
� B



Ip �
� �Iq

�
A��

Therefore

B � FjPj
�
H�
j L�j

�
R
����
e�j



Ip �
� �Iq

�
�

so that we can write

B � Kp�jR
���
e�j � 
�����

Equating the 
�� �� blocks on the left hand and right hand sides of 
�����
yields

FjPjF
�
j �GjG

�
j � B



Ip �
� �Iq

�
B� � CC�

� Kp�jR
���
e�j



Ip �
� �Iq

�
R
���
e�j K

�
p�j � CC�

� Kp�jRe�jK
�
p�j � CC��

Therefore

CC� � FjPjF
�
j �GjG

�
j �Kp�jRe�jK

�
p�j � Pj���

so that we may write

C � P
���
j�� � P

���
j��P

���
j�� � Pj��� 
�����

We can now summarize our results as follows�



xix

Theorem 
 �H� A Posteriori Square�Root Algorithm� The H� a
posteriori �ltering problem with level � has a solution if
 and only if
 for
all j � �� � � � � i there exist J�unitary matrices �with J given by �������
 �j

such that�
�


Ip �
� �Iq

� 

Hj

Lj

�
P
���
j �

� FjP
���
j Gj

�
��j �

�
R
���
e�j � �

Kp�jR
���
e�j P

���
j�� �

	


�����
where the algorithm is initialized with
 P� � ��� If this is the case
 then
all possible H� a posteriori �lters
 %sjjj � Ff�j
y�� � � � yj�
 are given by any
choices that yield


kX
j��



yj �Hj �xj
%sjjj � Lj �xj

��
R��
e�j



yj �Hj �xj
%sjjj � Lj �xj

�
� �� � � k � i

where �xj satis�es the recursion


�xj�� � Fj �xj �Kp�j



yj �Hj �xj
%sjjj � Lj �xj

�
� �x� � ��

In the H� a priori �ltering problem we need to begin with the pre	array�
�


�Iq �
� Ip

� 

Lj

Hj

�
P
���
j �

� FjP
���
j Gj

�
� � 
�����

and with

J �

�
���

 �Iq �

� Ip

�
In

Im

�
��� � 
�����

Note the reversal of the order of the fHj � Ljg as compared to the a poste	
riori case��
Using similar arguments we may prove the following result�

Theorem � �H� A Priori Square�Root Algorithm� The H� a pri�
ori �ltering problem with level � has a solution if
 and only if
 for all
j � �� � � � � i there exist J�unitary matrices �with J given by ������
 �j

such that�
�


�Iq �
� Ip

� 

Lj

Hj

�
P
���
j �

� FjP
���
j Gj

�
��j �

�
R
���
e�j � �

Kp�jR
���
e�j P

���
j�� �

	


�����
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where the algorithm is initialized with
 P� � ��� If this is the case
 then
all possible H� a priori �lters
 %sj � Ff�j
y�� � � � yj���
 are given by any
choices that yield


kX
j��



%sj � Lj �xj
yj �Hj �xj

��
R��
e�j



%sj � Lj �xj
yj �Hj �xj

�
� �� � � k � i

where �xj satis�es the recursion


�xj�� � Fj �xj �Kp�j



%sj � Lj �xj
yj �Hj �xj

�
� �x� � ��

Note that� as in the H� case� the quantities necessary to update the
square	root array and to calculate the desired estimates may all be found
from the triangularized post	array�
In conventional Kalman �ltering� square	root arrays are preferred since

the positive	de�niteness of the matrices is guaranteed� and since the �j

are unitary� which improves the numerical stability of the algorithm� In the
H� setting� the square	root arrays guarantee that the various matrices
have their appropriate inertia" however� the �j are no longer unitary but
J	unitary� Therefore the numerical aspects need further investigation�
An interesting aspect of Theorems � and � is that there is no need to

explicitly check for the existence conditions required ofH� �lters 
see The	
orems � and ��� These conditions are built into the square	root algorithms
themselves� if the algorithms can be performed then an H� estimator of
the desired level exists� and if they cannot be performed such an estimator
does not exist�

��� The Central Filters

In the previous section we obtained a square	root version of the parametriza	
tion of all H� a posteriori and a priori �lters� Perhaps the most important
�lters in these classes are the so	called central �lters� which we described in
Eqs� 
����� and 
������ These �lters have the additional properties of being
maximum	entropy and risk	sensitive	optimal �lters ��� ���� as well as be	
ing the solution to certain quadratic dynamic games ���� In this section we
shall develop square	root algorithms for such central �lters� As expected�
the observer gains for the central �lters turn out to be readily obtainable
from the square	root array algorithms of Theorems � and ��
Let us begin by recalling the central H� a posteriori �lter recursions�

cf�� Eq� 
������

�xj��jj�� � Fj �xjjj �Ks�j��
yj�� �Hj��Fj �xjjj�� 
�����
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where the desired estimate is given by �sjjj � Lj �xjjj � and where the gain
matrix is given by

Ks�j � PjH
�
j 
Ip �HjPjH

�
j �
��� 
�����

We will now show how to obtain the above gain matrix from the a posteriori
square	root recursions�
To this end� let us �rst note that we can rewrite the a posteriori square	

root algorithm of Theorem � via the following two	step procedure��
�


Ip �
� �Iq

� 

Hj

Lj

�
P
���
j

� P
���
j

�
��

��	
j �

�
R
���
e�j �

Kf�jR
���
e�j P

���
jjj

	
� 
�����

h
FjP

���
jjj Gj

i
�
��	
j �

h
P
���
j�� �

i

�����

where �
��	
j is J	unitary� with J � Ip � 
�Iq� � In� and �

��	
j is unitary�

Note that the above two	step procedure is the H� analog of Algorithm
��� In the above recursions� we of course have

Kf�j � Pj
�
H�
j L�j

�
R��
e�j � 
�����

with

Re�j �



Ip �
� ���Iq

�
�



Hj

Lj

�
Pj
�
H�
j L�j

�
� 
�����

Now in 
������ R
���
e�j can be any square	root of Re�j � Let us study the conse	

quences of choosing a lower triangular square	root� To do so� consider the
following triangular factorization of Re�j �

Re�j �



Ip �

LjPjH
�
j 
Ip �HjPjH

�
j �
�� Iq

� 

Ip �HjPjH

�
j �

� �&j

�
�


Ip 
Ip �HjPjH
�
j �
��HjPjL

�
j

� Iq

�
�

where we have de�ned the Schur complement�

�&j
�
� ���Iq � LjPjL

�
j � LjPjH

�
j 
Ip �HjPjH

�
j �
��HjPjL

�
j �

Note that the inertia condition on Re�j implies that &j � �� so that we
may write

Re�j � R
���
e�j SR

���
e�j � 
�����

with

R
���
e�j �



Ip �

LjPjH
�
j 
Ip �HjPjH

�
j �
�� Iq

� �

Ip �HjPjH

�
j �

��� �

� &
���
j

	

