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Abstract

Background: Copy number variations (CNVs) are structural variants consisting of large-scale insertions and

deletions of genomic fragments. Exploring CNVs and estimating their effects on phenotypes are useful for genome

selection but remain challenging in the livestock.

Results: We identified 1043 CNV regions (CNVRs) from array comparative genomic hybridization (CGH) data of 47

Holstein bulls. Using a probe-based CNV association approach, we detected 87 CNVRs significantly (Bonferroni-

corrected P value < 0.05) associated with at least one out of 41 complex traits. Within them, 39 CNVRs were

simultaneously associated with at least 2 complex traits. Notably, 24 CNVRs were markedly related to daughter

pregnancy rate (DPR). For example, CNVR661 containing CYP4A11 and CNVR213 containing CTR9, respectively, were

associated with DPR and other traits related to reproduction, production, and body conformation. CNVR758 was

also significantly related to DPR, with a nearby gene CAPZA3, encoding one of F-actin-capping proteins which play

a role in determining sperm architecture and male fertility. We corroborated these CNVRs by examining their

overlapped quantitative trait loci and comparing with previously published CNV results.

Conclusion: To our knowledge, this is one of the first genome-wide association studies based on CNVs called by

array CGH in Holstein cattle. Our results contribute substantial information about the potential CNV impacts on

reproduction, health, production, and body conformation traits, which lay the foundation for incorporating CNV

into the future dairy cattle breeding program.
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Background
Enhancement of dairy sector is required to meet the in-

creasing demands of animal protein in the world. Since

Holstein is the largest milk-producing dairy breed, im-

proving its performance, e.g. production, reproduction,

growth, and disease resistance, is crucial for the global

agriculture. As one of the most important phenotypes,

cattle fertility is affected by both genetic and environ-

mental factors [1]. For example, Holstein accounts for

90% of the U.S. dairy population but has experienced se-

vere declines in fertility over the past 50 years. With a

national pregnancy rate of only 15%, cows take longer to

conceive and also have delayed lactations, both of which

lead to a loss of profit for the farmer. Daughter preg-

nancy rate (Dtr_Preg_Rate or DPR) is a trait that is used

to quantify the number of “days open”, or the number of

days between the last calving and conception of the cow

(− 1% DPR = + 4 days open) [2]. Contemporary Holstein

cows take 30 days longer than cows of 50 years ago to
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successfully conceive. Although DPR has low heritability,

the variability of fertility phenotypes among individuals

suggests the possibility of improving fertility without se-

verely affecting milk production. Such a possibility is

supported by the stabilization of DPR rates since 2005

for both cattle genders [3].

Genomic structural variants are comprised mainly of

copy number variation (CNV) in the form of large-scale

insertions and deletions, as well as inversions and trans-

locations [4]. CNVs has been generally accepted as a

major source for heritable variation [5]. Compared to

SNPs, CNVs often involve larger genomic regions and

have potentially greater effects on genome function, in-

cluding changing gene structure and dosage, alternating

gene regulation and exposing recessive alleles [6]. In the

last decade, CNV has been widely studied in humans,

mice and livestock [4, 7–9]. In cattle, several CNV maps

have identified large numbers of CNVs using various ap-

proaches [10–15]. However, the effective use of CNV as

genomic markers for association with diseases and eco-

nomic phenotypes is impaired by difficulties in accur-

ately detecting CNV and their boundaries [16]. The

detection of phenotype-associated CNV is still challen-

ging in livestock. CGH array, SNP array, and DNA se-

quencing are the three main approaches to detect CNV.

Evaluations on their performances have revealed that all

the three platforms have their advantages and disadvan-

tages [16, 17]. Compared to SNP chip, CGH array has a

series of advantages on CNV detection. For example,

CGH array has greater sensitivity to detect small differ-

ences in copy number, because it analyzes copy loss and

gain variations in a single experiment by measuring the

relative hybridization intensity between fluorescently la-

beled test and a single reference DNA sample, whereas

SNP arrays use a population reference. Additionally,

CGH array shows better signal-to-noise ratios than SNP

arrays, thus many of duplications missed by SNP arrays

can be detected by CGH arrays [16]. Moreover, a dense

and uniform CGH array can be rapidly synthesized and

be customized to target virtually any region of interest

(including repeat-rich regions) [18].

