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ARRAY AUTOMATA AND ARRAY GRAMMARS 

David L ~ Milgram 
and 

Azriel Rosenfeld 

ABSTRACT 

It is shown that grammars that rewrite arrays are 

equivalent to Turing machines having array "tapes", and 

that "monotonic" array grammars ( in which arrays never 

shrink in the course of a derivution) are equivalent to 

"array-bounded" machines. It is also shown that Lwo 

alternative definitions of "array-bounded" are in fact 

equivalent. 
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1. Introduction 

During the past tew years, several investigators have 

studied automata that make use of two-dimensional (or even n•

dimensional) "tapes" [1-:,]. 'l'here has also been some interest 

in grammars whose languages are sets of arrays rather than 

sets of strings [4-5]. 

The purpose of this paper is to show that array grammars 

are equivalent to Turing machines with array "tapes", and that 

"monotonic" array grammars (in which arrays never shrink in 

the course of a derivation) are equivalent to "array-bo1.lllded" 

machines (analogous to linear-bounded automata). It is also 

shown that two alternative definitions of "array-bounded" are 

in fact equivalent. 

• "ft I! ' t'Ortlb 
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2. Array grammpre and Turing machines 

We define a Turing arrv acceptor (TAA) to be a 5-tuple 

T = (Q,Z,O,qs,P), where 

Q is a finite set ot states ot the form Q'x6 (A= {L,R,U,D1) 

% is a finite aet of symbols 

(q
8

,R) t Q ia a start state 

F !;:; Q is a set of final states 

O is a mapping from QxZ into 2QxZxA such that the triples 
in the iJD88e S8ts are allot the form ((q,Y),B,Y), YEA. 

Here Q' can be thought of as a set ot "internal" states and A as 

a set of directions ("left", "right", "up", "down"); for reasons 

that will become apparent belo~J, it ia convenient it the state of 

T at any time contains information about the direction that T 

has just come from. The interpretation of 6 ia as follows: 

If Tis in internal st~te p and has just moved in direction X, 

and it reads symbol A, it goes into aome internal state q, writes 

symbol B, and moves in direction Y. 

Tis called deterministic if the image under 6 of every 

pair in QxZ is a_ siDBleton;* otherwise, nondeterministic. T 

is called finite-state (an PSAA, for short) if it can never re

write the symbols that it reads -- in other words, if every 

triple in the image ot any ((p,X),A) under O ia of the form 

( ( q, y) ,A' y) • 

Let G be an array: on J, i.e. a mapping from IxI (where I 

is the integers) into Z. The image ot (i,j) E IxI under G 

* For brevity, we shall oait the braces and represent these 
singletons by their sole elements. 

5 
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will be called the value of (i,j). We want to define a notion 

of "acceptance" ot G by T along the following lines: T starts 

at some point of IxI in its start state, and reads (and rewrites) 

the values of points as it moves around i it "accepts" G if it 

ever goes into a final state. Clearly, however, if we do not 

somehow restrict G to some finite portion of IxI, and require 

T's starting point to lie in that portion, we cannot guarantee 

that Twill be able to see all of Gin any finite number of 

mo~es, so that acceptance will have to be based on incomplete 

information. We shall therefore assume here that Z contains 

a distinguished symbol#; that in any array, all but finittily 

many points have value#; and that when given an array to test 

for acceptance, T starts at a point that does not have value 

#, if such a point exists. Moreover, we shall assume that the 

set P of points that have values other than# is corm§cted*; 

if we did not do so, it is evident that T could never know 

when it has seen all of P. 

In summary: By an input array on Z wa mean a mapping G 

from Ixl into Z aur.h that the preimage P .of Z-(#} is finite 

and connected. We allo•, T to operate on G by starting with 

a pair whose terms are the start state of T and a point (i,j) 

of P (the initial "position" of T). The mapping fl is applied 

to the pair ((q
8

,R),A), where A is the value of II at (i,j). 

* We say that Pis connected if for any (i,j), (h,k) in P 
there exist (i0 ,j 0), ••• ,(in,jn) in P such that (i0 ,j 0) = 

(i,j), (in,jn) = (h,k), and lim-1m_1 1 + ljm-jm_1 1 = l, 

limin (" ( im, j 11 ) and ( im-l 'jm-l) are adjacent"). 