�

�

Ip �HjPjH

�
j �

��� �

LjPjH
�
j 
Ip �HjPjH

�
j �
���� &

���
j

	
� 
�����
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and S �



Ip

�Iq

�
� Now the 
�� �� block entry in the post	array of 
�����

is given by

Kf�jR
���
e�j � Pj

�
H�
j L�j

�
R
����
e�j

� Pj
�
H�
j L�j

� 
 
Ip �HjPjH
�
j �
���� �

� �
�

� Pj
�
H�
j 
Ip �HjPjH

�
j �
���� � �

� 
�����

where � denotes irrelevant entries�
Eqs� 
����� and 
����� now suggest how to compute the desired gain

matrix Ks�i� Indeed��
�rst block column of Kf�jR

���
e�j

�
	
�

�� �� block entry of R

���
e�j

���
�

PjH
�
j 
Ip �HjPjH

�
j �
���� 	 
Ip �HjPjH

�
j �
���� �

Ks�j �

�����

We are thus led to the following result�

Algorithm 
 � Central H� A Posteriori Square�Root Algorithm�
The H� a posteriori �ltering problem with level � has a solution if
 and
only if
 for all j � �� � � � � i there exist J�unitary �with J � Ip� 
�Iq�� In�

matrices
 �
��	
j 
 such that�

�


Ip �
� �Iq

� 

Hj

Lj

�
P
���
j

� P
���
j

�
��

��	
j �

�
R
���
e�j �

Kf�jR
���
e�j P

���
jjj

	
� 
�����

h
FjP

���
jjj Gj

i
�
��	
j �

h
P
���
j�� �

i

�����

with R
���
e�j lower block triangular
 and with �

��	
j unitary� The gain matrix

Ks�j needed to update the estimates in the central �lter recursions

�xjjj � Fj���xj��jj�� �Ks�j
yj �HjFj���xj��jj���� �x��j�� � ��

is equal to
Ks�j � 'Ks�j
I �HjPjH

�
j �
�����

where 'Ks�j is given by the �rst block column of 'Kf�j � Kf�jR
���
e�j 
 and


I �HjPjH
�
j �

��� is given by the 
�� �� block entry of R
���
e�j � The algorithm

is initialized with P� � ���

We can now proceed with a similar argument to �nd square	root recur	
sions for the central H� a priori �lters� Let us �rst recall from Eq� 
�����
that the central H� a priori �lter recursions are

�xj�� � Fj �xj �Ka�j
yj �Hj �xj�� 
�����
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where the desired estimate is given by �sj � Lj�xj � and where the gain
matrix is given by

Ka�j � Fj �PjH
�
j 
Ip �Hj

�PjH
�
j �
��� 
�����

with
�Pj � Pj � PjL

�
j 
���Iq � LjPjL

�
j �
��LjPj � 
�����

We now show how to obtain the above gain matrix from the a priori square	
root recursions��
�


�Iq �
� Ip

� 

Lj

Hj

�
P
���
j �

� FjP
���
j Gj

�
��j �

�
R
���
e�j � �

Kp�jR
���
e�j P

���
j�� �

	


�����
Note now that�

Kp�j � FjPj
�
L�j H�

j

�
R��
e�j � 
�����

with

Re�j �


 ���Iq �
� Ip

�
�



Lj

Hj

�
Pj
�
L�j H�

j

�
� 
�����

As mentioned earlier� R
���
e�j in 
����� can be any inde�nite square	root of Re�

Let us� once more� study the consequences of choosing a lower triangular
square	root� To do so� consider the following block lower	diagonal	upper
triangular factorization of the matrix� Re�j �


Iq 	

����Hj
�PjL

�
j Ip

�

���Iq 
 LjPjL

�
j 	

	 Ip 
Hj
�PjH

�
j

�

Iq ����Lj

�PjH
�
j

	 Ip

�
�

�����

where we have used the facts that�

HjPjL
�
j 
���Iq � LjPjL

�
j �
�� � ����Hj

�PjL
�
j �

and� for the Schur complement�

Ip �HjPjH
�
j �HjPjL

�
j 
���Iq � LjPjL

�
j �
��LjPjH

�
j � Ip �Hj

�PjH
�
j �

Now the inertia conditions on Re�j require that ����Iq �LjPjL
�
j � � and

Ip �Hj
�PjH

�
j � �� so that we may write�

Re�j � R
���
e�j SR

���
e�j � 
�����

with

R
���
e�j �




��Iq � LjPjL

�
j �
��� �

����Hj
�PjL

�
j 
�

�Iq � LjPjL
�
j �
��� 
Ip �Hj

�PjH
�
j �

���

�
�


�����
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and S �


 �Iq
Ip

�
� Now the 
�� �� block entry in the post	array of 
�����

is given by

Kp�jR
���
e�j � FjPj

�
L�j H�

j

�
R
����
e�j

� FjPj
�
L�j H�

j

� 
 � ���Lj
�PjH

�
j 
Ip �Hj

�PjH
�
j �
����

� 
Ip �Hj
�PjH

�
j �
����

�
� FjPj

� � 
���L�jLj
�Pj � In�H

�
j 
Ip �Hj

�PjH
�
j �
����

�
� Fj

� � �PjH
�
j 
Ip �Hj

�PjH
�
j �
����

�
� 
�����

where in the last step we have used the 
readily veri�ed� identity�

Pj
�
��L�jLj

�Pj � In� � �Pj �

and where � denotes irrelevant entries�
Eqs� 
����� and 
����� now suggest how to compute the desired gain

matrix Ka�i� Indeed��
second block column of Kp�jR

���
e�j

�
	
�

�� �� block entry of R

���
e�j

���
�

Fj �PjH
�
j 
Ip �Hj

�PjH
�
j �
���� 	 
Ip �Hj

�PjH
�
j �
���� �

Ka�j �

�����

We are thus led to the following result�

Algorithm � �Central H� A Priori Square�Root Alg�� The H� a
priori �ltering problem with level � has a solution if
 and only if
 for all
j � �� � � � � i there exist J�unitary matrices �with J � 
�Iq�� Ip� In� Im�

�j
 such that�
�


�Iq �
� Ip

� 

Lj

Hj

�
P
���
j �

� FjP
���
j Gj

�
��j �

�
R
���
e�j � �

Kp�jR
���
e�j P

���
j�� �

	


�����

with R
���
e�j lower block triangular� The gain matrix Ka�i needed to update

the estimates in

�xj�� � Fj �xj �Ka�j
yj � Fj �xj�� �x� � ��

is equal to
Ka�j � 'Ka�j
I �Hj

�PjH
�
j �
�����

where 'Ka�j is given by the second block column of 'Kp�j � Kp�jR
���
e�j 
 and


I �Hj
�PjH

�
j �

��� is given by the 
�� �� block entry of R
���
e�j � The algorithm

is initialized with P� � ���
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� H
� Fast Array Algorithms

The conventional Kalman �lter and square	root array recursions of Sec� �
both require O
n�� operations per iteration 
where n is the number of
states in the state	space model�� However� when the state	space model is
time	invariant 
or if the time	variation is structured in a certain way��
there exist fast recursions that require only O
n�� operations per iteration
�� �� ��� ����
In what follows we shall assume a time	invariant state	space model of

the form �
xj�� � Fxj �Guj � x�
yj � Hxj � vj

� 
����

In the H� case� where the fuj � vjg are zero mean independent random
variables� we shall also assume that the covariances of the fuj � vjg are
constant� i�e� Qj � Q � � and Rj � R � �� for all j� As before� we
are interested in obtaining estimates of some linear combinations of the
states� sj � Ljxj � and� in particular� the �ltered estimates� �sjjj � Lj �xjjj �

and predicted estimates� �sj � Lj �xj � that use the observations fykgjk�� and

fykgj��k��� respectively�
Under the aforementioned assumptions� it turns out that we can write