Understanding of chromosomal regions or genomic

variants associated with complex phenotypes can benefit

the genome selection in dairy cattle breeding.

Genome-wide association analysis (GWAS) is a powerful

method of annotating phenotypic effects on the genome.

Much attention has been paid to the identification of

quantitative trait locus (QTL) associated with complex

traits and underlying molecular mechanisms based on

SNPs [19–22]. For example, one of these GWAS that

used the Illumina Bovine SNP50K chip to genotype con-

temporary Holstein cows identified a number of candi-

date genes for DPR on chr1, chr7, chr18 and chrX;

calving ease on chr18; and still birth on chr15 and

chr23. Nevertheless, only a few studies have integrated

CNVs called from SNP arrays with the economic traits

by GWAS. In beef cattle, CNV-based GWAS studies

have identified several significant CNVs impacting feed

conversion and growth in Bos taurus and Bos indicus

[23–25]. For dairy cattle, several studies have attempted

to detect phenotype-associated CNVs using bovine SNP

arrays or combination of SNP arrays and sequencing

data [26–28]. However, up to now, exploring the rela-

tionship between phenotype and CNV detected by array

CGH has not been reported in cattle yet.

In this study, we aimed to identify CNVs in U.S. and

Israeli Holstein bulls using high-density array CGH data

and to explore CNVs associated with 41 production,

health, reproduction and body conformation (type)

traits. The significant CNVs identified in this work could

be utilized as possible molecular markers for genetic im-

provement program in dairy cattle.

Results

CNV identification and distribution

A total of 1758 CNVs, on the placed chromosomes (chr1–

29 and X), were detected in all 47 Holsteins after the qual-

ity control (QC) filtering. On average, 37 gain or loss

events were present per sample. Across 29 autosomes, we

found a varying distribution of CNV (Additional file 1:

Figure S1). On chr7, 12, 13, the CNV counts were more

than 100 in all samples. The CNV length ranged from

3600 to 2,111,937 bp among 29 autosomes. For average

length per CNV, we observed that the ones in chr17 and

chr27 were obviously higher than those in other chromo-

somes. These results were consistent with previous re-

ports in bovine HapMap samples and Nellore cattle,

where chr17 also had higher CNV length and chr12 had

high CNV count [29]. By merging CNVs, 1043 CNVRs

were detected, covering 46,802,944 bp of sequence, i.e.,

2.06% of the placed chromosomes (46.8Mb/2634.4Mb,

Additional file 2: Table S1). Genomic distribution of these

CNVRs is shown in Fig. 1, consisting of 702 loss, 270 gain

and 71 both (loss and gain within one CNVR) events. As

described previously [10], loss events are twice more fre-

quent than gain ones. Also, the CNV length for loss events

(26,154,948 bp) is approximately 1.5 and 2 folds longer

than that of gain (11,204,359 bp) and both (9,443,636 bp)

events, respectively. Although, on the unassigned chrUn,

we detected 51 additional CNVRs of 17,976,696 bp, due to

the lack of sequence and/or the mapping uncertainty,

these CNVRs were not analyzed further.

Gene annotations for the discovered CNVRs

We next annotated the gene content spanning CNVRs.

Based on the gene models for the cattle genome UMD3.1

assembly, we found that 1043 CNVRs within known

chromosomes overlapped with 761 Ensembl peptides,
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corresponding to 322 gene symbols (Additional file 2: Table

S1). Using the PANTHER analysis, we observed statistically

significant over- or under-representations for multiple Gene

Ontology (GO) terms (Additional file 2: Table S2). The

enriched GO terms included four molecular function terms

(G-protein coupled receptor activity, transmembrane sig-

naling receptor activity, signaling receptor activity, molecu-

lar transducer activity), 19 biological process terms (e.g.

antigen processing and presentation, chromatin assembly,

detection of chemical stimulus involved in sensory percep-

tion of smell, sensory perception, detection of stimulus in-

volved in sensory perception), and four cellular component

terms (e.g. MHC class II protein complex, integral compo-

nent of membrane). The observations were consistent with

previous CNV analyses in cattle [10, 13]. The gene families

important for the bovine MHC (BoLA), ATP-binding cas-

sette (ABC) transporters, defense/innate and adaptive im-

munity, and signal recognition olfactory receptors have also

been observed, supporting the shared GO terms among

mammals.

CNV association analyses

In order to explore the influence of CNV on the complex

traits, we conducted association analysis of CNV with

complex phenotypes using a mixture model implemented

in CNVtools. A total of 297 CNVRs in 29 autosomes have

statistically converged for all the 41 studied complex traits.

The detailed association results are shown in Additional file

2: Table S3. Among them, 87 CNVRs were significantly as-

sociated with at least one trait (P < 0.05) after multiple test-

ing correction (the Bonferroni method) (Additional file 2:

Table S4). To explain these CNVRs’ impacts on these com-

plex traits, we approximately calculated the proportion of

phenotypic variance (i.e., breeding values; PTA) explained

by all studied CNVRs and found their average was 0.0376

with a standard deviation of 0.0512 and a median of 0.0172.

We clustered these 41 traits based on the P values of these

297 CNVRs generated by the association study. In general,

the phenotypes were grouped by 3 major types, consistent

with the previous result that was based on SNP statistics

from single-marker GWAS (https://www.biorxiv.org/

Fig. 1 Genomic distribution of CNVRs in 47 Holstein bulls
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content/early/2018/10/02/428227). Body type, production

and reproduction traits were grouped separately while the

health traits were intertwined with production or

reproduction traits (Additional file 1: Figure S2).

Genes within or near the significant CNVs

We further investigated the genes within or near the sig-

nificant CNVRs. Among the 87 significant CNVRs, 35

CNVRs overlapped with the coding or flanking (± 5 kb) re-

gions of 47 protein genes. For other CNVRs, the nearest

neighboring genes and the distances from the CNVRs were

also shown due to the hypothesis of CNV’s long distance

effects [6]. To further investigate the potential effects of

these CNVs on complex traits, the expression patterns of

their overlapped or closest genes were investigated across

91 cattle tissues and cell types based on RNA-seq [Fang et

al., 2018, in preparation]. Some genes were widely

expressed whereas others were specifically highly expressed

(top 3%) in a limited number of tissues (Additional file 2:

Table S4). From the results, we noticed that some CNVRs

and genes had more striking association(s) with the traits

in terms of statistical significance and known relevant biol-

ogy, making them more likely candidates for causal effects.

A brief summary of such CNVRs and genes is listed in

Table S4 and described below.

Discussion

General discussions about significant CNVRs associated

with 4 main trait categories

For the reproduction phenotypes, we detected 35

CNVRs to be associated with eight reproduction traits

including Dtr_Preg_Rate, Heifer_Conc_Rate, Cow_Con-

c_Rate, gestleng, Dtr_Calv_Ease, Sire_Calv_Ease,

Dtr_Still_Birth, Prod_Life. Of note, 24 of CNVRs men-

tioned above were significantly associated with DPR. For

example, CNVR423 (chr21: 20,323,800 - 20,338,200) and

CNVR120 were associated with both DPR and somatic

cell score (SCS), which was similar to the previous

SNP-based GWAS study [19]. On the other hand, we

found that DPR also shared many common CNVRs

(CNVR659, 423, 661,120, 213, 941, 584, and 386) with

heifer or cow conception rate. Productive life measures a

cow’s longevity in the herd and is affected by production,

health and reproduction traits. We identified four

CNVRs (CNVR661, 408, 350, 714), which were associ-

ated with productive life. Three of them were shared

with health traits including livability, displaced aboma-

sum, and metritis, while two (CNVR661 and CNVR714)

were shared with fertility traits (DPR and related con-

ception rates) and one (CNVR661) shared with produc-

tion trait (protein yield). Consistently, previous studies

have shown that productive life is more related to health

and fertility traits than to production and calving traits

[19]. In addition, productive life also shared significant

CNVRs with body conformation traits, such as Fore_ud-

der_att, teat length and rump width. For significant

CNVRs for production, health, and body conformation

phenotypes, please see Additional file 2: Table S4’s notes.

