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Array Gain and Capacity for Known Random
Channels with Multiple Element Arrays at Both Ends
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Abstract—Two arrays with and elements are connected
via a scattering medium giving uncorrelated antenna signals. The
link array gain relative to the case of one element at each end
is treated for the situation where the channels are known at the
transmitter and receiver. It is shown that the maximum mean gain
achieved through adaptive processing at both the transmitter and
the receiver is less than the free space gain, and cannot be expressed
as a product of separate gains. First, by finding the singular values
of the transmission matrix, fundamental limitations concerning the
maximum gain and the diversity orders are given, indicating that
the gain is upper bounded by ( + )2 and the diversity
order is . Next an iterative technique for reciprocal chan-
nels which maximizes power at each stage transmitting back and
forth is described. The capacity or spectral efficiency of the random
channel is described, and it is indicated how the capacity is upper
bounded by parallel channels of gain ( ) for large
values of and .

Index Terms—Antenna gain, array capacity, random channel.

I. INTRODUCTION

T HE INCREASING demand for bandwidth in wireless net-
works leads to a corresponding demand for signal power

in order to achieve a reasonable range. For fixed wireless ac-
cess systems operating above rooftops, high gain antennas at
millimeter wave frequencies may be used to achieve a high an-
tenna gain and thus circumvent the pathloss problem. For the
mobile case the random and angularly widespread signals make
it difficult to use traditional high gain antennas with fixed pat-
terns, instead adaptive multielement antennas are needed. It is
the main purpose of this paper to investigate the antenna gain
situation, when adaptive arrays are present at both ends of the
link. It should be noted that there are essentially two types of
array gain when combining signals. One is the average power
of the combined signal relative to the individual average powers
from element to element, which we shall call the array gain for
obvious reasons. The other gain is the diversity gain related to a
certain outage probability level, e.g., 1%. This gain is of course
highly dependent on the spatial correlation coefficients between
the antenna signals. In this paper it will be assumed that all the
antenna signals are spatially uncorrelated, which is a limiting
case approached in indoor situations.

A knownchannel is a channel where information about the
channel is available both at the transmitter and receiver. Are-
ciprocal channel is one where the channel is identical in both
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directions as in a TDD (time-division-duplex) situation; and a
nonreciprocalchannel is one where the channels are different
in the two directions as in an FDD (frequency-division-duplex)
situation. In the latter case, we may have two known channels,
although this requires some form of feedback. In practice, this
means that we have two optimizations instead of one.

The novel problem addressed in this paper is primarily the
array gain problem of having transmit antennas and re-
ceive antennas jointly illuminating a random medium, which
gives rise to spatially uncorrelated antenna signals. For a link
budget, we would like to know the composite antenna array gain
and diversity gain of joint transmit-receive diversity. The gain is
maximized by adjusting the antenna weights at both ends. For
the case of or equal to one, the results are well known;
it is known that the antenna gain is or , respectively [1],
when the array can be optimized in isolation. But what is it in
the general case? (We have here assumed negligible in-
teraction between the antenna elements.) The main contribution
of the paper is finding the mean value and the distribution of the
received power under theoretically optimum conditions, where
all transmission coefficients between all antenna elements
are known. This is based on some recent results concerning the
distribution of eigenvalues of complex matrices.

The antenna gain is relevant when the same information is
sent over all antennas, but antenna gain is not the only variable
of interest. Winters [2] showed that the theoretical capacity of
an array is much larger than for a single channel, since

independent channels may be established with each channel
having about the same maximum data rate as a single channel.
There has recently been a number of publications on the use
of multiple antennas in a scattering environment [3]–[6]. The
emphasis has in all cases been for the case of unknown chan-
nels at the transmitter, where different signals are sent over the
antenna elements and coding is applied to take advantage of
the diversity gain on the transmit side, the so-called space-time
coding. For those situations, the same power is sent over the

antennas, and the array transmit gain is not realized, only
the diversity gain. In this paper the capacity of the
array is perfectly realized by exciting the array with the cor-
rect weights for each parallel channel and distributing the total
power among the channels by “water filling.” Thus, the antenna
gain is also realized for each channel in contrast to the pre-
vious work, with achievement of the corresponding additional
capacity. The knowledge of the channel makes it possible to de-
rive some simple expressions for the capacity of the system in
limiting situations.

In Section II, the channel model is introduced; and in Sec-
tion III, a matrix solution lends itself to an analytical approach
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Fig. 1. Transmission from three (M ) transmit antennas to two (N ) receive antennas. There are two independent channels (the minimum ofM andN ), which
are excited by theVVV vectors on the transmit side and weighted by theUUU vectors on the receive side. The power is divided between the two channels according to
the “water filling” principle. This is a maximum capacity excitation of the medium. In case only maximum array gain is wanted, only the maximum eigenvalue is
chosen (one channel).

where the eigenvalues of the transmission system lead to a def-
inition of the maximum gain as the largest eigenvalue. The sin-
gular value decomposition, SVD, is an elegant tool for this,
since it also gives the proper weights at the transmit side and
receive side. In this way, both the antenna gain and the diver-
sity gain can be conveniently described. In Section IV, a simple
iterative solution for achieving maximum gain for a reciprocal
channel is presented. In Section V, the eigenvalues are used for
an evaluation of the theoretical spectral efficiency of
arrays.

II. THE CHANNEL MODEL

The model considered consists of transmit elements in
an array illuminating a scattering medium, which rescatters the
energy to receive elements. In the following it is assumed for
simplicity that . The antenna weights on the receive side
are described as a column vectorwith elements
and the vector is normalized so the norm is unity ( ).
Similarly, denotes the transmit weight vector. For notation,

signifies complex conjugation, andtranspose and conjugate.
means antenna elements at one end andantenna

elements at the other end.
The transfer matrix from the transmit antennas to the receive

antennas is described by transmission matrixwith elements
. They are random complex Gaussian quantities. A normal-

ization such that

(1)

is applied.
The model represents an extreme case with angular spreads

seen from both sides being so large, that the antenna signals are
spatially uncorrelated.

III. GAIN OPTIMIZATION BY SINGULAR VALUE

DECOMPOSITION(SVD)

A. Singular Value and Eigenvalue Decompositions

The SVD is an appropriate way of diagonalizing the matrix
and finding the eigenvalues [7]. The matrixwill in general be

rectangular with rows and columns. An SVD expansion
is a description of itself as

(2)

where is a diagonal matrix of real, nonnegative singular
values, the square roots of the eigenvalues of, where

is an Hermitian matrix consisting of
the inner product of and . The columns of the unitary
matrices and are the corresponding singular vectors
mentioned above. Thus, (2) is just a compact way of writing
the set of independent channels

...

(3)

The SVD is particularly useful for interpretation in the antenna
context. Choosing one particular eigenvalue, it is noted that
is the transmit weight factor for excitation of the singular value

. A receive weight factor of , a conjugate match, gives
the receive voltage and the square of that the received power

(4)

This clearly shows that the matrix of transmission coeffi-
cients may be diagonalized leading to a number of independent
orthogonal modes of excitation, where the power gains of the
th mode or channel is . The weights applied to the arrays

are given directly from the columns of the and matrices.
Thus, the eigenvalues and their distributions are important prop-
erties of the arrays and the medium, and the maximum gain is
of course given by the maximum eigenvalue. The number of
nonzero eigenvalues may be shown to be the minimum value of

and . The situation is illustrated in Fig. 1, where the total
power is distributed among the parallel channels by weight
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factors (see later). An important parameter is the trace of,
i.e., the sum of the eigenvalues

Trace (5)

which may be shown to have a mean value of [8].

B. (2, 2) Example

The example may illustrate the case. The
matrix is given by

(6)

and the two eigenvalues are

(7)

and

(8)

Note that

Trace

(9)

so the sum of the eigenvalues displays the full fourth-order di-
versity. In this particular case, it may be shown that the mean
values are

(10)

The distribution of ordered eigenvalues may be found in [9]
from which the distributions for and may be derived

(11)

(12)

The minimum eigenvalue is Rayleigh distributed with mean
power 0.5. The cumulative probability distributions are shown
in Fig. 2, where the maximum eigenvalue (the array gain)
follows the fourth-order maximum ratio diversity distribution
quite closely. The cumulative probability distribution for
is

(13)

It is interesting to compare to the case of standard diversity

(14)

so the (2, 2) case displays full fourth-order diversity but with
twice the cumulative probability for the same power level, or a
shift of dB in power for a given small cumulative
probability. The mean values are shifted 0.58 dB (3.5/4).

Fig. 2. Cumulative probability distribution of eigenvalues for a(T; R) =
(2; 2) array with four uncorrelated paths. The maximum eigenvalue follows
closely the fourth-order diversity with a shift of 0.75 dB.

Fig. 3. Cumulative probability distribution of eigenvalues (power) for two
arrays of each 4 elements including the sum of eigenvalues corresponding to a
(1, 16) case.

In order to make full benefit of the maximum eigenvalue, it
is of course a necessity to know the channel at the transmitter,
otherwise the eigenvectors cannot be found.

C. The General Case

The (2, 2) case above may be generalized to more elements,
and as an example consider the (4, 4) case in Fig. 3. The two
arrays have 16 different uncorrelated transmission coefficients,
so the diversity order is 16. As before the mean antenna gain

is reduced, now from 12 dB to 10 dB, and one in-
tuitive explanation for this diminishment is that the available
weight vectors on both sides only allow a total of eight complex
weights, not enough for the combining of 16 transmission coef-
ficients.
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Fig. 4. The gain relative to one element of(N; N) arrays in a correlated situation(� = 1), and in an uncorrelated case(� = 0). The upper bound equals4N ,
and is the asymptotic upper bound for the maximum eigenvalue forN tending to infinity.

Recent results concerning the distribution of the eigenvalues
of a random Hermitian matrix can give some insight into the
maximum gain and how it varies with and . In the asymp-
totic limit when is large, it may be shown [8], [10], [11] that
the largest eigenvalue is bounded above by

(15)

where equals , and the smallest eigenvalue is bounded
below by

(16)

In the previous examples, , and the upper asymptotic
bound for this case is 4. These bounds should not be under-
stood as absolute bounds, but rather as a limit approached as
tends to infinity for a fixed .

The mean array gains (mean of the maximum eigenvalues)
are shown in Fig. 4 together with the upper bound and the gain
for the correlated, free space, case,. For , the true
mean gain is just 1 dB below the upper bound. Thus, the price
to pay for the random scattering is a diminishment of the gain
from to for large. For a partly correlated case, we
can expect the gain to lie between the and the
cases, where is the spatial correlation coefficient between the
elements.

In some situations, it might be advantageous to have more an-
tennas on one side than on the other, especially for asymmetric
situations with heavy downloading of data from a base station.
Again, the asymptotic, upper bound for the largest eigenvalue is
useful (15). Introducing directly we find

(17)

which asymptotically will approach for large values of
and fixed . This clearly illustrates that the composite gain of

the link cannot be factored into one belonging to the transmitter
and one belonging to the receiver.

IV. GAIN OPTIMIZATION BY ITERATION FOR A

RECIPROCALCHANNEL

Since the channel is reciprocal, exactly the same weights may
be used for transmission as for reception. Consider now the sit-
uation with transmission from transmit antennas to re-
ceive antennas (or vice versa). The iteration starts with an ar-
bitrary , in the numerical calculations chosen as unit vector
with equal elements. At the receive side, the weights are ad-
justed for maximum gain, and the same weights are then used
for transmit since the channel is reciprocal. This may then be
repeated a number of times. In principle, the process might con-
verge to an eigenvalue different from the maximum one, but ex-
perience shows excellent performance.

An example of the convergence in the mean is shown for a
(3, 3) case in Fig. 5. After a few iterations, the gain has con-
verged to the steady state. Note that the mean gain starts with
a gain of 3 (4.77 dB), since the left array has a mean gain of 1
before adaptation. This is actually an easily proven result; for
an unknown channel, the transmit antenna has a mean gain of
1 independent of the number of elements. What has been done
is just an iterative way of finding the eigenvector belonging to
the largest eigenvalue. The motivation for this section is that it
might actually be a computationally efficient way of finding the
maximum gain solution in practice without going through the
trouble of finding the eigenvectors.

V. SPECTRAL EFFICIENCY OFPARALLEL CHANNELS

A looking at Fig. 3 with four independent channels makes
it clear that there are other uses of the eigenvalues than using
the largest for maximum gain. Another use is to keep them as
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Fig. 5. Convergence of gain by iterative transmissions between receiver and transmitter for a (3, 3) case. The gain values are mean values.

parallel channels with independent information [2]. The knowl-
edge about the distribution of the eigenvalues and the upper and
lower bounds may now be used for evaluating bounds on the the-
oretical capacity of the link. Shannon’s capacity measure gives
an upper bound on the realizable information rates through par-
allel channels, and how the power should be distributed over the
channels to achieve maximum capacity through “water filling”
[12], [6]. The basic expression for the spectral efficiency mea-
sured in bits/s/Hz for one Gaussian channel is given by

bits/s/Hz (18)

where is the signal-to-noise ratio,SNR, for one channel.
Assuming all noise powers to be the same, the “water filling”

concept is the solution to the maximum capacity, where each
channel is filled up to a common level

(19)

Thus, the channel with the highest gain receives the largest share
of the power. The constraint on the powers is that

(20)

The weight factors in Fig. 1 equal . In case the level
drops below a certain then that power is set to zero. In

the limit where the SNR is small ( ), only one
eigenvalue, the largest, is left and we are back to the maximum
gain solution of the previous section. For the case of

(Fig. 2) for dB, only the largest
eigenvalue is active, using the mean values from (10).

The capacity equals

(21)

Fig. 6. Mean capacity for two arrays of eachN elements. The capacity grows
linearly with the number of elements and is approximately the same for the
known and the unknown channel. The total transmitted power is constant.

where the summation is over all channels with nonzero powers.
The water filling is of course dependent on the knowledge of the
channels on the transmit side, which is the case of the known
channel in the terminology of the previous sections.

In the case where the channel is unknown at the transmitter,
the only reasonable division of power is a uniform distribution
over the antennas, i.e.,

(22)

being the number of transmit antennas [4]. It may also be ar-
gued that the transmit antenna “sees”eigenvalues, not taking
into account that there are only nonzero eigenvalues. Thus,
power is lost by allocating power to the zero-valued eigenvalues.
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Fig. 7. The cumulative probability distribution of capacity on a log scale for the(M; N) = (1; 1), (4; 4), and(12; 4) case. The basic signal-to-noise ratio is
20 dB. The total radiated power is the same in all cases.

It also follows that when , the difference between the
capacity for known and unknown channels is small for large.

A. Capacity of the ( ) Array

It follows from (15) and (16) that the instantaneous eigen-
values are limited by

(23)

So for much larger than , all the eigenvalues tend to cluster
around . Furthermore, each of them will be nonfading due to
the high th order diversity. Thus, the uncorrelated asym-
metric channel with many antennas has a very large theoretical
capacity of equal, constant channels with high gains of.
The above illustrates in a mathematical sense the observation of
Winters [2] that should be of the order . In the limit of
large and , with much larger than , the capacity is
easily found to be

(24)

with the result that the theoretical capacity grows linearly with
the number of elements [2], [4], [6] for fixed. The result
may conveniently be interpreted as parallel channels, each
with one th of the power and each having a gain of. Note
that this capacity is higher than the one used in [2], [3], and [6],
where the power is divided between theantennas instead of
the channels (25)

(25)

The numerical results shown in Fig. 6 support this approx-
imate analysis for the mean values. It should be remembered
that the potential gains are higher when a certain outage prob-
ability is studied due to the high order diversity effects. This

is illustrated in Fig. 7, which shows the cumulative probability
distribution (on a log scale) of the capacity for the case of 4
receiving elements, and 4 and 12 transmitting elements. The
signal-to-noise ratio is 20 dB for the (1,1) case, and it is worth
emphasizing that the total power radiated remains constant. The
improvement going from 4 to 12 transmitting antennas is mainly
due to the improved gain of the smallest eigenvalues as indicated
by (23). Applying (24) to the (12, 4) case gives 32.9 b/s/Hz.

VI. DISCUSSION

The benefits of having arrays with multiple elements at each
end of a communication link are large. In this paper it is gener-
ally assumed that the channel is known, and it is shown that a
simple iterative technique with optimizing of the power on each
side at each iteration rapidly converges to the maximum gain for
reciprocal channels. Reciprocal channels may be found in some
modern TDD systems, and if the terminals are quasi-stationary,
it is a good approximation to assume a reciprocal channel. A
more rigorous matrix method defines the maximum gain as the
maximum eigenvalue of the correlation matrix of the system;
and by applying some new results from statistics of complex
matrices, some upper bounds for the gain are given. The re-
sult is that two element arrays (which are connected by
paths) have an -order diversity, so the diversity gain rapidly
becomes large with growing . The mean gain, also denoted
the array gain, grows at a slower pace, approximately bounded
by . In case the system is asymmetric with
transmit elements, the gain is even further increased, asymptot-
ically approaching . This asymmetry also has an effect on the
spectral efficiency, which in this case is bounded byparallel
channels with a constant gain of .

In a real environment, there will not be complete decorrela-
tion among the antenna elements, which means that the capacity
will decrease, since the number of useful independent channels
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will decrease. From a gain point of view, it is actually an ad-
vantage with high correlation since the mean gain (the mean of
the largest eigenvalue) will increase toward . In practice,
high correlation between elements is indicative of a few paths,
adaptively locking on to those will lead to a gain approaching
the free space gains. In order to assess the gain and capacity as
a function of carrier frequency, number of elements, and envi-
ronment, more experimental propagation data are needed.
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