Pj�� � Pj � MjSMj � for all j� 
����

whereMj is a n�d matrix and S is a d�d signature matrix 
i�e� a diagonal
matrix with �� and �� on the diagonal�� Thus� for time	invariant state	
space models� Pj�� � Pj has rank d for all j and in addition has constant
inertia� In several important cases� d can be much less than n�
One such case is when P� � �� where� using the Riccati recursion 
�����

we have

P� � GQG�� 
����

so that M� � GQ��� and S � Im� Thus� here� we have d � m� with m
typically less than n�
Another case is when P� � �� the solution to the 
steady	state� Lya	

punov equation�

� � F�F � �GQG�� 
����

in which case from 
���� it follows that

P� � P� � �F�
R�H�H�����F �� 
����

so that M� � F�
R � H�H������ and S � �Ip� Thus� here� we have
d � p� with p typically less than n�
In anycase� when d � n� propagating the smaller matrices Mj � which is

equivalent to propagating the Pj � can o�er computational reductions� This



xxvi

what is done by the following 
so	called Chandrasekhar� recursions 
see
���� App� II��
In the conventional fast recursions� one begins with the pre	array


R
���
e�j HMj
'Kp�j FMj

�
� 
����

where R
���
e�j R

���
e�j � Re�j � R � HPjH

� and 'Kp�j � Kp�jR
����
e�j � and tri	

angularizes the array using a J	unitary matrix �j where J is given by

Ip

S

�
� The result of this triangularization gives us the various quan	

tities of interest for propagating the Kalman �lter recursions�

Algorithm � �Fast H� Recursions� The gain matrixKp�j � 'Kp�jR
����
e�j

necessary to obtain the state estimates in the conventional Kalman �lter

�xj�� � F �xj �Kp�j
yj �H�xj�� �x� � ��

can be computed using

R
���
e�j HMj
'Kp�j FMj

�
�j �



R
���
e�j�� �

'Kp�j�� Mj��

�
� 
����

where �j is any J�unitary matrix �with J � Ip�S� that triangularizes the
above pre�array� The algorithm is initialized with

Re�� � R�H��H
�� 'Kp�� � F��H

�R
���
e�� �

and

P� ��� � F��F
� �GQG� �Kp��Re��K

�
p�� ��� �M�SM

�
� �

Thus� once more� the quantities necessary to update the arrays and to
calculate the state estimates are all found from the triangularized post
array�
The validity of the above algorithm can be readily veri�ed by squaring

both sides of the equation�

R
���
e�j HMj
'Kp�j FMj

�
�j �



A �
B C

�
� 
����

and using the J	unitarity of �j � to �nd the entries of the post array� This
leads to�

R
���
e�j R

���
e�j� �z �

Re�j

�HMjSM
�
j� �z �

Pi���Pi

H�

� �z �
Re�j��

� AA�� 
����
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from which we conclude that A � R
���
e�j��� and

'Kp�jR
���
e�j� �z �

FPjH�

�F MjSM
�
j� �z �

Pi���Pi

H�

� �z �
FPi��H�

� BA�� 
�����

from which we conclude that B � FPi��H
�R

����
e�j�� � 'Kp�j��� Finally� we

have

CSC� � FMjSM
�
j F

� � 'Kp�j
'K�
p�j �BB�

� F 
Pi�� � Pi�F
� � 'Kp�j

'K�
p�j � 'Kp�j��

'K�
p�j��

� FPi��F
� �GQG� � 'Kp�j��

'K�
p�j�� �

�
FPiF

� �GQG� � 'Kp�j
'K�
p�j

�
� Pi�� � Pi���

from which we infer that� C �Mj���
If� instead of de�ning MjSM

�
j � Pj�� � Pj � we had de�ned

NjSfN
�
j � Pjjj � Pj��jj��� 
�����

where Pjjj � E�xjjj �x
�
jjj is the �ltered state error variance� which satis�es

the recursion�

Pjjj � FPj��jj��F
� �GQG� �Kf�jRe�jK

�
f�j � 
�����

with Kf�j � PjHR��
e�j � then it is also possible to obtain the following 
so	

called� �ltered form of the fast recursions��

Algorithm  �Fast H� Recursions� Filtered Form� If F is invertible


the gain matrix Kf�j � 'Kf�jR
����
e�j necessary to obtain the state estimates

in the �ltered form of the conventional Kalman �lter

�xjjj � F �xj��jj�� �Kf�j
yj �HF �xj��jj���� �x��j�� � ��

can be computed using

R
���
e�j HFNj
'Kf�j FNj

�
�j �



R
���
e�j�� �

'Kf�j�� Nj��

�
� 
�����

where �j is any J�unitary matrix �with J � Ip � Sf � that triangularizes
the above pre�array� The algorithm is initialized with

Re�� � R�H��H
�� 'Kf�� � ��H

�R
���
e�� �

�Note that in this case if F is nonsingular it can also be shown that Pj��jj���Pjjj
has constant inertia� given by the inertia of the signature matrix� Sf � for all j�This follows
from the fact that Pj�� � FPjjjF

��GQG�� so that Pj���Pj � F �Pjjj�Pj��jj���F
��
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and

F
���P���	�F

�� � �	
F
��
GQG

�
F
��
�Kf�	Re�	K

�
f�	�F

���	F
�� � N	SfN

�
	 �

Note that compared to the square	root formulas� the size of the pre	
array in the fast recursions has been reduced from 
p�n�� 
p�n�m� to

p�n��
p�d� wherem and p are the dimensions of the driving disturbance
and output� respectively� and where n is the number of the states� Thus
the number of operations for each iteration has been reduced from O
n��
to O
n�d�� with d typically much less than n�

� H
� Fast Array Algorithms

In this section we shall derive the H� counterparts of the fast H� Chan	
drasekhar recursions of the previous section� We shall essentially see that�
when the underlying state	space model is time	invariant� all the arguments
necessary for the development of these algorithms go through� provided
that we consider the geometry of inde�nite spaces� We �rst give the gen	
eral recursions� and then specialize them to obtain the central �lters�

��� The General Case

Consider� once more� the time	invariant state	space model 
����� and the
corresponding H� Riccati recursion 
����� Suppose that the matrix �� can
be chosen such that P� ��� has low rank� In other words�

P� ��� � F��F
� �GG� �Kp��Re��K

�
p�� ��� �M�SM

�
� � 
����

where M� is a n � d matrix 
typically d 
 n� and S is a d � d signature
matrix� and� of course�

Kp�j � FPj
�
H� L�

�
R��
e�j � Re�j �



Ip �
� ���Iq

�
�



H
L

�
Pj
�
H� L�

�
�


����
We shall presently show by induction that under the assumptions of a time	
invariant state	space model� if the a posteriori H� �ltering problem has a
solution for all j� then Pj�� � Pj has rank d and constant inertia for all j
and that we can actually write Pj�� � Pj � MjSM

�
j �

Consider the following pre	array�
� R

���
e�j



H
L

�
Mj

'Kp�j FMj

�
� � 
����
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which is the obvious extension of the pre	array in 
���� to the inde�nite	
metric setting of the H� a posteriori �ltering problem� Now the H� a
posteriori �ltering problem will have a solution if� and only if� all leading
submatrices of R and Re�j 
or Re�j��� for that matter� have the same
inertia� In view of Lemma �� this implies that the H� a posteriori �ltering
problem with level � will have a solution if� and only if� there exists a
J	unitary matrix �j that triangularizes 
���� where