,----..._...,,_ ... _, ___ ..... .. , ... ------·-----
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It ( (q ,X) ,B,X) • is a triple in 0( (q
8 

,R) ,J.), ve regard T ae having 

rewritten A as B (i.e., G. now has value Bat (i,j)), and we re

gard tqe new position of T aa being 

(i-1,j), it X=L (i+l ,j), if Xa:R 

(i ,j-l), if X-=D 

We can then apply the mapping Oto the pair ((q,X),C), where C 

is the value of G at the new position. It any such sequence ot 

applications of O leads to a triple ¥hose first term is in F, 

we say that T accepts G. 

We define an arra.y grammar (AG) to be a 5-tuple G c 

(V,!,R,#,S), where 

Vis a finite set of symbols, called the vocabulary 

Z cV is called the terminal vocabulary 

# £ V-Z is called the blank symbol 

s £ V-1 is called the initial eymbol 

Risa finite set of rewriting rules, each of which is a 
pair (Gp, Gp), where Pis a finite connected subset 

of IxI, and Gp, ui, are mappings from Pinto V. We 

assume.that terminal symbols ar~ never rewritten, i.e. 

that it (1,j )£p and fJp takes (1,j) into atZ, then G. j, 

also takes (i,j) into a. 

We say that the array B' on Vis directly derivable in G from 

the array B if, for some (G.p,Gp) in R, there exists a translate 

P* of P such that the restriction ot B to ptt is G. P, and ft' is 

the same as B ott P* and is equal to Up on P*. We say that ft 

is derivable in G from B it there exist B = Bo• 8i, ... , Bn :s B' 

such that B m ie directly derivable from Bm-l' limin. By an 

7 
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initial array we mean an array on lS.#} in which the prei.Ju.Be of 

S consista of exactly one point; by a terminal array we mean an 

array on z.J{#} in which the praimage of Z is connected. By the 

language of G we mean the set of terminal arrays that are deri

vable from initial arrays. (Evidently. in any such terminal array 

the preiJ1188e of Z must be finite. since the array results from a 

finite number of rewriting rule applications, each of which can 

create only finitely many symbols in i.) 

It is easy to show, just as for string grammars, that it G 

ia any AG • there exists an AG G' • having the same language as G • 

whose rules all have P's consisting of a single point (i.j) or 

a pair of adjacent points; it can also be assumed, in the latter 

caae, that Gp and Gp both give (1,j) the same value. We shall 

use the notation A• B for a rule in which Pis a single point, 

and the values given to P by the two members of the rule are A 

and B, reapectively. Similarly, let P consist of two points, 

one of which (say (i,j)) ia given the values C and C' by the two 

members of the rul.e, while the other point gets the respective 

values A and B. 

If the other point is We denote the rule by 

(i-1,j) CA -C'B 

(i+l,j) AC -BC' 
(1,j-1) C C' 

A. -B 
(i,j+l) A _B 

C C' 

It will sometimes be conTenient to denote CA by C,gA, AC by CLA.' 

i by Cn-1, and ~ by CuA; a generic two-point rule 11tmbe1· can then 

be denoted by Cr' (X = L,R,D, or U). 

8 
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Our goal in this section ie to establish 

Theorem 1. Let: be the language of an AG; then there exists a 

TAA that accepts juat the arrays oft. Conversely, let g be 

the set of input arrays accepted by a Til; then there exists 

an AG whose language ie g • 

We first need 

}7oposition 2. Let Z' be a finite set of symbols, and suppose 

that i• is the disjoint union of z1 , z2 , and[#}. There exists 

a deterministic TAA which, given an input array on J' and an 

initial position in the preimage of z1uz2 , will accept the 

array if and only if the pre image of z2 ie empty. 

Proof: One can evidently define a deterministic TAA that follows 

a space-filling "square spiral" around its initial position, 

marking the tape (by rewriting its symbols) as it goes. If it 

finds a symbol in z2 , it goes into an absorbing non-final state; 

if it has not yet found such a symbol, and finds nothing but #'a 

for a complete turn of the spiral, it goes into a final state. 

Since the preimage of z1uz2 on an input array must be finite 

and connected, it is clear that this Til will go into its final 

state if and only if the preimage of z2 is empty. Note that if 

the array contains nothing but #'s, our Til can accept it imme

diately, since by our conventions, only then can its initial 

position be on a#. // 

It follows readily from the proof of Proposition 2 that a 

deterministic TAA can always find (e.g. ) the "upper left hand 

corner" of its input array -- i.e., the leftmost non-# on the 
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highest row that contains non-#'s. Thus there is no need to 

require, in defining the notion of acceptance, that the Til 

always start in a distinguished position on the array. 

Using the proof of Proposition 2, one could also describe 

a deterministic TAA that circumscribes a rectangle (say m by n) 

around the non-#'e in its input array, and then maps the 

rectangle into a string of length mn. It could also create 

an extra segment of length m to use as a counter in making 

moves of exactly m steps to the right or left on the string, 

which simulate single moves up or down on the original array; 

thus it could imitate a given TAA while moving only on a string. 

Whenever the given TAA had to extend the array, its string 

simulator could lengthen the string appropriately. Since in 

the string case, nondeterministic Turing acceptors are equi

valent to deterministic ones, this construction can be used 

to establish the analogous result for the array case. We 

could also use this approach to prove Theorem 1, but shall 

give a direct proof instead. 

To prove tAe first part of Theorem 1, let 

Q' = (q
8

,qt)u(qAIAtV1, where Vis the vocabulary 

of the given AG 

Z ~ V'U(V'xV), where V' consists of the terminal vo

cabulary of the given AG together with# 

For all atV', let 

1) O((qs.x),a) = (((qs,Y),(a,#),Y) I YEll)u(((qs,Y),(a,S),Y) I YE/1) 

for all XtA, where Sis the initial symbol of the given AG. 

In other words, our TAA can remain in the start internal 

,men 

., (l 1 . 
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I 
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I 
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state and move around, revritin& a's ae (a,#)'a; it 

changes from this state only when it rewrites one of 

the a's as (a,S). 

2) 0( (qc ,I) ,a) a: Ta#UT~#UTaCX# 
for all AtV, CEV and XE6, 

o((q0 ,x),(a,A)) = TaAur~uTacnUTXaA where 

TaA = (((qA 1Y),(a,A),Y) I Yt6} 

In other words, when our TAA is in one of the q0 

states, it can also more around arbitrarily, re

writing a's as (aJt)'a it it finds them; at each 

move, its internal state changes to match the 

second term of the symbol-pair it hae just left. 

Td = (( (qB, Y), (a ,B), Y) I Yt6; A-B a rule of the given AG) 

Alternatively, if our Til ia in a q0 state and finds 

a symbol A , or second term A, such that A -B is a 

rule, it can apply the rule. 

TaCli = (((qB, Y), (a ,B), Y) I Yt6; CxA-CxB a rule of the AG 1 

Similarly, if our TAA is in state (q0 ,x), and finds 

a symbol A or second term A such that CxA-CxB is a 

rule, it can apply the rule. By our earlier remarks, 

we can assume that all the rules of the given AO are 

of these forms. Thus our Til can mov-e around and 

imitate, on second terms of pairs, the action of the 

AG's rules; the first terms 

TiaA = (((qt ,x-1 }, (a ,A) ,x-1 )1 , 

of pairs remain unchanged. 
-1 -1 T,.-1 where L =R, R =-L, u = 

-1 D, D =U: At any stage, our TAA can also go into 

the new internal state qt and reverse its latest 

move (so that it always moves back to a pair}. 

~ 1 1 ... 
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3) Throughout (1-2), the set ot points having Talues other 

than# always remains connected. We thus know that, 

using Proposition 2, we can now introduce new states 

and symbols, and extend the definition of 6, so that 

when our TAA has gone into the qt eta te, it de·~ermi

nie tically teats the array to check whether every non

symbol is a pair of the form (a,a) for some atV'. 

Evidently, this can be the case if and only if the 

original array was in the language of the given AO. 

If so, the TAA enters a final state; otherwise not. 

Note that even if the original array consisted entirely 

ot #'s, the array tested always has pairs in it, so 

that its non-# part is nonempty. 

To prove the second part of the theorem, let 

v = zu(Zxh(Qu(0,11)) 

where Z is the set of symbols and Q the set of states of the 

given TAA. Let Z-(#}C:V be the terminal vocabulary; let 

(#,#,l)tV be the initial symbol; and let R consist of the 

following rules·: 

1) (#,#,1) - (a,a,l) 

(a,a,l)x# -(a,a,O)x(b,b,l) 

(a,a,l)x(b,b,O) - (a,a,O)x(b,b,l) 

for all a,b in Z- (#1 and all X£6. These rules create, 

from an initial array consisting entirely of #'sex

cept for a single (#,#,1), an arbitrary finite connec

ted array of (a,a,O)'s, in just one of which the third 

term is 1 rather than O. 

.. 
12 
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2) (a,a,l) - (a,a,(q
8

,R)) for all a E ~(#1 

At any stage of (1), the (a,a,l) can turn into a triple 

whose third term is the start state of the given TAA. 

3) (a,b,(p,X))y(c,d,O) - (a,e,O)y(c,d,(q,Y)) 

(a, b, lp ,X) )y# - (a ,e, O)y ( # ,#, (q • Y)) 

tor all a,c,d in%; 

tor all a£% 

-- provided ((q,Y),e,Y)te((p,I},b) for the given Til 

and (p,X) is not a final state. Using these rules, th~ 

grammar now simulates the behavior of the TAA on the 

input array G of second terms of the triples created 

by (1). The unique point with nonzero third term rep

resents the TAA's position at any stage. 

4) (a, b, (p ,I}) ... a for all a ,b in .Z and all final states (p ,X); 

a1 (b,c,O)- a1b for all. a,b,c in Zand all XE~. 

If the simulated TAA enters a final state, the array of 

triples can be turned into the array G. Thus G is a 

terminal array of our grammar if and only if it is an 

array that the given TAA accepts. // 

13 
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3. Monotonic array grammars and array-bounded machin~s 

A TAA will be called array-bounded (an ABA) if it "bounces 

off" #'s, i.e., if every triple .1n the image of any ( (p,X) ,#) 

under O is of the form ((q,X-1 ),#,X-1 ). It will be assumed that 

the input array of an ABA always contr.1ins a non-#. 

An AG ~ill be called monctonic (an MAG) if it cannot 

create #'s in other words, if (Gp, rl>) is any rule, and r p 
takes (1,j)EP into#, so does rp; ~hus in the course of any 

derivation, the number of non-#'s is monotonically nondecreasing. 

Our goal in this section is to prove 

Theorem 3. Let £ be the language of an ¥.AG; then there exists 

an ABA that accepts just the arrays oft. Conversely, let ~ 

be the set of input arrays acc~pted by an ABA; then there 

exists an NAG whose language is ~ • 

Our proof will make use of the analog of Proposition 2 

for ABA's (see Theorem 4 below); given this, Theorem 3 follows 

readily from th~ proof of Theorem 1. 

To see the first part, note that in the proof of the first 

part of Theore~ 1, if the AG i; monotonic and generates the 

given input array, it must do 30 from an initial S located at 

one of the non-#'s of that arr~y, since otherwise it would have 

to create at least one# (wher~ the S initially was). Thus in 

step (1) of the proof, our TAA need not leave the non-#'s. 

Similarly, in step (2), t~e sy~bole rewritten by the rules of 

the AG need never lie outside the non-# points, so that our 

TAA need never leave these points to apply these rules. (It 

can, however, detect i's that a~e ndjacent to non-#'e when it ( 
.,,, 

; ........ .. ..,.~ . 



"bounce~ of:" them, so that it can use ther.: as context when 

neces2ary.) Finally, in step (3) 1 the analog of Proposition 

2 can be used to show trutn ar. ABA can check, without leaving 

the non-#' s, whether they are all p!:i.irs of th~ form (a ,a). 

~onversely, in the seco~d part of the procf of Theorem 

1, the only rules that could possibly create # 's are those 

in (4); but if the TAA being simulated bounces off# • s I we 

need DeT~r ttC·~. then, ..i..n._c triples, so that the rules tn (4) 

will never create #'s. // 

One could also consider array grammars that are '' isotonic" 

in the sense that #'s are neither created nor destroyed by any 

rule, so that the number of non-#'s remains constant throughout 

any derivation: here initial P.rraye having arbitrnry finite 

connected sets of S's, rather than just a sinP,le S, would have 

to be allowed (see (5)). It is cle~r that if one of these S's 

is distingulshPd from the othf"rs (call the others T's), such 

grammars are exactly as powerful as l·1AG' e , since we can regard 

the T's as the # · ,1 that a MAG would h11ve destroyed (and never 

re-created) in the course of e derivation. A more difficult 

question is whether such gra.mn,4rs are still as powerful as 

MA.G's if there is no distinguished S. (This question does not 

arise for strings, since (e.~.) the leftmost Sis always dis

tinguished by virtue of having a # to i ta left, and it can then 

be shifted into any position. Similarly, if arrays of non-#'s 

P.re always assum~d to be recta!1gular, there are always distin

guist:.od S's, e.p;. those in the corners.) 

15 



Theorem 4. Let 2:' be as in Proposition 2. There exists a deter

ministic ABA which, given an input array on%' and an initial 

position in the pre image of z1
1
~ · 2:2 , will accept tne array if and 

only if the preinage of z2 is empty. 

Proof: By our definition of ABA, the preimage P of t 1·..; E2 is 

nonempty. Some of the points of P are boundar~· points, i.e. , 

they are adjacent to #'s; some of these boundary points belong 

to the "outer bcundary" of P, while others may belong to the 

boundaries of "holes" in P (i.e., connected components of #'s 

tnat are completely surrounded by P). Bach of these boundaries 

can be reeHrded as the discrete analog of a simple closed curve, 

and it is not difficult to define a deterministic ABA that can 

"follow" any such boundar:: in :i specified sense (say counter

clockwise) without being (!onfuaed by the fact that the boundary 

may share points with other boundaries, or may even pass through 

some points morp than once. 

We shall first show that there exists a deterministic ABA 

that can find the outer bounda:--y of P, no matter where in Pits 

initial position may have been. In the following description of 

this A.BA, it is understood that all marks made by it do not inter

fere with each other or with the original values of the points of 

P, and tha.t if it passeu through a point twicP. in following a 

boundary, the m1.rks it rnakes at that point do not interfere with 

onP. another. Informally, our ABA. operates as follows: 

1) Whenever p0:isible, it moves \;\pward. 

2) If it hits a boundary, it marks the point bat which this 

happened, and begins to follow the boundary. At each step 

1~ 
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of the boundary following process, if it has just moved 

downward, it writes a special mark; in addition, before 

·.r.e firnt step, 1 t wrj t~s one of the special marks at b. 

If it h~s just moved upward, it temporarily marks the 

boundary point b' where tr.is r.appened, goes back along 

the boundary, erases the first special mark it finds, 

returns to b', erases its temporary mark, and continues 

foll0w:.n.'"7 the boundary. (Note that this procedure, in 

£·ffect, uses the boundary as a pushdown stack to count 

the net number of downward moves.) 

3) If it rea:!hes the point h while 1 :>eking for a special mark 

to erasP. and b no longer has a special mark, b' must be 

strictly higher than b; it then erases the mark at band 

:-eturn13 ·.ob'. If it iri possible to move upward from b', 

our ABA ~rases the mark at b' and returns to step (1). 

If b' ha • a # above it, our .A.BA marks it the way b was 

originally marked ana continues as in step (2), treating 

b' as th<' new b. 

4) If the boundary being followed is the boundary of a hole, 

the points on it that hnve #'s above them cannot be its 

highest points; thus this procedure will eventually get 

us to anoint from which it is possible to return to (1). 

On the ot her hand, if we are following the outer boundary, 

and b has nothing but # 1 s directly above it, then (2-3) 

will ever·tually get b to the topmost row of P, and will 

follow th~ outer bounjary completely around to b a~ain 

without ~vP.r erasing the spP-c~al filark ~t b. Thus if thi~ 
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ever happens, we know that the boundary on which b lies i:;; 

the outer boundary of P, and that bis on the top row cf P. 

Moreover, it must: happen eventually, since each repetition 

of (1-3) takes us to a strictly higher point b, and this 

c~nnot continue indefinitely in a finite P. 

We can next go around the outer boundary again and mark it, 

so that it can be distinguished from now on from the boundaries 

of holes. To complete the proof of the theorem, we shall now 

show how an ABA, beginning at any point c of the outer boundary 

that has a # to its left, can visit every point of P that lies 

on that row of the array between c and the first outer boundary 

point tc th~ rirht of P. By doing this for every such c, the 

ABA can visit every point of P, so that in particular it can 

test whether any point of P has a value in 2:2 • 

Starting from c, the ABA moves to the ri~ht until it 

reaches a bounu~ry point. If this point is on the outer boun

dary, we are done. If it is on the boundary of a hole, we can 

follow that boundary completely around, mark those points of it 

that do not have #' s to their right and lie on the stJJDe row as 

c (by keeping a count of upward and downward moves), and then 

find the le!tmo3t of these points, call it c', by keeping a count 

of leftward ano rightward moves. We now erase all marks, go back 

to c' and move to the right until we reach a boundary point again; 

the procedure i~ then repeated. Since c' is strictly to the right 

of c, this process must eventually reach the outPr boundary.// 

The proof of Theorem 4 also shows that an ABA can al~ays find 

a distinguished point of P, e.r:. its upper left-hand corner; there 

is thus no need to use a distinguished starting point in defining 

acceptance of an array by an ABA. 

I 
'' 
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4. Machines th~t cannot rewrite #'a 

In Section 3 we defined an ABA as a machine that "bounces 

off" #'sand does not rewrite them. In this section we prove 

that the power of such a machine is not increased if we allow 

it to travel on #'a but not rewrite them. It should be pointed 

out that the analogous statement about FSAA's is false, as may 

be seon from the example of the set of arrays whose non-#'s look 

like 
AA ••• AA 
A 
AA •• • AA 

( n A' a on each ''arm" 1 for arbitrary n). Evid ,mtly, this set 

cannot be accepted by an FSAA that cannot traverse #'e, but 

can be accepterl by a deterministic FSAA that is allowed to 

travel across #'s. Thus beine able tc move across #'s without 

rewriting them can increase the power of a machine in the array 

case, even though it clearly cannot in the string case. 

Theorem 5. Let S be the set of input arrays accepted by a TAA 

that does not ~cwrite #'s (so that every triple in the image 

of any ((p,X),#=) under O is of the form ((q,Y),#,Y)). Then there 

exists an A.BA that also accepts just ~ 

Proof: Let T be the given TAA; our A.BAT' will be constructed to 

act like T whenever Tis on a non-#, and to simulate T's posi

tion on the #'s while itself remaining on th..- boundary ot the 

set P of non-#'s. Clearly, we need only sh0w that T' can de

termine the point of reentry of Tinto P and its state at that 

point-- or, if Tis nondeterministic, the set of reentry points 

and associated reentry states. If T never reenters P, either 

by cycling in a :f'ini te region or by going off to "infin1 ty" 1 T' 

nn · 
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must also cycle. The following discussion concerns the deter

ministic case; the extension to nondeterministic TAA's will be 

described later. 

Let x = (i0 ,j 0) be the boundary point of Pat which T 

leaves P, and let y be the adjacent point, havine value#, 

onto which T moves. Let EY be the connected component of #'s 

that contains y, and let Bx be the set of points of P that 

are adjacent to Ey; thus Bx is either the outer boundary of P 

or the boundary of a hole in which y lies. Clearly Ey is finite 

if and only if y is in a hole. 

The point of reentry of~ into P must be some point z of 

Bx. we shall show that T' can keep track of T's position in 

EY relative to x by recording two integers, the horizontal and 

vertical displacements of T. Once T' has calculated these dis

placements, it can determine whether any point of Bx has these 

coordinates ano can go there. (T' can al~ ·. keep track of T's 

current state within its own state set, since T has only finitely 

many states.) If there is no such point of Bx, so that Tis 

still in EY, T' continues its simulation. 

We must now show that if T reenters P, T' always has room 

to record T's coordinates. In fact, we shall prove that T must 

reenter P within IQI IBxl moves, where IQI is the number of states 

of T and IB I ie the length of B , if it ever reenters at all. X X 

Thus the maximum displacement of T from x before reentry is 

IQI IBxl, so that the points of Bx can be used to record the 

displacements using base IQI representation. 

Note firs~ that when a TAA that cannot write on # 'e moves 

onto them, it behaves like an FSAA with constant input. By the 
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motion of an FSAA on an array will be meant the word wtA* that 

gives the sequence of directions of its moves on the array. For 

example, the motion corresponding to a raster scan of an m by n 

rectangle is RnDLnD ••• DLn (if mis even; ••• DRn, if mis odd), 

where there are m-1 D's. 

~emma. The motion of a deterministic FSAA on an infinite array 

of #'sis eventually periodic, i.e. w=~B*, where a,B are finite 

strings over~. (An analogous result holds for non-writing 

array automata that have pushdown storage.) 

Proof: Let M be the set of states of the FSAA; since it has con

stant input, ... t must begin ":o cycle within IMI moves; thus its 

state sequence is of the form icp*, where 1t,o are finite strings 

in M*. Since t~e FSAA is deterministic, we have a well-defined 

mapping which associates with each state stM the direction in 

which the FSAA moves upon entering s; under this mapping, ~p• 

goes into someryB* of the desired type. Moreover, ISi i IMI. // 

Let lwla be the number of occurrences of the symbol a in 

the string w. If0-B* is as in the Lemma, and IS IL=l6 IR, I Bln=IBlu, 

the FSAA cycles within a finite region without ever leaving it. 

Otherwise, the FSAA moves off to "infinity" in the direction of 

the excesses, each cycle increasing its displacements from its 

starting point by the exact amounts of the excesses; thus its 

motion is "linenr". (It follows that a deterministic FSAA can 

never visit every point in an infinite array of #'s.) 

Let~e• £~•be T's motion on EY. We make two assumptions: 

1) ~is null. This is no restriction, since~ can always be 

chosen so that lalilQI, and T' can simulate the first 

IQI moves ot T within its own memory. 

21 I 
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2)s is defined so that if T reenters P, it does so at the ~nd 

of a 8 cycle; this will simplify the argument below. 

We can now show that T reenters P within IQI IBxl moves, if at all. 

Suppose T reenters Pat the end of the kth 8 cycle. Let i = 

ISIR-181 1 , j = I Siu-IBID. Then the position of the reentry point 

is z = (i0 ,j 0 )~k(i,j). Thus the city block distance from x to z 

is lz-xl = klil+kljl C k(lil+ljl). But lil+ljl 11, 80 k i lz-xl 

< max , , B 17'-x' I = diameter of Bx < IBxl. Since 181 < IQI, 
- Z X E - -

' X 
it follows that kl SI i IQI IBxl• But klSI is the number ot moves 

T makes on Ey before reentering P; we have thus shown that if T 

reenters P, it does so within IQI IBxl moYes. It klS I > IQI IBXI, 

T can no longer reenter P, either because it is already so far 

away that it can never get back to Bx on its "linear" path to 

"infinity", or because it is cycling on a closed path that does 

not meet Bx. 

In summary: Whenever T has moved onto a#, say at y, T' 

marks its point x of departure, and the border Bx that contains 

x , and stores T's exit state in its memory. It then uses B to 
X 

compute T's position in BY at each successive move. T then 

visits every point of Bx in turn and decides whether that point's 

displacement from xis the same as the computed position. If so, 

it erases the temporary information stored on Bx, goes to the 

reentry point, and enters the proper state; if not, it continues 

the simulation. 

If Tis nondeterministic, the description of T' is analogous. 

T's motion on EY is now described by a disjunction of~s•'s, and 

there may b~ many reentry points. Moreover, since T need not be 

22 
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moving "linearly", it may take a path that carries it very far 

from P and yet brings it b~ck to P; thua there will be no room 

on Bx to record all the displacements on any reentrant path. 

However, it is easily aeen that in any auch case, T has a shorter 

path which allows it to reenter P without cn·erflowing the capa

city of Bx. Thus when T' nondeterministically simulates T, it 

too has the possibility of choosing this shorter path.// 
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