Three significant CNVR examples

Among the 87 significant CNVRs, 39 loci were simultan-

eously related to at least 2 traits, suggesting their pleiotropic

effects. Notably, 10 CNVRs were significantly associated

with ≥5 traits. For the first example, CNVR661 (chr3:

99,808,706 - 99,846,316) was associated with seven different

phenotypes related to production (Protein), female fertility

(Dtr_Preg_Rate, Heifer_Conc_Rate), reproductive (Pro-

d_Life, net merit, livability), body conformation (rump

width) (Fig. 2A). Compared to a previous study [13],

CNVR661 was also harbored by CNVR44 identified in

Chinese bulls. In terms of explained proportions of pheno-

typic variance explained, CNVR661 contributed 5.30% to

Dtr_Preg_Rate, suggesting CNVR661 could be an import-

ant genetic variance for cattle female fertility. CNVR661

partially overlapped with the coding regions of CYP4A11

(cytochrome P-450 4A11, chr3: 99,806,653 - 99,820,784),

which is a major lauric acid (medium-chain fatty acid)

omega hydroxylase in human liver. CYP4A11 is involved in

fatty-acid metabolism, blood pressure regulation, kidney tu-

bule absorption of ions; and can convert arachidonic acid

to 20-hydroxyeicosatetraenoic acid (20-HETE). Of interest,

CYP4A11 was specifically highly expressed in kidney and

liver according to gene expression atlas (Fang et al., 2018,

in preparation) (Fig. 2C). In Chinese cattle, Yang et., al [30]

has demonstrated the positive effect of CYP4A11 copy

number on body size traits, which may be due to the dos-

age effects of CYP4A11 copies on the gene expression level

in liver, kidney, muscle and adipose. These evidences indi-

cated that the strong associations between CNVR661 and

multiple phenotypes could involve its effect on the

CYP4A11 function. The second example is CNVR213

(chr15: 42,483,000 - 42,495,000), which may have impacts

on reproduction (Dtr_Preg_Rate, Heifer_Conc_Rate, Cow_-

Conc_Rate), on body status (dairy form, udder depth), and

on milk production (Fig. 2B), with effects ranging from 2.27

to 4.96%. Interestingly, CTR9 (CTR9 homolog, Paf1/RNA

polymerase II complex component) was found to locate in

CNVR213 and was highly expressed in tissues related to

blood immune (e.g. thymus, white blood cells, CD4, CD8

cells), male reproduction (testes), and sperm (Fig. 2D).

CTR9, a key component of the PAF1 complex, associates

with RNA polymerase II and functions in transcriptional

regulation and elongation [31]. PAF1 complex also plays

a role in the modification of histones and has mul-

tiple functions during transcription by RNA polymer-

ase II [32]. The CTR9 showed high expression in

thymus and immune related cells. CTR9 has been

demonstrated to involve in cord blood-associated
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megakaryopoiesis [33]. These evidences suggested that

CNVR213 might have dosage effects on CTR9 gene ex-

pressions in the related tissues, therefore affect CTR9’s

regulatory role in reproduction traits. The third example

is CNVR758 (chr5: 91,755,000-91,765,800), which ex-

plained considerable proportions for Dtr_Preg_Rate

(14.30%). We noticed that CNVR758 was located at the

upstream of gene CAPZA3 (the capping actin protein of

muscle Z-line alpha subunit 3), which encodes an actin

capping protein and is one of the F-actin capping protein

alpha subunit family. F-actin-capping proteins play a

role in the morphogenesis of spermatid. A previous

study has demonstrated that CAPZA3 protein may be

important in determining sperm architecture and

male fertility [34]. Hence, we speculate that CNVR758

near CAPZA3 may affect the CAPZA3 transcription

and thus lead to the phenotype effects on bull

fertility.

Fig. 2 Manhattan plots of example associated CNVs for multiple complex traits and the CNV-overlapped genes a CNVR661 (chr3: 99,808,706 -

99,846,316) was significantly associated with seven traits including reproduction (Net_Merit, productive life [Prod_Life], daughter pregnancy rate

[Dtr_Preg_Rate], heifer conception rate [Heifer_Conc_Rate], livability), milk production (Protein yield [Protein]), body conformation (Rump_width). b

CNVR213 (chr15: 42,483,000 - 42,495,000) was markedly associated to six complex traits including reproduction (Dtr_Preg_Rate, Heifer_Conc_Rate, cow

conception rate [Cow_Conc_Rate]), body status (dairy form, udder depth), and milk production (Milk yield [Milk]). Negative log10-transformed P values

from a genome-wide scan are plotted against genomic coordinates on 29 autosomal chromosomes. c Expression pattern of CYP4A11 gene across 91

cattle tissues. d Expression pattern of CTR9 gene across 91 cattle tissues

Liu et al. BMC Genomics          (2019) 20:181 Page 5 of 10



Previous cattle QTLs overlapped with CNVRs

We also identified CNVRs that spanned potential cattle

QTLs and OMIA genes influencing disease susceptibil-

ity. Among all CNVRs, 91 CNVRs were overlapped with

553 cattle QTLs (Additional file 2: Table S1). By query-

ing against OMIA, we found 9 CNV-overlapped genes,

which were related to coat color, health and diseases in

ruminants (such as cattle, yak, goat, sheep), pig, and dog

(Additional file 2: Table S1). To further investigate the

associations of discovered CNVs with phenotypes, we

overlapped CNVRs with previously reported cattle QTLs

and observed five CNVRs that were overlapped with

QTLs (CNVR659, CNVR120, CNVR26, CNVR459, and

CNVR953) (Additional file 2: Table S4). Interestingly,

some traits in the QTL database were also present in

our CNV-based association results. For example,

CNVR659 (chr3: 91,875,073 – 91,890,228) was markedly

associated with eight complex traits and overlapped with

nine QTLs. Among these traits, Dtr_Preg_Rate, dairy

form and udder cleft were observed in both results.

Using the genotyped markers, significant QTL for milk

production traits have been identified on BTA3 [35]. In

Danish Red breed, the QTL for milk yield traits has been

found on BTA9 based on SNP markers [36]. Our results

showed that CNVR953 (chr9: 56,013,697 - 56,026,693)

was associated with milk yield and it overlapped with

the milk yield QTL. In Holstein cattle, a preliminary es-

timate for relationship between CNVs and associated

SNPs has showed that approximately three-quarter of

CNVs could be captured by LD with nearby SNPs [27].

The consistencies between our results and other

SNP-based GWAS results might be in part explained by

the linkage between CNVs and tag SNPs that were iden-

tified as functional QTL. Therefore, in summary, our

study provided multiple possible hypotheses to test for

the functional impact of CNV on cattle economically

important traits. Many novel CNVs identified in this

study could function as potential additional markers.

Comparison with published results

To date, multiple studies about Holsteins CNV discovery

have been published [12, 14, 15, 37]. Nevertheless, CNV

discovery studies often produced large calling datasets with

certain false positives. We then examined the overlaps of

our results with the Holsteins CNVs identified in several

previous reports using Illumina BovineSNP50 array [27],

BovineHD SNP array [14, 15, 28] and high throughput se-

quencing technology [26]. Here, only the high confidence

CNVRs after filtering by frequency and CNV length in pre-

vious studies were used for comparison analysis. In total,

22.13% (216/976) CNVRs within autosomes in our study

with a total length of 15,866,448 bp (44.99%) overlapped

with the merged CNVRs of the previous five studies by at

least 50% overlapping length (Additional file 2: Table S1).

Separately, the overlapped CNVR lengths (CNVR count in

our study vs. previous study) were 1,900,016 bp (20 vs. 13)

compared to 39 CNVRs in [27], 3,739,012 bp (51 vs. 47)

compared to 191 CNVRs in [26], 4,165,080 bp (33 vs. 20)

compared to 90 CNVRs in [28], 11,419,896 bp (124 vs. 93)

compared to 198 CNVRs in [15] and 14,223,966 bp (152 vs.

106) compared to 230 CNVRs with frequency > = 0.05 in

[14], respectively (Additional file 2: Table S1). Despite the

small sample size of this study, considerable CNVs are still

supported by high confidence CNVs in previous Holsteins

CNV discovery studies, especially for those with BovineHD

SNP array data. Among the 216 common CNVRs, 135

CNVRs were applied for GWAS analysis and 20 of them

were observed to associated with Holstein phenotypes

(Additional file 2: Table S4). Additionally, to validate the

CNV calling results, our previous study has observed a

moderate correlation (r = 0.429) between whole genome

aCGH probe values and digital aCGH values in six Hol-

stein individuals of this study [11]. Therefore, this study

provided further evidences on common CNVs and discov-

ered certain new CNVs.

Previous CNV-based GWAS studies have provided

some evidences for CNV impacting phenotypes in Hol-

steins. Using Illumina BovineSNP50 arrays data, we

identified 34 significant CNVs associated with milk pro-

duction traits with Golden Helix SNP & Variation Suite

(SVS) [27]. Based on the BovineHD genotyping data, we

found 57 CNVs associated with phenotypes including

feed efficiency and feed intake-related traits [28]. Using

CNVs identified from both sequencing and the Bovi-

neSNP50 array, 15 CNVRs were associated with 7 eco-

nomically important traits [26]. Compared to them, this

study found 87 significant associated CNVs for 28 com-

plex traits. Of note, 20 CNVRs have been supported by

common CNVs in previous five studies we investigated

and 17 of them were associated with at least two pheno-

types. However, only limited parts of our findings have

been identified before. For instance, CNVR120, 423, 661

have been reported in previous studies but none re-

ported for their effects on the analyzed traits related to

production and body type [26–28]. Therefore, this study

described, for the first time, that these CNVRs were as-

sociated with DPR and other traits related to production,

reproduction, health, and body conformation.

Advantages and disadvantages of this study

We considered these in four parts. First, this study used a

unique array CGH platform. Normally, it is not straightfor-

ward to compare CNV results across different platforms.

SNP arrays output normalized total intensities (Log R ratio,

LRR) and allelic intensity ratios (B allele frequency, BAF),

whereas CGH array normally do not consider BAF infor-

mation. While PennCNV used for SNP arrays can provide

accurate calculation of copy numbers when less than 4
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copies [26, 38, 39], SNP arrays generally do not have the

same sensitivity or resolution of dedicated CGH arrays for

high copy number CNV discovery [16, 40]. The SNP chip

has the inherent bias coverage against areas of the genome

known to frequently harbor CNVs [17, 41], while CGH

arrays shown better sensitivity signal-to-noise ratios and

specificity, probably as a consequence of longer probes on

the array CGH platform. Additionally, many CNVs missed

by SNP arrays but detected by CGH arrays are in segmental

duplication (SD) regions, which could be due to a combin-

ation of differences in probe coverage and the type of refer-

ence samples used. Using the single reference, the CGH

arrays have greater sensitivity to detect small differences in

copy number (e.g., 4 vs. 5) [16]. However, different

reference samples may pose a problem in the detection of

CNVs and result in the different relative copy numbers

among test individuals. Thus, it is important to understand

these tradeoffs and use the same reference sample within

one study [41].

Secondly, we used different CNVcalling algorithms. Multi-

variate method of SVS was used for SNP arrays in [27, 28],

while the segment-calling algorithm (SegMNT) was used for

array CGH in this study. Although both use similar segmen-

tation algorithms, the multivariate method is designed for

detecting small common CNVs based on multi-sample. As

described in the SVS manual, the multivariate method (the

pooled marker-level testing across samples) carries out asso-

ciation testing first between the phenotypes and raw inten-

sities at the level of the individual marker, and then

aggregates neighboring test results to identify CNVs associ-

ated with the phenotype [41]. For CGH-segMNT analysis,

the Roche NimbleGen segMNT algorithm was used to call

CNV segments in each animal compared to the reference

animal. The segMNT algorithm identified copy number

changes using a dynamic programming process that mini-

mizes the squared error relative to the segment means,

which showed increased accuracy and performance [42]. As

for CNVtools method, robust quantitative trait association

tests of CNVs were performed based on LRR of probes

within each CNV regions. CNVtools then combined the in-

formation across a small number of CNV probes to obtain a

one-dimensional signal using principal component and

Bayesian information criterion for each sample. A copy num-

ber genotype was assigned to each locus for each individual

to test for genetic association with a quantitative trait based

on a standard regression approach [43].

Thirdly, we examined a larger number of complex traits

for association analysis. Previous studies only investigated 5

milk production traits [27], 10 production or reproduction

traits [28], and 7 production, functional and type traits in

[26]. With more phenotypes than others, our study per-

formed the CNV-based GWAS study for many complex

traits for the first time and provides some new potential

markers and promising information for dairy cattle breeding.

Finally, although this study unravels some reasonable

and intriguing results, we must acknowledge that given

that the limited sample size (n = 39) due to the high cost

for array CGH, some associations for certain traits in

this study could be less reliable. Therefore, further valid-

ation by other methods like long reads sequencing tech-

nology and larger sample size is necessary in the future.

Conclusions

To our knowledge, this study is one of the first GWAS for

multiplex traits using array CGH based CNV detections in

Holstein. Our results identified dozens of CNVs and pro-

vided the candidate genes contributing to production, fer-

tility, health and type traits in Holsteins. Characterization

of CNV-related economic traits is important for

marker-assisted selection and can lay the foundation for

further study of the CNV functional impacts on genomic

features and on animal performances. The new associated

CNVs identified in this research can supply the additional

resource for dairy cattle breeding program beyond the pre-

vious GWAS studies purely based on SNP markers.

Methods

Sample selections

We sampled 47 Holstein bulls based on their divergent

Daughter Pregnancy Rates. Among them, seven bulls

were from Israel and 40 bulls were contemporary U.S.

Holsteins. The source of the extracted DNA was semen

from the Cooperative Dairy DNA Repository (CDDR at

Beltsville, MD, USA). SNP genotypes of those animals

have been included in the routine genomic evaluation

program in the United States.

Identification of cattle CNVs using array CGH

We performed array CGH using the sequenced Hereford

cow L1 Dominette’s blood DNA (reference sample) and

47 Holstein bulls’ semen DNA (test sample) on the

whole-genome high-density CGH arrays (NimbleGen

custom-made cattle CGH 2.1M arrays, Roche Nimble-

Gen, Madison, WI). The CGH 2.1M array containing

2,166,464 oligonucleotide probes (with an average inter-

val of 1.2 kbp between probes, NCBI GEO accession no.

GPL11314) were designed based on UMD3.0 and fabri-

cated as previously described [18].

Standard genomic DNA labeling (Cy3 for samples and

Cy5 for references), hybridizations, array scanning, spatial

correction, and data normalization were performed as

previously described [10]. The self-to-self control

hybridization was performed using the reference sample

(Dominette). The genomic variations were represented by

gains and losses of normalized fluorescence intensities

relative to the reference. The initial data analysis

(normalization and segmentation) was performed using

the segMNT algorithm of NimbleScan v2.6 software [42].
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We selected a set of conservative calling criteria for the

final set of high-confidence CNVs, requiring alternations

of 0.5 log2 ratios over five neighboring probes (0.5_5),

under which no false-positive was found for self–self-con-

trol hybridizations. Since all test samples were from bulls

(one X chromosome) and our reference was a cow (two X

chromosomes), we shifted the chrX baselines to negative

values [10]. We conservatively defined the CNV call filter-

ing criteria to reduce false-positives called in the reference

DNA self-to-self hybridizations and filtered out likely false

CNV using the strict threshold criteria of length < = 1 Kb

and > = 5Mb. After filtering, CNV regions (CNVRs) were

determined by aggregating overlapping CNVs identified

across all samples [14].

Gene annotation analysis and overlapping with QTL

Genic content of cattle CNVRs was screened using

RefGene annotation file in UCSC database (http://

hgdownload.soe.ucsc.edu/goldenPath/bosTau6/database/).

To detect potential genes within CNVR, we defined the

‘overlap’ as more than 1 bp in common between the CNV

region and the genomic region (including the 3-Kb

flanking regions both up- and downstream) of a given

gene. QTL database was downloaded from animal QTL

database (http://www.animalgenome.org/cgi-bin/QTLdb/

index). Considering overly large confidence intervals for

some QTL, we filtered out the QTL with confidence inter-

vals > 30Mb and used a strict threshold to define the

overlap as at least 50% of the CNV length were covered

by QTLs [27], as detected using Bedtools.

Gene ontology (GO) enrichment analysis was performed

using PANTHER with the bovine gene list. We only con-

sidered terms with gene count more than 5 and P-value <

0.05, after the Bonferroni correction for multiple testing.

To explore gene-containing CNV’s potential functional im-

pacts, we queried Online Mendelian Inheritance in Animals

(OMIA) database to find genes which could be associated

with the inherited disorders and/or other traits. Moreover,

we investigated the Ensembl genes within or closest to the

significant associated CNVRs and explored their expression

patterns in cattle tissues (Fang et al. in preparation).

Phenotypes

By querying the CDCB database, we retrieved phenotypes

with high reliability for 39 contemporary U.S. Holstein

bulls and used them for the association analyses in this

study. Traditional predicted transmitting abilities (PTAs)

were calculated for 41 complex phenotypes, including 18

body conformation traits, 8 health traits, 9 reproduction

traits, and 6 production traits. The production traits

include milk yield (Milk), fat yield (Fat), protein yield

(Protein), fat percentage (Fat_Percent), protein percentage

(Pro_Percent), and net merit (Net_Merit). The

reproduction traits include cow’s longevity (productive

life, [Prod_Life]), calving (service-sire calving ease [Sire_-

Calv_Ease], daughter calving ease [Dtr_Calv_Ease],

service-sire still birth [Sire_Still_Birth], daughter still birth

[Dtr_Still_Birth]), fertility (daughter pregnancy rate

[Dtr_Preg_Rate], heifer conception rate [Heifer_Con-

c_Rate], cow conception rate [Cow_Conc_Rate], and ges-

tation length [gestleng]). The health traits include somatic

cell score (SCS), Hypocalcemia (CALC), Displaced abo-

masum (DSAB), Ketosis (KETO), Mastitis (MAST), Me-

tritis (METR), Retained Placenta (RETP), and livability.

The body conformation (type) traits include final score,

stature, strength, dairy form, foot angle, rear legs (side

view) [Rear_legs(side)], body depth, rump angle, rump

width, fore udder attachment (Fore_udder_att), rear udder

height (rear_ud_height), udder depth, udder cleft, front

teat placement (Front_teat_pla), teat length, Rear legs(rear

view) [Rear_legs(rear)], feet/legs score (Feet_and_legs),

rear teat placement (Rear_teat_pla). These PTA were pre-

dicted additive genetic effects after removing fixed

non-genetic effects, and the reliabilities of the PTA were

used to quantify the amount of information available for

different individuals.

CNV association analyses

Each CNV was analyzed for the association with each com-

plex trait using the R package CNVtools separately, which

implements a mixture model [43]. Briefly, within each

CNVR, the normalized signals (LRR) of multiple probes

were combined to obtain a one-dimensional signal for each

sample using a principle component method, implemented

in the CNVtools function apply.pca. Through clustering

the PCA transformed data (first 3 components), a copy

number genotype (i.e., 1, 2, 3) was then assigned to animal

for the association testing based on a standard regression

approach [43]. The CNVRs that were successfully statisti-

cally converged were further considered. The multiple test-

ing was corrected using the Bonferroni method. Explained

proportions of phenotypic variances for all studied CNVRs

were approximately calculated as the squared correlation

between the one-dimensional PCA signals obtained from

apply.pca function and phenotypes (i.e., PTA).

Additional files

Additional file 1: Figure S1. Characteristics of CNV distribution on each

autosome. A. Distributions of CNV length per individual. B. Distributions

of CNV count. Figure S2. Hierarchical clustering of 41 complex traits

based on P values from association results between CNVRs and

phenotypes. Pearson correlation was used to measure distances. Different

colors represent various types of phenotype traits. (PDF 294 kb)

Additional file 2: Table S1. CNVRs identified in this study and

overlapping with QTL, OMIA, and CNVRs in previous studies. Table S2.

Gene Ontology terms generated by PANTHER analysis. Table S3. Results

of GWAS between CNVRs and 41 phenotypes of interest in 39 Holstein

cattle. Table S4. Characterizes for significant CNVs associated to Holstein

phenotypes. (XLSX 395 kb)
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