J �

�
�


Ip �
� �Iq

�
S

�
� � 
����

Therefore we can write�
� R

���
e�j



H
L

�
Mj

'Kp�j FMj

�
��j �



A �
B C

�
� 
����

To identify the elements A� B and C in the post	array we square both sides
of 
���� and use the fact that �j is J	unitary� Therefore�

� R
���
e�j



H
L

�
Mj

'Kp�j FMj

�
��jJ�

�
j� �z �

�J

�
R
���
e�j

'K�
p�j

M�
j

�
H� L�

�
MjF

�

	

�



A �
B C

�
J



A� B�

� C�

�
�


����

Equating the 
�� �� blocks in 
���� yields�

A



Ip �
� �Iq

�
A� � R

���
e�j



Ip �
� �Iq

�
R
���
e�j �



H
L

�
MjSM

�
j

�
H� L�

�
� Re�j �



H
L

�

Pj�� � Pj�

�
H� L�

�
� Rj �



H
L

�
Pj��

�
H� L�

�
� Re�j���

Therefore A is an inde�nite square	root of Re�j���

A � R
���
e�j��� 
����

Equating the 
�� �� blocks in 
���� yields�

B



Ip �
� �Iq

�
A� � 'Kp�j



Ip �
� �Iq

�
R
���
e�j � FMjSM

�
j

�
H� L�

�
� Kp�jRe�j � F 
Pj�� � Pj�

�
H� L�

�
� FPj

�
H� L�

�
� F 
Pj�� � Pj�

�
H� L�

�
� FPj��

�
H� L�

�
�
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Therefore

B � FPj��
�
H� L�

�
A��



Ip �
� �Iq

�

� FPj��
�
H� L�

�
R
����
e�j��



Ip �
� �Iq

�
� 'Kp�j��� 
����

Equating the 
�� �� blocks in 
���� yields

CSC� �B



Ip �
� �Iq

�
B� � 'Kp�j



Ip �
� �Iq

�
'K�
p�j � FMjSM

�
j F

��

Therefore

CSC� �Kp�j��Re�j��K
�
p�j�� � Kp�jRe�jK

�
p�j � F 
Pj�� � Pj�F

��

We can now write

CSC� � FPj��F
� �Kp�j��Re�j��K

�
p�j�� �GG�

�
FPjF � �Kp�jRe�jK
�
p�j �GG��

� Pj�� � Pj���

and �nally
C �Mj��� 
����

Note that our derivation of C also shows that if P� � P� � M�SM
�
� then

Pj�� � Pj � MjSM
�
j for all j�

We have thus established�
� R

���
e�j



H
L

�
Mj

'Kp�j FMj

�
��j �



R
���
e�j�� �

'Kp�j�� Mj��

�
�

from which we can now give the following fast Chandrasekhar version of
the parametrization of all H� a posteriori �lters�

Theorem � �Fast H� A Posteriori Recursions� The H� a posteri�
ori �ltering problem with level � has a solution if
 and only if
 all leading
submatrices of

R �



Ip �
� ���Iq

�
and Re�� �



Ip �
� ���Iq

�
�



H
L

�
��

�
H� L�

�
have the same inertia
 and if for all j � �� � � � � i there exist J�unitary
matrices �with J � Ip � 
�Iq�� S�
 �j
 such that�

� R
���
e�j



H
L

�
Mj

Kp�jR
���
e�j FMj

�
��j �

�
R
���
e�j�� �

Kp�j��R
���
e�j�� Mj��

	

�����
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where the algorithm is initialized with
 Re��
 Kp�� � F��

�
H� L�

�
R��
e��


and

P� ��� � F��F
� �GQG� �Kp��Re��K

�
p�� ��� �M�SM

�
� � 
�����

If this is the case
 then all possible H� a posteriori �lters
 %sjjj � Ff�j
y�� � � � yj�

are given by any choices that yield


kX
j��



yj �Hj �xj
%sjjj � Lj �xj

��
R��
e�j



yj �Hj �xj
%sjjj � Lj �xj

�
� �� � � k � i

where �xj satis�es the recursion


�xj�� � Fj �xj �Kp�j



yj �Hj �xj
%sjjj � Lj �xj

�
� �x� � ��

In the H� a priori �ltering problem� we need instead to start with the
pre	array� �

� R
���
e�j



L
H

�
Mj

Kp�jR
���
e�j FMj

�
� � 
�����

where now

Kp�j � FPj
�
L� H�

�
R��
e�j � Re�j �


 ���Iq �
� Ip

�
�



L
H

�
Pj
�
L� H�

�
�


�����
Note that the only di�erence with the a posteriori case is in the order of
the matrices fH�Lg�
Proceeding with an argument similar to what was done in the a posteriori

case� we can show the following result�

Theorem  �Fast H� A Priori Recursions� The H� a priori �lter�
ing problem with level � has a solution if
 and only if
 all leading submatrices
of

R �


 ���Iq �
� Ip

�
and Re�� �


 ���Iq �
� Ip

�
�



L
H

�
��

�
L� H�

�
have the same inertia
 and if for all j � �� � � � � i there exist J�unitary
matrices �with J � 
�Iq�� Ip � S�
 �j
 such that�

� R
���
e�j



L
H

�
Mj

Kp�jR
���
e�j FMj

�
��j �

�
R
���
e�j�� �

Kp�j��R
���
e�j�� Mj��

	

�����
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where the algorithm is initialized with
 Re��
 Kp�� � F��

�
L� H�

�
R��
e��


and

P� ��� � F��F
� �GQG� �Kp��Re��K

�
p�� ��� �M�SM

�
� � 
�����

If this is the case
 then all possible H� a priori �lters
 %sj � Ff�j
y�� � � � yj���

are given by any choices that yield


kX
j��



%sj � Lj �xj
yj �Hj �xj

��
R��
e�j



%sj � Lj �xj
yj �Hj �xj

�
� �� � � k � i

where �xj satis�es the recursion


�xj�� � Fj �xj �Kp�j



%sj � Lj �xj
yj �Hj �xj

�
� �x� � ��

Note that compared to the H� square	root formulas� the size of the pre	
array in the H� fast recursions has been reduced from 
p� q � n�� 
p�
q�n�m� to 
p� q�n�� 
p� q� d� where m� p and q are the dimensions
of the driving disturbance� output and states to be estimated� respectively�
and where n is the number of the states� Thus the number of operations
for each iteration has been reduced from O
n�� to O
n�d� with d typically
much less than n�
As in the square	root case� the fast recursions do not require explicitly

checking the positivity conditions of Theorems � and � � if the recursions
can be carried out then an H� estimator of the desired level exists� and if
not� such an estimator does not exist�

��� The Central Filters

The preceding section gave fast versions of all possible H� a posteriori
and a priori �lters� Here we shall specialize these recursions to the central
a posteriori and a priori �lters� We shall show that the observer gains for
these �lters can be obtained from the post	arrays of Theorems � and ��

provided we insist on 
block� lower triangular square	roots for R
���
e�j � The

development closely follows that of Sec� ��� and uses the important facts


established in Sec� ���� that if R
���
e�j is lower triangular� then Ks�j � the gain

matrix for the central a posteriori �lter� is given by�

Ks�j �
�
�rst block column of Kf�jR

���
e�j

�
	
�

�� �� block entry of R

���
e�j

���
�


�����
and Ka�j � the gain matrix for the central a priori �lter� is given by�

Ka�j �
�
second block column of Kp�jR

���
e�j

�
	
�

�� �� block entry of R

���
e�j

���
�


�����
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The following results are now readily establishable� 
The proofs are straight	
forward and will be omitted for brevity��

Algorithm � �Fast Central H� A Posteriori Recursions� If F is in�
vertible
 the H� a posteriori �ltering problem with level � has a solution
if
 and only if
 all leading submatrices of

R �



Ip �
� ���Iq

�
and Re�� �



Ip �
� ���Iq

�
�



H
L

�
��

�
H� L�

�
have the same inertia
 and if for all j � �� � � � � i there exist J�unitary
matrices
 �j 
 �where J � Ip � 
�Iq�� Sf � such that�

� R
���
e�j



H
L

�
FNj

Kf�jR
���
e�j FNj

�
��j �

�
R
���
e�j�� �

Kf�jR
���
e�j�� Nj��

	

�����

with R
���
e�j and R

���
e�j�� block lower triangular� The algorithm is initialized

with
 Re��
 Kf�� � ��

�
H� L�

�
R��
e��
 and

F
���P���	�F

�� � �	
F
��
GQG

�
F
��
�Kf�	Re�	K

�
f�	�F

���	F
�� � N	SfN

�
	 �

The gain matrix Ks�j needed to update the estimates in the central �lter
recursions

�xjjj � Fj���xj��jj�� �Ks�j
yj �HjFj���xj��jj���� �x��j�� � ��

is equal to

Ks�j � 'Ks�j
I �HjPjH
�
j �
�����

where 'Ks�j is given by the �rst block column of 'Kf�j � Kf�jR
���
e�j 
 and


I �HjPjH
�
j �

��� is given by the 
�� �� block entry of R
���
e�j �

Algorithm � �Fast Central H� A Priori Recursions� The H� a pri�
ori �ltering problem with level � has a solution if
 and only if
 all leading
submatrices of

R �


 ���Iq �
� Ip

�
and Re�� �


 ���Iq �
� Ip

�
�



L
H

�
��

�
L� H�

�
have the same inertia
 and if for all j � �� � � � � i there exist J�unitary
matrices
 �j 
 �where J � 
�Iq�� Ip � S� such that�

� R
���
e�j



L
H

�
Mj

Kp�jR
���
e�j FMj

�
��j �

�
R
���
e�j�� �

Kp�j��R
���
e�j�� Mj��

	

�����
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with R
���
e�j and R

���
e�j�� block lower triangular� The algorithm is initialized

with
 Re��
 Kp�� � F��

�
L� H�

�
R��
e�� and

P� ��� � F��F
� �GQG� �Kp��Re��K

�
p�� ��� �M�SM

�
� �

The gain matrix Ka�i needed to update the estimates in

�xj�� � Fj �xj �Ka�j
yj � Fj �xj�� �x� � ��

is equal to
Ka�j � 'Ka�j
I �Hj

�PjH
�
j �
�����

where 'Ka�j is given by the second block column of 'Kp�j � Kp�jR
���
e�j 
 and


I �Hj
�PjH

�
j �

��� is given by the 
�� �� block entry of R
���
e�j �

� Conclusion

In this paper� we developed square	root and fast array algorithms for the
H� a posteriori and a priori �ltering problems� These algorithms involve
propagating the inde�nite square	roots of the quantities of interest� and
have the interesting property that the appropriate inertia of these quantities
is preserved� Moreover� the conditions for the existence of the H� �lters
are built into the algorithms� so that �lter solutions will exist if�and only
if� the algorithms can be executed�
The conventional square	root and fast array algorithms are preferred be	

cause of their better numerical behaviour 
in the case of square	root arrays�
and their reduced computational complexity 
in the case of the fast recur	
sions�� Since the H� square	root and fast array algorithms are the direct
analogs of their conventional counterparts� they may be more attractive for
numerical implementations of H� �lters� However� since J	unitary rather
than unitary operations are involved� further numerical investigation is
needed�
Our derivation of the H� square	root and fast array algorithms demon	

strates a virtue of the Krein space approach to H� estimation and con	
trol" the results appear to be more di�cult to conceive and prove in the
traditional H� approaches� We should also mention that there are many
variations of the conventional square	root and fast array algorithms� e�g�
for control problems� and the methods given here are directly applicable
to extending these variations to the H� setting as well� Finally� the al	
gorithms presented here are equally applicable to risk	sensitive estimation
and control problems� and to quadratic dynamic games�

� References

�� P� Dyer and S� McReynolds� Extension of square	root �ltering to
include process noise� J� Optimiz� Theory Appl�� �����(���� �����



xxxv

�� P�G� Kaminski� A�E� Bryson� and S�F� Schmidt� Discrete square	root
�ltering� A survey of current techniques� IEEE Transactions on Au�
tomatic Control� ������(���� Dec� �����

�� H�L� Harter� The method of least	squares and some alternatives� Tech	
nical Report ARL ��	����� Aerospace Res� Lab�� Air Force Systems
Command� Wright	Patterson AFB� Ohio� Sept� �����

�� P� Businger and G�H� Golub� Linear least	squares solutions by House	
holder transformation� Math� Comput�� ������(���� �����

�� G�H� Golub and C�F� Van Loan� Matrix Computations� Johns Hopkins
University Press� Baltimore� MD� �rd edition� �����

�� R�A� Horn and C�R� Johnson� Matrix Analysis� Cambridge University
Press� Cambridge� �����

�� G� Strang� Introduction to Linear Algebra� Wellesley	Cambridge
Press� Wellesley� MA� �����

�� T� Kailath� Some new algorithms for recursive estimation in constant
linear systems� IEEE Transactions on Information Theory� ��
������(
���� Nov� �����

�� M� Morf� G�S� Sidhu� and T� Kailath� Some new algorithms for re	
cursive estimation in constant� linear� discrete	time systems� IEEE
Transactions on Automatic Control� ������(���� �����

��� A�H� Sayed and T� Kailath� Extended Chandrasekhar recursions�
IEEE Transactions on Automatic Control� ��
������(����March �����

��� A�V� Ambartsumian� Di�use re�ection of light by a foggy medium�
Dokl� Akad� Sci� SSSR� ������(���� �����

��� M� Morf and T� Kailath� Square	root algorithms for linear least
squares estimation� IEEE Transactions on Automatic Control�
��
������(���� �����

��� T� Kailath� S�Y� Kung� and M� Morf� Displacment ranks of matrices
and linear equations� J� Math� Analysis � Appls�� ��
������(���� April
�����

��� T� Kailath and A�H� Sayed� Displacment structure� theory and appli	
cations� SIAM Review� ��
������(���� Sep� �����

��� T� Basar� Optimum performance levels for minimax �lters� predictors
and smoothers� Systems and Control Letters� ������(���� �����

��� P�P� Khargonekar and K�M� Nagpal� Filtering and smoothing in an
H� setting� IEEE Trans� on Automatic Control� ������(���� �����



xxxvi

��� U� Shaked and Y� Theodor� H��optimal estimation� A tutorial� In
Proceedings of the IEEE Conference on Decision and Control� pages
����(����� Tucson� AZ� �����

��� M� Green and D�J�N� Limebeer� Linear Robust Control� Prentice	Hall�
Englewood Cli�s� NJ� �����

��� B� Hassibi� A�H� Sayed� and T� Kailath� Linear estimation in Krein
spaces 	 Part I� Theory� IEEE Transactions on Automatic Control�
��
�����(��� Jan� �����

��� B� Hassibi� A�H� Sayed� and T� Kailath� Linear estimation in Krein
spaces 	 Part II� Applications� IEEE Transactions on Automatic Con�
trol� ��
�����(��� Jan� �����

��� A�S� Householder� Principles of Numerical Analysis� McGraw	Hill�
New York� �����

��� J�H� Moreno and T� Lang� Matrix Computations on Systolic�Type
Arrays� Kluwer Academic Publishers� Boston� MA� �����

��� I� Yaesh and U� Shaked� H��optimal estimation 	 The discrete time
case� In Proc� of the Mathematical Theory of Networks and Systems�
pages ���(���� Kobe� Japan� June �����

��� B� Hassibi� Inde�nite Metric Spaces in Estimation
 Control and Adap�
tive Filtering� PhD thesis� Stanford University� �����

��� D� Mustafa and K� Glover� Minimum Entropy H� Control� Springer	
Verlag� New York� �����

��� P� Whittle� Risk�sensitive Optimal Control� John Wiley ) Sons� New
York� �����

��� T� Basar and P� Bernhard� H��optimal Control and Related Minimax
Design Problems� A Dynamic Games Approach� Birkhauser� Boston�
�����

��� T� Kailath� A�H� Sayed� and B� Hassibi� State Space Estimation�
Prentice	Hall� Englewood Cli�s� NJ� �����

��� T� Kailath� Lectures on Wiener and Kalman Filtering� Springer	
Verlag� New York� �����

��� N�J� Higham� Accuracy and Stability of Numerical Algorithms� Society
for Industrial and Applied Mathematics� Philadelphia� �����

��� G�W� Stewart� Introduction to Matrix Computations� Academic Press�
New York� �����



xxxvii

��� W�M� Gentleman� Least	squares computations by Givens transforma	
tions without square	roots� J� Inst� Math� Appl�� ������(���� �����

��� S�F� Hsieh� K�J�R� Liu� and K� Yao� A uni�ed square	root	free
approach for QRD	based recursive	least	squares estimation� IEEE
Transactions on Signal Processing� ��
�������(����� March �����

��� A�W� Bojanczyk and A�O� Steinhardt� Stability analysis of a
Householder	based algorithm for downdating the Cholesky factor	
ization� SIAM Journal on Scienti�c and Statistical Computing�
��
�������(����� �����

��� S� Chandrasekaran and A�H� Sayed� Stabilizing the generalized Schur
algorithm� SIAM Journal on Matrix Analysis and Applications�
��
������(���� �����

A Unitary and Hyperbolic Rotations

In this appendix we review three families of elementary 
unitary and hy	
perbolic� transformations that can be used to annihilate selected entries
in a vector� the Householder� Givens� and fast Givens transformations� For
more details� and historical background� see ��� 
Ch� ���� Special care
needs to be taken when dealing with complex	valued data as compared to
real	valued data� as we show in the sequel�

A�� Elementary Householder Transformations

Suppose we wish to simultaneously annihilate several entries in a row vector
via a unitary transformation� say to transform an n�dimensional vector

x �
�
x� x� � � � xn��

�
to the form �

� � � �
�
�

where� for general complex data� the resulting � may be complex as well�
One way to achieve this transformation is to employ a so	called House�

holder re�ection �� which takes a row vector x and aligns it along the
direction of the basis vector

e� �
�
� � � � � �

�
�

More precisely� it performs the transformation�
x� x� � � � xn��

�
� � � e�� 
A���
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Since� as we shall promptly verify� the transformation � that we shall em	
ploy is not only unitary but also Hermitian� we can be more speci�c about
the resulting �� In particular� it follows from 
A��� that the magnitude of
� must be equal to kxk� i�e�
 j�j � kxk� This is because

x�����z�
I

x� � kxk� � j�j� �

Moreover� it also follows from 
A��� that

x�x� � �x�� �

But since � will be Hermitian� we conclude that x�x� is a real number
and� hence� �x�� must be real as well�
This means that by rotating a vector x with a unitary and Hermitian

transformation � we can achieve a post	array of the form
�
� � � � � �

�
�

where � will in general be a complex number whose magnitude is the
norm of kxk and whose phase is such that �x�� is real� For example� � �
�kxkej�x� are possible values for �� where 	x� denotes the phase of x��
For real data� � � �kxk are the possible values for ���
Now� assume we de�ne

� � I � �
g�g

gg�
where g � x� � e� � 
A���

and � is the complex number chosen above� i�e�� � � �kxkej�x� � It can be
veri�ed by direct calculation that� for any g� � is a unitary matrix� i�e�


��� � I � ��� �

It is also clearly Hermitian�

Lemma � �Complex Householder Transformation� Given a row vec�
tor x with leading entry x�
 de�ne � and g as in �A��� where � is any
complex number that satis�es the following two requirements� j�j � kxk
and �x�� is real� Then it holds that

x� � ��e� �

That is
 x is rotated and aligned with e�� the leading entry of the post�array
is equal to ���

Algebraic� proof� We shall provide a geometric proof below� Here we
verify our claim algebraically� Indeed� direct calculation shows that

gg� � kxk� � ��x� � �x�� � j�j� �
� �kxk� � ��x�� � since j�j� � kxk� and ��x� � �x���
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Likewise�

xg�g � xkxk� � �kxk�e� � ��x�x� j�j�x�e� �
� xkxk� � �kxk�e� � ��x�x� �
��x��e� �

� xkxk� � �kxk�e� � ��x�x� �
�x���e� �

xgg� � �xkxk� � ��x��x �

and we obtain

x� �
xgg� � �xg�g

gg�
�
�
�kxk� � ��x����e�

�kxk� � ��x��
� ��e� �

A choice for �� and hence g� is

g � x� ej�x�kxk e� � 
A���

It leads to
x� � �ej�x�kxke�� 
A���

The choice of the sign in 
A��� depends on the choice of the sign in the
expression for g� Usually� the sign in the expression for g is chosen so as
to avoid a vector g of small Euclidean norm� since this norm appears in
the denominator of the expression de�ning �� In the real case� this can be
guaranteed by choosing the sign in the expression for g to be the same as
the sign of the leading entry of the row vector x� viz�� the sign of x���

A Geometric Derivation

The result of the above lemma has a simple geometric interpretation�
Given a vector x� we would like to rotate it and align it with the vector
e��This rotation should keep the norm of x unchanged� Hence� the tip of
the vector x should be rotated along a circular trajectory until it becomes
aligned with e�� The vector aligned with e� is equal to �e�� Here� as indi	
cated in Figure �� we are assuming that the rotation is performed in the
clockwise direction� The triangle with sides x and �e� and base g � x��e�
is then an isosceles triangle�
We thus have �e� � x�g� But we can also express this in an alternative

form� If we drop a perpendicular 
denoted by g�� from the origin of x to
the vector g� it will divide g into two equal parts� In fact� the upper part
is nothing but the projection of the vector x onto the vector g and is thus
equal to hx� gi kgk�� g� Therefore�

�e� � x� �hx� gikgk��g � x� �xg�
gg����g � x



I � �

g�g

gg�

�
� �z �

�

�



xl

x g

�e� e�

g�

FIGURE �� Geometric interpretation of the Householder transformation�

which leads to the Householder transformation of 
A����
Note that a similar argument holds for the choice g � �e� � x� The

Householder transformation re�ects the vector x across the line g� to the
vector �e�� So it is often called a Householder re�ection�

Triangularizing a Matrix

A sequence of Householder transformations of this type can be used to
triangularize a given m � n matrix� say A� For this we �rst �nd a trans	
formation �� to rotate the �rst row to lie along e�� so that we have A��

of the form 
where � denotes entries whose exact values are not of current
interest��

A�� �

�
���������


�
��� � � � �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
� ���

� ��� A�

� ���

�
���������
�

Now apply a transformation of the type

�
������

�
���

	 	 	 	 	 	 	 	 	
��� ��

���

�
������ �

where �� rotates the �rst row of A� so that it lies along e� in an 
n �
��	dimensional space� and so on� This so	called Householder reduction of
matrices has been found to be an e�cient and stable tool for displaying rank
information via matrix triangularization and it is widely used in numerical
analysis 
see� e�g�� ��� �� �����
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A�� Elementary Circular or Givens Rotations

An elementary �� � unitary rotation � 
also known as Givens or circular
rotation� takes a ��� row vector x �

�
a b

�
and rotates it to lie along the

basis vector e� �
�
� �

�
� More precisely� it performs the transformation�
a b

�
� �

�
� �

�
� 
A���

where� for general complex data� �may be complex as well� Furthermore� its
magnitude needs to be consistent with the fact that the pre	array�

�
a b

�
�

and the post	array�
�
� �

�
� must have equal Euclidean norms since� In

other words� � must satisfy

j�j �
p
jaj� � jbj� �

An expression for � that achieves the transformation 
A��� is given by

� �
�p

� � j�j�



� ��
�� �

�
where � �

b

a
� a � �� 
A���

In the trivial case a � �� we simply choose � to be the permutation
matrix�

� �



� �
� �

�
�

We �nally note that� in the special case of real data� a general unitary
rotation as in 
A��� can be expressed in the alternative form�

� �



c �s
s c

�
where the so	called cosine and sine parameters� c and s� respectively� are
de�ned by

c �
�p

� � j�j� � s �
�p

� � j�j� �

This justi�es the name circular rotation for �� since the e�ect of � is
to rotate a vector x along a circle of radius kxk� by an angle � that is
determined by the inverse of the above cosine and*or sine parameters�
� � tan�� �� in order to align it with the basis vector

�
� �

�
� The trivial

case a � � corresponds to a �� degrees rotation in an appropriate clockwise

if b � �� or anti	clockwise 
if b � �� direction�

Triangularizing a Matrix

Matrix triangularization can also be e�ected by a product of Givens
transformations� each of which introduces a zero in a particular location�
For example� suppose that

x � � � � � xi� � � � � xj � � � �� �
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and we wish to null out xj using xi� Then let � � xjxi� and de�ne

� �

�
�������������

�
�

�p
��j�j�

��p
��j�j�

�
�

��p
��j�j�

�p
��j�j�

�
�

�
�������������
�

Except for the � terms� all o�	diagonal entries are �� Then we can see that

x� � � � � � �� � � � � �� � � �� �

where the entries indicated by � � � are arbitrary and unchanged by �� while
the resulting � will be of the general form

� � � ej�xi
q
x�i � x�j �

To systematically triangularize a p� p matrix A� apply a sequence of p� �
such transformations to zero all entries in the �rst row of A expect for
the �rst element� Proceed to the second row of the thus transformed A
matrix and apply a sequence of p � � transformations to zero all entries
after the second one� The �rst row has a zero in every column a�ected by
this sequence of transformations� so it will be undisturbed� Continuing in
this fashion for all rows except the last one� we will transform A to lower
triangular form�
In general� the Givens method of triangularization requires more com	

putations than the Householder method� It requires about ��+ more mul	
tiplications� and it requires one scalar square root per zero produced as
opposed to one per column for the Householder method� However� the
Givens method is more �exible in preserving zeros already present in the A
matrix and can require fewer computations than the Householder method
when A is nearly triangular to begin with 
see ����� Moreover� there is a
fast version� presented next� that uses ��+ fewer multiplications�

A�� Fast Givens Transformations

In ��� it is also shown how proper prescaling can be used to avoid arith	
metic square roots in the Givens algorithm� Moreover� the resulting algo	
rithm uses half as many multiplications� The idea is to introduce weighted
norms� so that the rotational invariance is expressed as

pDpp
� � qDqq

� � 
A���
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where fp� qg are given ��� row vectors and fDp� Dqg are diagonal weighting
matrices with positive elements� Dp can be arbitrary and Dq is selected so
that there are no arithmetic square	roots in the actual transformation�
We will not present the details of the fast Givens transformation here�

Interested readers can refer to ���� We should remark that there are several
variants of such fast rotations� including some that avoid both arithmetic
square	roots and divisions 
see� e�g�
 ����� These modi�ed Givens trans	
formations tend to su�er from possible over�ow*under�ow problems � so
called self	scaling fast Givens rotations have also been studied�

A�� Hyperbolic Transformations

In H� array algorithms� as well as in fast 
Chandrasekhar� array algo	
rithms� it is necessary to use hyperbolic transformations� rather than uni	
tary transformations� We therefore exhibit here the necessary modi�ca	
tions�

Elementary Hyperbolic Rotations

An elementary � � � hyperbolic rotation � takes a row vector x ��
a b

�
and rotates it to lie either along the basis vector e� �

�
� �

�

if jaj � jbj� or along the basis vector e� �

�
� �

�

if jaj � jbj�� More

precisely� it performs either of the transformations��
a b

�
� �

�
� �

�
if jaj � jbj 
A����

a b
�
� �

�
� �

�
if jaj � jbj 
A���

where� for general complex data� �may be complex as well� Furthermore� its
magnitude needs to be consistent with the fact that the pre	array�

�
a b

�
�

and the post	array�
�
� �

�
� must have equal Euclidean J�norms� e�g�


when jaj � jbj we get

�
a b

�
�J��� �z �

J



a�

b�

�
�
�
� �

�
J



��

�

�
�

where

J �



� �
� ��

�
� 
����� �

By the J�norm of a row vector x we mean the inde�nite quantity xJx��
which can be positive� negative� or even zero� Hence� for jaj � jbj� � must
satisfy

j�j� � jaj� � jbj� �
and its magnitude should therefore be equal to

j�j �
p
jaj� � jbj� �
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When jbj � jaj we should get

j�j �
p
jbj� � jaj� �

An expression for a J�unitary hyperbolic rotation � that achieves 
A���
or 
A��� is given by

� �
�p

�� j�j�



� ��
��� �

�
where � �

b

a
� if jaj � jbj 
A����

� �
�p

�� j�j�



� ��
��� �

�
where �� �

a

b
� if jaj � jbj 
A����

For real data� a general hyperbolic rotation as in 
A���� or 
A���� can
be expressed in the alternative form�

� �



ch �sh
�sh ch

�

where the so	called hyperbolic cosine and sine parameters� ch and sh� re	
spectively� are de�ned by

ch �
�p

�� j�j� � sh �
�p

�� j�j� �

This justi�es the name hyperbolic rotation for �� since the e�ect of � is to
rotate a vector x along the hyperbola of equation

x� � y� � jaj� � jbj��

by an angle � that is determined by the inverse of the above hyperbolic
cosine and*or sine parameters� � � tanh�� �� in order to align it with
the appropriate basis vector� Note also that the special case jaj � jbj cor	
responds to a row vector x �

�
a b

�
with zero hyperbolic norm since

jaj� � jbj� � �� It is then easy to see that there does not exist a hyperbolic
rotation that will rotate x to lie along the direction of one basis vector or
the other�
There exist alternative implementations of the hyperbolic rotation � that

exhibit better numerical properties� Here we brie�y mention two modi�ca	
tions�

Mixed Downdating

Assume we apply a hyperbolic rotation � to a row vector
�
x y

�
� say

�
x� y�

�
�

�
x y

� �p
�� j�j�



� ��
��� �

�
� 
A����
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Then� more explicitly�

x� �
�p

�� j�j� x� ��y� � 
A����

y� �
�p

�� j�j� ��x� y� � 
A����

Solving for x in terms of x� from the �rst equation and substituting into
the second equation we obtain

y� � � �x� �
p
�� j�j� y � 
A����

An implementation that is based on 
A���� and 
A���� is said to be in
mixed downdating form� It has better numerical stability properties than
a direct implementation of � as in 
A���� ( see ����
In the above mixed form� we �rst evaluate x� and then use it to compute

y�� We can obtain a similar procedure that �rst evaluates y� and then uses
it to compute x�� For this purpose� we solve for y in terms of y� from 
A����
and substitute into 
A���� to obtain

x� � � ��y� �
p
�� j�j� x � 
A����

Eqs� 
A���� and 
A���� represent the second mixed form�

The OD Method

The OD 
Orthogonal	Diagonal� procedure is based on using the SVD
of the hyperbolic rotation �� Assume � is real and write � � ba� where
jaj � jbj� Then it is straightforward to verify that any hyperbolic rotation
of this form admits the following eigen	decomposition�

� �
�p
�



� �

�� �

���
q

a�b
a�b �

�
q

a�b
a�b

�
�
 � ��

� �

�
�p
�

�
� QDQT �


A����
where the matrix

Q �
�p
�



� �

�� �

�
is orthogonal 
QQT � I�� and T denotes transposition�
Due to the special form of the factors 
Q�D�� a real hyperbolic rota	

tion� with j�j � � can then be applied to a row vector
�
x y

�
to yield�

x� y�
�
as follows 
note that the �rst and last steps involve simple ad	

ditions and subtractions��



xlvi

�
x� y�

�� �
x y

� 
 � �
�� �

�

�
x�� y��

�� �
x� y�

� �� �
�

q
a�b
a�b �

� �
�

q
a�b
a�b

�
�

�
x� y�

�� �
x�� y��

� 
 � ��
� �

�
This procedure is numerically stable� as shown in ���� An alternative so	
called H	procedure is also described in the same reference� It is costlier than
the OD method� but is more accurate and can be shown to be  forward!
stable� which is a very desirable property for �nite precision implementa	
tions�
When � is a complex number� the unitary matrix Q becomes complex�

If we now write � � ba� then j�j � jbjjaj and jaj � jbj� and we obtain

Q �
�p
�

�
� � �

� jaj
a

b
jbj

jaj
a

b
jbj

�
� � D �

�
��
p
jaj�jbjp
jaj�jbj p

jaj�jbjp
jaj�jbj

�
�� �

Hyperbolic Householder Transformations

Let J be an n� n signature matrix such as

J �



Ip �
� �Iq

�
� p� q � n�

We are now interested in a J�unitary Householder transformation � that
takes a � � n row vector x and aligns it either along the basis vector
e� �

�
� �

�

if xJx� � �� or along the basis vector en�� �

�
� �

�

if xJx� � ���
Hence� we require � to perform either of the transformations

x� � �� e� if xJx� � � 
A����

x� � �� en�� if xJx� � � � 
A����

where� for general complex data� the resulting � may be complex as well�
When xJx� � �� we de�ne

� � I � �
Jg�g

gJg�
where g � x� � e� � 
A����

and � is a complex number that satis�es j�j� � xJx� and �x�� is real� It
can be veri�ed by direct calculation that � is a J�unitary matrix� i�e�


�J�� � J � ��J� �
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When xJx� � �� we use the same expression for � but with

g � x� � en�� � 
A����

and � a complex number that satis�es j�j� � �xJx� and �x�n�� is real�

Lemma 
 �Complex Hyperbolic Householder Transformation� �
Given a row vector x with leading entry x� and xJx� � �
 de�ne � and
g as in �A���� where � is any complex number that satis�es the following
two requirements �see below�� j�j � p

xJx� and �x�� is real� Then it holds
that

x� � ��e� �
That is
 x is rotated and aligned with e�� the leading entry of the post�array
is equal to ���
For a vector x that satis�es instead xJx� � �
 and with trailing en�

try xn��
 we choose g as in �A���� where � is any complex number that
satis�es� j�j �pjxJx�j and �x�n�� is real� Then it holds that

x� � ��en�� �

Algebraic� proof� We prove the �rst statement only since the second one
follows from a similar argument� Direct calculation shows that

gJg� � �xJx� � ��x�� �

xJg�g � x
xJx�� � �
xJx��e� � ��x�x� �
�x���e� �

xgJg� � �x
xJx�� � ��x��x �

Therefore�

x� �
xgJg� � �xJg�g

gJg�
� ��e� �

Geometric Derivation

The geometric derivation presented earlier for Householder transforma	
tions still applies provided we use  J	inner products!� i�e�
 provided we
interpret

hx� giJ � xJg��

Then we can write� for example� when kxkJ �
p
xJx� � ��

��e� � x� �hx� giJ kgk��J g � x

�
I � �

Jg�g

gJg�

�
�

where
g
�
� x� � e� �

Table � collects the expressions for the several rotations that we have con	
sidered in the earlier discussion�
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TABLE �� Unitary and hyperbolic rotations�

Rotation Expression E�ect

Circular � � �p
��j�j�



� ��
�� �

�
�

�
a b

�
� �

� �ej�apjaj� � jbj� �
�
�

or Givens � � b
a � a � ��

Permutation � �



� �
� �

�
� a � ��

�
� b

�
� �

�
b �

�
�

Hyperbolic I � � �p
��j�j�



� ��
��� �

�
�

�
a b

�
� �

� �ej�apjaj� � jbj� �
�
�

� � b
a � a � � � jaj � jbj�

Hyperbolic II � � �p
��j�j�



� ��
��� �

�
�

�
a b

�
� �

�
� �ej�b

p
jbj� � jaj�

�
�

�� � a
b � b � � � jaj � jbj�

Unitary � � In � � g�g
gg� �

�
x� � � � xn��

�
� � �ej�x�kxke��

Householder g � x� ej�x� kxk e��

Hyperbolic � � I � � Jg�g
gJg� �

�
x� � � � xn��

�
� � �ej�x�

p
jxJx�je��

Householder I g � x� ej�x�
pjxJx�j e�� e� �

�
� � � � � �

�
�

xJx� � ��

Hyperbolic � � I � � Jg�g
gJg� �

�
x� � � � xn��

�
� � �ej�xn��pjxJx�jen���

Householder II g � x� ej�xn��
pjxJx�j en��� en�� �

�
� � � � � �

�
�

xJx� � ��


