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Abstract. We introduce a new approach for narrow band array imaging of

localized scatterers from intensity-only measurements by considering the possibility of

reconstructing the positions and reflectivities of the scatterers exactly from only partial

knowledge of the array data, since we assume that phase information is not available.

We reformulate this intensity-only imaging problem as a non-convex optimization

problem and show that we can have exact recovery by minimizing the rank of a

positive semidefinite matrix associated with the unknown reflectivities. Since this

optimization problem is NP-hard and is computationally intractable, we replace the

rank of the matrix by its nuclear norm, the sum of its singular values, which is a convex

programming problem that can be solved in polynomial time. We show that under

certain conditions on the array imaging setup and on the scatterer configuration the

minimum nuclear norm solution coincides with the minimum rank solution. Numerical

experiments explore the robustness of this approach, which recovers sparse reflectivity

vectors exactly as solutions of a convex optimization problem.
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1. Introduction

In array imaging, we want to determine the location and reflectivities of small or

distributed reflectors by sending probing signals from the array and recording the

backscattered fields [4, 5, 6]. Several imaging algorithms such as Kirchhoff migration

(KM), least square imaging (LSQ), and Multiple Signal Classification (MUSIC) may

be used for this purpose. These algorithms use the full data set recorded at the array,

which means that in the frequency domain both amplitude and phase can be measured

and recorded. Phase information, or arrival time information in the time domain, is

essential for many imaging problems. There are many situations, however, in which it

is difficult to measure and record the phases of the signals received at the array. This

is the case, for example, in single molecule detection with optical sensors [27, 36], as

well as in three-dimensional imaging of nanostructures, where a near-field probe scans

over a sample [1, 33]. The measurement of the optical phases, particularly in the near

field, is notoriously difficult and detectors or array sensors generally record only signal

intensities.

There is also considerable interest in sensor array imaging with less expensive

sensors. For frequencies above ten gigahertz or so it becomes more difficult to

measure the phase of the scattered fields directly. Since intensity-only (or phaseless)

measurements are much easier to get, we consider in this paper imaging that uses

only the amplitude of the received signals at the array. Intensity-only imaging has

been considered recently in two main forms. The first uses phase-retrieval strategies to

estimate the phases of the scattered fields from intensities [17, 18, 20]. In diffraction

tomography, used for determining the three-dimensional structure of objects from

scattering data, Maleki and Devaney [28] consider an iterative phase-retrieval algorithm

for estimating the phase of the signals before carrying out a reconstruction with the

usual filtered back-propagation algorithm. Gbur and Wolf [19] consider a modified

form of diffraction tomography which requires knowledge of the field on two planes

beyond the scatterers so as to determine the phases. However, these planes must

be spaced at distances smaller than a wavelength, which is often impractical at high

frequencies. The second class of methods carries out imaging without estimation of

the missing phases [29, 22]. To image the locations of several scatterers, Marengo et

al. [29] consider an intensity-only, signal-subspace imaging algorithm, which is similar

to the MUSIC method in full array imaging. MUSIC is a frequently used algorithm

for imaging well-separated scatterers based on the singular value decomposition (SVD)

of the array response matrix [32, 26, 23, 13]. Recently, Govyadinov et al. [22] have

considered a method for nanoscale optical tomography in which they construct an

image by minimizing the ℓ2 norm of the unknown reflectivity using the singular value

decomposition.

In this paper we study narrow band (single frequency) array imaging of localized

scatterers when only the intensity is recorded at the array. The ambient medium is

homogeneous so that wave propagation is fully coherent. This type of imaging is
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therefore very different from diffuse optical tomography (see [2] and references contained

therein) where wave propagation is incoherent because of strong multiple scattering,

which implies that only intensities can be measured. In diffuse optical tomography

the objective is to reconstruct the optical properties of tissues from measurements of

scattered, near-infrared light. The main challenge is in dealing with the strong multiple

scattering of light that gives blurred images.

Motivated by the recent developments in compressed sensing [8], we formulate array

imaging of localized scatterers as a non-convex optimization problem by minimizing the

rank of a positive semidefinite decision matrix. We seek a matrix solution of minimum

complexity (the rank here) that matches the given data, and which in our formulation

has always rank one. Since the rank minimization problem is NP-hard we replace it by

its nuclear norm of the decision matrix, which makes the problem convex and solvable

in polynomial time. Under certain conditions on the array imaging configuration and on

the scatterers, which imply the Restricted Isometry Property (see Definition 3.1) and

sparsity, we show that the nuclear norm minimization problem has the same solution as

the rank minimization problem. We show further that this solution is unique.

The convex optimization formulation with the nuclear norm for imaging localized

scatterers from intensity-only measurements is new. We analyze here properties of

this imaging method. We show that we can have exact recovery of the positions and

reflectivities of the the scatterers, and that the optimization problem selects the scatterer

configuration that minimizes the complexity of the solution matrix. This produces

higher resolution images. In the analysis we use ideas from low-rank modeling [31],

especially for matrix completion [9] and for robust principal component analysis [10, 35].

Similar ideas have been used in different imaging problems with full field data, so that

both intensity and phase of the scattered fields are available [3, 11, 12, 15, 24, 25]. In this

case the forward problem is a linear vector equation instead of a linear matrix one as in

the case of intensity-only data. The questions analyzed involve conditions under which

ℓ1 minimization is the right substitute for ℓ0 minimization. There is a clear parallel

between the two problems, that of ℓ0 minimization of a vector and rank minimization

of a matrix. The ℓ0 norm of a vector is the number of non-zero entries while the rank

of a matrix is the number of non-zero singular values, and the ℓ1 norm of a vector is the

sum of the absolute values of its entries while the nuclear norm of a matrix is the sum

of its singular values.

We note that the problem considered here is somewhat different from those

for which the main issue is to find classes of images or signals for which perfect

reconstructions can be obtained. In our formulation the decision matrix associated with

the unknown locations and reflectivities always has rank one. However, the conditions

under which the optimization problem has a unique solution involve only a linear

operator whose entries are products of Green’s functions. We show that the optimization

problem for imaging using intensity-only measurements has a unique solution if the

aperture of the array is large compared to the wavelength of the probing signal and the

scatterers are far apart. Our numerical experiments show that this can be achieved in
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Figure 1. Schematic for array imaging.

practice and that it is robust for noisy data provided that multiple illuminations are

used.

The organization of the paper is as follows. We first give a succinct formulation of

array imaging in §2. We discuss imaging with full array data and compressed sensing.

In §3 we formulate the problem of imaging using intensity-only measurements with rank

minimization and give a general condition on linear rank one matrix equation such that

rank minimization is equivalent to convex nuclear norm minimization. This ensures

that the solution can be obtained in polynomial time. The existence and uniqueness of

the unknown reflectivities with intensity-only measurements is proved in §4. Numerical

simulations in §5 are carried out to support and extend the theory. The robustness of

the imaging method is also studied numerically. We conclude the paper with a brief

discussion and possible future work.

2. Problem description

We want to image a small number of localized scatterers or reflectors by sending probing

signals from the transducers of an active array and recording the echoes from the

scatterers. The setup is shown schematically in Figure 1. The array has N transducers

located at xp, for p = 1, . . . , N , separated from each other by h1. The region around

the scatterers to be imaged is the image window (IW), which we assume to be a box K
discretized with a uniform mesh. The K mesh points in the image window are separated

by h2 and denoted by yj, for j = 1, . . . , K. The center of the image window is at a

distance L from the center of the array of size a × a.

Within the image window, there are M point scatterers (M ≪ K) with reflectivities

ρj > 0, for j = 1, . . . , M , and located at unknown locations ynj
, j = 1, . . . , M . The

number of scatterers is also unknown. We assume that each scatterer is one of the

K mesh points in the IW, that is, there are points ynj
, j = 1, . . . , M , such that

{n1, n2, . . . , nM} ⊂ {1, 2, . . . , K}.
To image the scatterers, we use the array impulse response matrix (P̂pq(ω)), recorded

at the array as follows. A signal f̂p(ω) of frequency ω is emitted from transducer p,

located at xp, and the back-scattered signals P̂pq(ω), received at xq, for p, q = 1, . . . , N ,

are recorded. The data form the response matrix P̂ (ω) = (P̂pq(ω)). For a general
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illumination vector f̂ (ω) = (f̂p(ω)), with ‖f̂ (ω)‖ℓ2 = 1, the data received at the array

is given by

P̂ (ω)f̂(ω) = b(ω) . (1)

The data vector b(ω) ∈ R
N is the response of the scatterers to the illumination vector

f̂ (ω) recorded at the array.

We assume that the scatterers within the image window are well separated so that

multiple scattering is negligible. The array response matrix has then the form

Π̂(ω) = (Π̂pq(ω)) =

M∑

j=1

ρjĜ0(xq, ynj
, ω)Ĝ0(xp, ynj

, ω) , (2)

where Ĝ0 is the Green’s function in a homogeneous medium

Ĝ0(x, y, ω) =
eiκ|x−y|

4π|x − y| , κ =
ω

c
(3)

with c the propagation speed. We can therefore assume that the array data (1) comes

from this model

Π̂(ω)f̂(ω) = b(ω) . (4)

We introduce the reflectivity vector ρ0 = (ρ01, ρ02, . . . , ρ0K) ∈ R
K such that with the

Kronecker delta notation we have

ρ0k =

M∑

j=1

ρjδy
k
,y

nj
, k = 1, . . . , K . (5)

We also introduce vector of Green’s functions

ĝ0(y, ω) = (Ĝ0(x1, y, ω), Ĝ0(x2, y, ω), . . . , Ĝ0(xN , y, ω))T , (6)

where the superscript T means transpose. We can write Π̂(ω) in terms of ĝ0(y, ω) as

Π̂(ω) =
M∑

j=1

ρj ĝ0(ynj
, ω)ĝT

0 (ynj
, ω) =

K∑

j=1

ρ0j ĝ0(yj , ω)ĝT
0 (yj , ω) .

We now introduce the linear operator A bf(ω)

A bf(ω)ρ0 = Π̂(ω)f̂(ω) (7)

that maps reflectivities ρ0 to array data, with a fixed illumination f̂(ω). Using (4), this

operator maps the unknown vector ρ0 to the data b(ω), so that

A bf(ω)ρ0 = b(ω) . (8)

This is the basic equation of array imaging. The data in (8) is complex-valued with both

amplitude and phase. In coherent imaging we solve for the unknown reflectivity vector

ρ0 from (8), which equates the model with the data. Note that the image window IW

is partitioned with a mesh that has a large number of grid points K, while the number

of transducers N is limited, and is typically much smaller than K. Therefore (8) is an

underdetermined linear system, with fewer measurements than grid points (N ≪ K).
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To get a unique solution for (8) we may look for the minimum ℓ2 norm solution. In

Kirchhoff migration we simply use the adjoint of A bf(ω) to get an image (see [5] or the

appendix in [11] for a quick review).

In the imaging problems considered here we have that M ≪ K so the scatterers

occupy only a small fraction of the image window IW. This means that the reflectivity

vector ρ0 is sparse, so its ℓ0 norm ‖ρ0‖ℓ0 satisfies ‖ρ0‖ℓ0 = M ≪ K. The ℓ0 norm

of a vector is equal to the number of non-zero components. This changes the imaging

problem substantially because we can exploit the sparsity of ρ0. We formulate the

imaging equation (8) as an optimization problem which seeks the sparsest vector in R
K

that equates model and data. Thus,

min ‖ρ‖ℓ0 subject to A bf(ω)ρ = b(ω) . (9)

This problem is, however, non-convex and NP-hard, and so its solution is

computationally intractable. To capture the sparsity of ρ0 we use instead the ℓ1 norm

and solve the convex relaxation of (9), which is

min ‖ρ‖ℓ1 subject to A bf(ω)ρ = b(ω) . (10)

This can be solved efficiently using linear programming. Donoho [14], Candès and Tao

[7] have shown that under certain conditions on A bf(ω), together with the sparsity of

ρ0, problem (10) is equivalent to problem (9). Furthermore, the required minimum

number of equations in (8) can be characterized by the sparsity M and the degree of

freedom N . This idea is called Basis Pursuit (BP) or Compressed Sensing (CS), under

different conditions on A bf(ω), and has been used in some formulations of array imaging

[3, 15, 24, 25]. We have shown in [11, 12] that ℓ1 minimization can be combined with the

singular value decomposition (SVD) so that the reflectivity vector ρ0 can be recovered

very efficiently.

3. Imaging using intensity-only measurements

In coherent imaging both amplitude and phase are available. When only the intensity

of the data is available, that is, only the absolute value of each entry in Π̂(ω)f̂(ω) is

known, the data is given by the vector

bI(ω) := diag
(
(Π̂(ω)f̂(ω))(Π̂(ω)f̂(ω))∗

)
, (11)

where the superscript ∗ denotes conjugate transpose. In view of the definition (4), the

equation for the reflectivity vector ρ0 in intensity-based imaging is given by

diag
(
A bf(ω)ρ0ρ

∗
0A∗

bf(ω)

)
= bI(ω). (12)

A straightforward formulation of intensity-based imaging is to compute ρ0 by

solving the optimization problem

min ‖ρ‖ℓ1 subject to diag
(
A bf(ω)ρρ∗A∗

bf(ω)

)
= bI(ω) (13)
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analogously to (10) in coherent imaging. However, this problem (13) is neither linear

nor convex in ρ0, due to the constraint. Therefore there is no simple algorithm that will

give the true global solution effectively.

We reformulate intensity-only imaging as an optimization problem that seeks the

sparsest vector in R
K which equates model and data. We want to solve a linear problem

for the unknown sparse reflectivity vector ρ0. To this end, we introduce the matrix

decision variable

X0 := ρ0ρ
∗
0 ∈ R

K×K ,

and the linear map L bf(ω) : R
K×K → R

N such that L bf(ω)(X) := diag(A bf(ω)XA∗
bf(ω)

) for

any matrix X ∈ R
K×K. We can now rewrite (12) as

L bf(ω)(X0) = bI(ω) . (14)

The reflectivities ρ0 can be obtained by first solving for X0 from (14) and then taking

ρ0 =
√

diag(X0). Since X0 is of low rank (of rank 1), sparse (due to the sparsity of ρ0),

and real symmetric and positive semidefinite, we may obtain for X0 from the following

rank minimization problem

min rank(X) subject to L bf(ω)(X) = bI(ω), X ≥ 0, (15)

where X ≥ 0 is component-wise non-negativity. Minimizing the rank of a matrix

subject to constraints is a general problem that arises in many applications including

control, statistics, system identification, etc. ([16] has an overview and many references).

However, (15) is a non-convex optimization problem for which the best algorithms

require an exponential time in the dimensions of the matrix X. This class of optimization

problems is NP-hard, and therefore the exact solution can only be obtained in practice

when the dimension of X is very small.

On the basis of convex heuristics we replace rank(X) in (15) by the nuclear norm

‖X‖∗ in the objective function. We therefore consider the following optimization

problem

min ‖X‖∗ subject to L bf(ω)(X) = bI(ω), X ≥ 0. (16)

The nuclear norm ‖ · ‖∗ is the sum of the singular values of the matrix while the rank is

the number of nonzero singular values. Problem (16) is now convex and can be solved in

polynomial time. Since X0 is formed by an outer product of a vector and its conjugate

transpose, it is also positive semidefinite. Under this additional condition, the nuclear

norm is the same as the trace. Therefore, the relaxed formulation (16) is equivalent to

the trace minimization problem

min trace(X) subject to L bf(ω)(X) = bI(ω), X � 0, X ≥ 0, (17)

that is often used by the control community [30]. In (17), the symbol � 0 stands

for positive semidefinite. Both (16) and (17) fall into the category of semi-definite

programming (SDP) and can be solved by general purpose solvers.

In general, the two problems (16) (or (17)) are not equivalent to (15). Therefore we

must find conditions on the linear operator L bf(ω) so that the nuclear norm minimization
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yields the minimum-rank solution. The solution of these two problems is also not

unique, in general. The main contribution of this paper is to show that under certain

configurations of the imaging problem, the convex relaxation (16) has the same solution

as the non-convex problem (15), and that solution is unique.

When the linear operator L bf(ω) has the restricted isometry property below, which

holds in certain imaging regimes, then (15) has a unique solution which is the same as

that of (16). This result is general and holds for any rank minimization problem. We

first recall the definition of the restricted isometry constants, widely used in compressed

sensing.

Definition 3.1 (Restricted Isometry Property). Let Ξ : R
m×n → R

p be a linear

operator. Assume, without loss of generality, m ≤ n. For every 1 ≤ r ≤ m, define

the r-restricted isometry constant to be the smallest number δr depending on Ξ such that

(1 − δr)‖X‖F ≤ ‖Ξ(X)‖ℓ2 ≤ (1 + δr)‖X‖F

holds for all matrices X of rank at most r, where ‖X‖F =
√

trace(X∗X) = (
∑r

i=1 σ2
i )

1/2

is the Frobenius norm of X, and σi denotes its ith largest singular value.

The importance of the Restricted Isometry Property for sparse vectors was realized

and exploited by Candès and Tao [7]. It was generalized by Recht, Fazel, and Parrilo

to matrices [31]. The constants in the restricted isometry quantify the near-orthogonal

behavior of the linear operator Ξ when it is restricted to the sub-variety of matrices of

rank at most r. Using this property, we now state the following two low-rank recovery

theorems proved in [31].

Theorem 3.2. Let c = Ξ(X0) and suppose δ2r < 1 for some integer r = rank(X0) ≥ 1.

Then X0 is the only matrix of rank at most r satisfying the matrix equation Ξ(X) = c.

In other words, Theorem 3.2 implies that as long as δ2r < 1, the rank minimization

problem

min rank(X) subject to Ξ(X) = c (18)

has a unique solution which is equal to the exact solution X0. The next theorem gives

an ℓ1-type recovery result.

Theorem 3.3. Suppose r = rank(X0) ≥ 1 and δ5r < 1/10. Then, X0 is the unique

solution to

min ‖X‖∗ subject to Ξ(X) = c. (19)

Note that by the definition of the restricted isometry constants δr, we know

that δr ≤ δr′ if r ≤ r′. Therefore the condition in Theorem 3.3 implies that

δ2r ≤ δ5r < 1/10 < 1, and as long as δ5r < 1/10 the solution to (18) is also unique

and equal to X0. In other words, if δ5r < 1/10 the rank minimization problem (18) and

the nuclear norm heuristic (19) are equivalent. This result holds for any r. However,

when r = 1, that is, when the rank of X0 is one, the restricted isometry condition

δ5r < 1/10 can be improved. We prove next the following theorem.
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Theorem 3.4. Let c = Ξ(X0) with rank(X0) = 1. Assume that δ2 < 1. Then X0 is the

unique solution to the nuclear norm heuristic (19).

Proof. Suppose that the solution to (19) has rank greater than 1. Assume X is one such

solution to (19). Then we have that

‖X‖∗
‖X‖ > 1

where ‖ · ‖ is the operator norm of a matrix, which is equal to its largest singular value

σ1. On the other hand, we know that

‖X‖∗
‖X‖ ≤ rank(X). (20)

Since δ2 < 1, Theorem 3.2 implies that X0 is the unique solution to (18). Taking the

minimum over the whole solution set of matrices to (19) satisfying Ξ(X) = c on both

sides of (20) we have

min
Ξ(X)=c

‖X‖∗
‖X‖ ≤ min

Ξ(X)=c
rank(X) = rank(X0) = 1.

This is a contradiction. Therefore, the solution to (19) must have rank equal to 1.

The uniqueness of (18) implies therefore the uniqueness of (19). This concludes the

proof.

4. Main result

In our formulation of the imaging problem with intensity-only measurements the linear

operator is given by Ξ := L bf(ω) and c := bI(ω). Comparing (16) and (19), we note

that we have one more constraint, which requires the entries of the decision matrix to

be non-negative. This additional constraint restricts the problem to a convex subset of

(19). Since (16) is convex, there always exists at least one solution. To show that the

solution to (16) is unique, we only need to show that (19) has a unique solution equal

to X0 = ρ0ρ
∗
0. Moreover, since the data bI(ω) is related to a rank 1 matrix, we know

from Theorem 3.4 that we only need to show L bf(ω) satisfies that δ2 < 1. We show in this

section that the condition δ2 < 1 holds for the operator L bf(ω) under certain conditions

on the imaging and scatterer configurations.

We first write out the explicit form of L bf(ω). For any matrix X, the nth entry of

the vector L bf(ω)(X), n = 1, . . . , N , is given by

(
L bf(ω)(X)

)

n
=
(
diag(A bf(ω)XA∗

bf(ω)
)
)

n
=
(
A bf(ω)XA∗

bf(ω)

)

nn
=

K∑

k=1

(A bf(ω)X)nk(A∗
bf(ω)

)kn

=

K∑

k=1

( K∑

ℓ=1

(ĝT
0 (yℓ, ω)f̂(ω))Ĝ0(xn, yℓ, ω)Xℓk

)
(ĝT

0 (yk, ω)f̂(ω))Ĝ0(xn, yk, ω)

=
K∑

k,ℓ=1

(ĝT
0 (yℓ, ω)f̂(ω))(ĝT

0 (yk)f̂(ω))Ĝ0(xn, yℓ, ω)Ĝ0(xn, yk, ω)Xℓk.
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To evaluate δ2 for L bf(ω), we need the following Lemma that gives estimates of the sum

of products of four Green functions.

Lemma 4.1. Consider a planar array of size a×a illuminating an image window that is

at a distance L from it. Let yki
, yℓi

, i = 1, 2 be four grid points within the image window,

and xn, n = 1, . . . , N , the positions of the transducers on the array. If L ≫ a ≫ λ0,

where λ0 is the wavelength, then we have the following results:

R1 If k1 6= k2 or ℓ1 6= ℓ2,

N∑

n=1

Ĝ0(xn, yk1
, ω)Ĝ0(xn, yk2

, ω)Ĝ0(xn, yℓ1, ω)Ĝ0(xn, yℓ2 , ω) ≈ 0.(21)

R2 If k1 = k2 = k, ℓ1 = ℓ2 = ℓ, and k 6= ℓ, with η = |yk − yℓ|,

1

2

2π

(4π)4h2
1

log
(
1 + η2

L2

)
ηL + 2η2 arctan

(
η
L

)
+ 4L2 arctan

(
η
L

)
− ηπ

ηL(η2 + 4L2)

.

N∑

n=1

|Ĝ0(xn, yk, ω)|2|Ĝ0(xn, yℓ, ω)|2 (22)

.
1

2

2π

(4π)4h2
1

log
(
1 + η2

L2

)
ηL + 2η2 arctan

(
η
L

)
+ 4L2 arctan

(
η
L

)
+ ηπ

ηL(η2 + 4L2)
.

R3 If k1 = k2 = ℓ1 = ℓ2 = ℓ,

N∑

n=1

|Ĝ0(xn, yℓ, ω)|4 ≈ 1

2

2π

(4π)4h2
1L

2
. (23)

Proof. We recall that our imaging configuration consists of a planar array with N

transducers located at xn and separated from each other by a distance h1. The image

window is discretized with a uniform mesh of grid size h2. The cross range resolution

is, in the present context, λ0L/a [5]. Therefore, since L ≫ a, if h2 = λ0L/a we have

that h2 ≫ λ0.

Under the large array asymptotic condition (a ≫ λ0 and h1 ≪ a) we can replace

the sum of the products of the four Green functions by its continuum limit. Hence,

N∑

n=1

Ĝ0(xn, yk1
, ω)Ĝ0(xn, yk2

, ω)Ĝ0(xn, yℓ1, ω)Ĝ0(xn, yℓ2 , ω) ≈

1

(4π)4h2
1

∫

Ω(x)

e
iκ(|x−y

k1
|−|x−y

k2
|)

|x − yk1
||x − yk2

|
e
iκ(|x−y

ℓ1
|−|x−y

ℓ2
|)

|x − yℓ1||x − yℓ2|
dx,

where Ω(x) is the integral region over the entire array.

R1 Note that when k1 6= k2 or ℓ1 6= ℓ2, the condition h2 ≫ λ0 implies that the

exponents in the integrand are much bigger than 1. Therefore the exponential

varies rapidly and the contributions from each dx to the integral cancel each

other, so the net result is negligible. Its leading term behavior is obtained using
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the stationary phase method. For simplicity, denote the integral by I, and let

Φ(x) = |x − yk1
| − |x − yk2

| + |x − yℓ1| − |x − yℓ2 |. To find the stationary point,

we compute the gradient of Φ(x) as

∇Φ(x) =
x − yk1

|x − yk1
| −

x − yk2

|x − yk2
| +

x − yℓ1

|x − yℓ1|
− x − yℓ2

|x − yℓ2 |
.

This gradient is equal to zero when the four unit vectors are linearly dependent.

When k1, k2, ℓ1, and ℓ2 are not identical, the set of points x that make four unit

vectors linearly dependent is finite. Without loss of generality, in the following we

assume there exists only one point x0 such that ∇Φ(x0) = 0. Since Φ(x0) ∼ O(h2)

and λ0 ≪ h2, we have that kΦ(x0) ≫ 1. From the stationary phase approximation

we have

I ≈ eiκΦ(x0)

|x0 − yk1
||x0 − yk2

||x0 − yℓ1||x0 − yℓ2 |

∫

B(x0,ε)

eiκ(x−x0)T ∇2Φ(x0)(x−x0)/2 dx

where B(x0, ε) is a ball centered at x0 with radius ε. Since the integrant oscillates

fast outside B(x0, ε), we can extend the integral region to R
2, that is,

I ≈ eiκΦ(x0)

|x0 − yk1
||x0 − yk2

||x0 − yℓ1||x0 − yℓ2 |

∫

R2

eiκ(x−x0)T ∇2Φ(x0)(x−x0)/2 dx.

The integral is of Frensel type and we can calculate the value of I as

I ≈ eiκΦ(x0)

|x0 − yk1
||x0 − yk2

||x0 − yℓ1||x0 − yℓ2 |

(
π(1 + i)

κ|∇2Φ(x0)|

)
.

Clearly, I tends to zero like 1/(κh2).

R2 When k1 = k2 = k, ℓ1 = ℓ2 = ℓ, and k 6= ℓ, the sum is reduced to

N∑

n=1

|Ĝ0(xn, yk, ω)|2|Ĝ0(xn, yℓ, ω)|2 ≈ 1

(4π)4h2
1

∫

Ω(x)

1

|x − yℓ|2
1

|x − yk|2
dx.

To analyze the integral, we set yk = (0, L, 0) and yℓ = (0, L, η) so that they are

on the same slice parallel to the imaging array, and η = |yk − yℓ|. Using the

same approach as in [11], the integral is analyzed in spherical coordinates with the

transformation
x − yk

|x − yk|
= (cos θ sin φ, sin θ sin φ,− cos φ).

The Jacobian for this change of coordinates is −L2 sec2 φ tanφ, |x − yk| = L sec φ,

and

|x − yℓ|2 = L2 sec2 φ + η2 − 2ηL tanφ cos θ.

We can now calculate an asymptotic upper bound of the sum as the size of array

becomes large

N∑

n=1

|Ĝ0(xn, yk, ω)|2|Ĝ0(xn, yℓ, ω)|2

≈ 1

(4π)4h2
1

∫

Ω(x)

1

|x − yℓ|2
1

|x − yk|2
dx
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=
1

(4π)4h2
1

∫

Ω(θ,φ)

tan φ

L2 sec2 φ + η2 − 2ηL tanφ cos θ
dθdφ

.
2π

(4π)4h2
1

∫ π/2

0

tanφ

L2 sec2 φ + η2 − 2ηL tanφ
dφ

=
1

2

2π

(4π)4h2
1

log
(
1 + η2

L2

)
ηL + 2η2 arctan

(
η
L

)
+ 4L2 arctan

(
η
L

)
+ ηπ

ηL(η2 + 4L2)
.

An asymptotic lower bound follows similarly.

R3 The asymptotic value for the integral when k1 = k2 = ℓ1 = ℓ2 = ℓ is relatively

straightforward

N∑

n=1

|Ĝ0(xn, yℓ)|4 ≈
1

(4π)4h2
1

∫

Ω(x)

1

|x − yℓ|4
dx

=
1

(4π)4h2
1

∫

Ω(θ,φ)

tanφ

L2 sec2 φ
dθdφ

.
2π

(4π)4h2
1L

2

∫ π/2

0

tanφ

sec2 φ
dφ

=
1

2

2π

(4π)4h2
1L

2
.

When we have L ≫ η, the asymptotical upper and lower bounds of R2 in Lemma

4.1 are close. This is stated in the following corollary.

Corollary 4.2. When L ≫ η, we have

N∑

n=1

|Ĝ0(xn, yk, ω)|2|Ĝ0(xn, yℓ, ω)|2 ≈ 1

2

2π

(4π)4h2
1L

2
. (24)

Proof. In the proof of Lemma 4.1, we have

N∑

n=1

|Ĝ0(xn, yk, ω)|2|Ĝ0(xn, yℓ, ω)|2

≈ 1

2

2π

(4π)4h2
1

log
(
1 + η2

L2

)
ηL + 2η2 arctan

(
η
L

)
+ 4L2 arctan

(
η
L

)
± η2π

ηL(η2 + 4L2)

=
1

2

2π

(4π)4h2
1

(
η
L

)2

ηL + 2η2
(

η
L

)
+ 4L2

(
η
L

)
± η2π + o

(
η3

L3

)

ηL(η2 + 4L2)

=
1

2

2π

(4π)4h2
1L

2

1 ± π
4

η
L

+ 3
4

(
η
L

)2

+ o
(

η3

L3

)

1 + 1
4

η2

L2

=
1

2

2π

(4π)4h2
1L

2

(
1 ± π

4

η

L
+

1

2

( η

L

)2

+ o
( η

L

)3
)

.

When L ≫ η, we can truncate to the first order and get (24).
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Using Lemma 4.1 and Theorem 3.4, we obtain the main result of this paper, which

says that the locations and reflectivities of spatially localized or point-like scatterers can

be obtained by solving the nuclear norm minimization problem (16).

Theorem 4.3. Suppose that the conditions in Lemma 4.1 and Corollary 4.2 hold. Then

for imaging with intensity-only measurements, solving (16) recovers the exact location

and reflectivities of the scatterers.

Proof. We only need to show L bf(ω) satisfies RIP with δ2 < 1 under the given conditions.

For any given matrix X using the representation of linear operator L bf(ω) and Lemma 4.1,

we have

‖L bf(ω)(X)‖2
ℓ2

=
N∑

n=1

(
K∑

ℓ,k=1

(ĝT
0 (yℓ, ω)f̂(ω))Ĝ0(xn, yℓ, ω)(ĝT

0 (yk, ω)f̂(ω))Ĝ0(xn, yk, ω)Xℓk

)
×

(
K∑

ℓ′,k′=1

(ĝT
0 (yℓ′, ω)f̂(ω))Ĝ0(xn, yℓ′, ω)(ĝT

0 (yk′, ω)f̂(ω))Ĝ0(xn, yk′, ω)Xℓ′k′

)

=

K∑

ℓ,k=1

K∑

ℓ′,k′=1

(ĝT
0 (yℓ, ω)f̂(ω))(ĝT

0 (yℓ′, ω)f̂(ω))(ĝT
0 (yk, ω)f̂(ω))(ĝT

0 (yk′, ω)f̂(ω)) ×
(

N∑

n=1

Ĝ0(xn, yℓ, ω)Ĝ0(xn, yℓ′, ω)Ĝ0(xn, yk, ω)Ĝ0(xn, yk′, ω)

)

XℓkXℓ′k′

=
∑

ℓ=k,ℓ′=k′

|ĝT
0 (yℓ, ω)f̂(ω)|2|ĝT

0 (yℓ′ , ω)f̂(ω)|2
(

N∑

n=1

|Ĝ0(xn, yℓ, ω)|2|Ĝ0(xn, yℓ′, ω)|2
)

XℓℓXℓ′ℓ′

+
∑

ℓ=ℓ′,k=k′

|ĝT
0 (yℓ, ω)f̂(ω)|2|ĝT

0 (yk, ω)f̂(ω)|2
(

N∑

n=1

|Ĝ0(xn, yℓ, ω)|2|Ĝ0(xn, yk, ω)|2
)

X2
ℓk

−
∑

ℓ=ℓ′=k=k′

|ĝT
0 (yℓ, ω)f̂(ω)|4

(
N∑

n=−N

|Ĝ0(xn, yℓ, ω)|4
)

X2
ℓℓ

=

K∑

k,ℓ=1

|ĝT
0 (yk, ω)f̂(ω)|2|ĝT

0 (yℓ, ω)f̂(ω)|2
(

N∑

n=1

|Ĝ0(xn, yk, ω)|2|Ĝ0(xn, yℓ, ω)|2
)

(X2
kℓ + XkkXℓℓ)

−
∑

ℓ=ℓ′=k=k′

|ĝT
0 (yℓ, ω)f̂(ω)|4

(
N∑

n=1

|Ĝ0(xn, yℓ, ω)|4
)

X2
ℓℓ

≈ 1

2

2π

(4π)4h2
1L

2

(
K∑

k,ℓ=1

|ĝT
0 (yk, ω)f̂(ω)|2|ĝT

0 (yℓ, ω)f̂(ω)|2(X2
kℓ + XkkXℓℓ) −

K∑

ℓ=1

|ĝT
0 (yℓ, ω)f̂(ω)|4X2

ℓℓ

)
.

Without loss of generality we consider the case where f̂ (ω) corresponds to illumination
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Figure 2. (a) Original configuration of three scatterers within 10× 10 IW where the

grid points are separated by 1. (b) Numerical result by solving (17) with no noise in

the data and for a single illumination. (c) Histogram of the entries in solution matrix

ρ̃
0
ρ̃∗

0
. Horizontal axis represents the value range of the entries in ρ̃

0
ρ̃∗

0
using 100 bins.

Vertical axis represents the number of entries contained in each bin.

from the center of the array. Then we have that

|ĝT
0 (yk, ω)f̂(ω)| =

∣∣∣
N∑

n=1

Ĝ0(xn, yk, ω)f̂n(ω)
∣∣∣ =

∣∣∣
1

4π|x⌈N/2⌉ − yk|
∣∣∣ ≈ 1

4πL
,

so each multiplier |ĝT
0 (yk, ω)f̂(ω)|2 is asymptotically a constant as the size of the array

becomes large. Therefore, up to normalization, we have

‖L bf(ω)(X)‖ℓ2 ∼

√√√√
K∑

k,ℓ=1

(X2
kℓ + XkkXℓℓ) −

K∑

ℓ=1

X2
ℓℓ =

√√√√‖X‖2
F + trace2(X) −

K∑

ℓ=1

X2
ℓℓ ,

or

‖L bf(ω)(X)‖ℓ2

‖X‖F
∼

√

1 +
trace2(X) −∑K

ℓ=1 X2
ℓℓ

‖X‖2
F

.

Because trace2(X) ≥
∑K

ℓ=1 X2
ℓℓ under X ≥ 0, we have

1 .
‖L bf(ω)(X)‖ℓ2

‖X‖F
.

√

1 +

(
trace(X)

‖X‖F

)2

.

When rank(X) = 1, trace(X) = ‖X‖F . When rank(X) = 2, trace(X) ≤
√

2‖X‖F .

Therefore δ2 ≤ max(
√

2 − 1,
√

3 − 1) < 1, and the uniqueness of the solution to (16) is

proved.

5. Numerical simulations

In this section we present simulation results that illustrate how the convex optimization

formulation of Section 3 performs. The convex programming problem (17) is solved by

using the solver SDPT3 [34] with interface provided by the package CVX [21]. We

consider simulations in both two and three dimensional space. In the simulations

all spatial units are expressed as multiples of λ0, which is the wavelength of the
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Figure 3. (a) Original configuration of the 10× 10 IW with grid points separated by

1. (b) Solution obtained from solving (17) with no noise in the measurements and a

single illumination. (c) Solution obtained from solving (26) with 0.5% percent noise in

the measurements. The recovered image is blurred and the reflectivity of scatterers is

far from the exact values.

illuminating source. Wave propagation between two points x, y is calculated using

the homogeneous Green’s function (3) in three dimensions. For simulations in a two

dimensional configuration we still use this Green’s function.

We first consider simulations in two dimensions. In the first simulation there are

three scatterers of reflectivity 1.0, 0.8 and 0.3, respectively, within an image window of

size 10 × 10 (see Fig. 2 (a)). The image window is at a distance 100 from the linear

active array. The array is located on the left and consists of 21 transducers that are

5 wavelengths apart, that is, the aperture is a = 100. We put a uniform lattice on

the image window with points separated by 1. This results in a 11 × 11 uniform mesh.

There are more points in the image window than transducers in the imaging array.

Figure 2 (b) shows the image obtained using single illumination, that is, f̂q(ω) = 1

and f̂p(ω) = 0 for p 6= q. There is no additive noise in this first example. As we can

see, solving (17) recovers the positions of the three scatterers exactly. The values of

the recovered reflectivities are 0.9992, 0.7996 and 0.2998, respectively. In Fig. 2 (c)

we plot the histogram of the entries of the solution matrix X0 = ρ̃0ρ̃
∗
0, the height of

each rectangle being equal to the number of entries with values within the range of

the interval. The histogram shows that the recovered matrix is indeed sparse. In fact,

except for the 9 largest nonzero entries, the maximal value of the remaining entries is

1.9 × 10−3 .

We now assume that the intensity measured on the array is corrupted by additive

noise, so that the equation to invert has the form

diag
(
A bf(ω)ρ0ρ

∗
0A∗

bf(ω)

)
= bI(ω) + e(ω). (25)

Here, e(ω) is an unknown noise term. We will assume that its strength is bounded

‖e(ω)‖ℓ2 ≤ ε, for a fixed constant ε. We solve the following optimization problem

min ‖X‖∗ subject to ‖L bf(ω)(X) − bI(ω)‖ℓ2 ≤ ε, X ≥ 0 , (26)

which is still convex and where ε is an upper bound of the noise strength.

Figure 3 shows the solutions recovered using our approach with and without adding

noise to the data. In both cases there are four scatterers of reflectivity 1.0, 0.8, 0.7 and
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Figure 4. Amount of noise in intensity-only measurement is 0.5%. The number

of illuminations is increased to stabilize the solution. (a) Solution with 5 different

illuminations. (b) Solution with 10 different illuminations.

0.5, respectively (see Fig. 3 (a)). The configuration is similar to the previous one (same

size of the imaging window, same imaging array, and single illumination). The noise

vector e(ω) is generated by independent Gaussian random variables with zero mean

and standard deviation equal to α‖bI(ω)‖ℓ2/
√

N . Here, α is used to measure the noise

strength. Fig. 3 (b) shows the results when α = 0, that is, when there is no noise. The

location of the scatterers is recovered exactly while the recovered reflectivities are very

close to the real ones. However, when α = 0.005, that is, when 0.5% noise is added to

the measurements, the location of scatterers gets blurred, as can be seen in Fig. 3 (c).

To compensate for the low resolution seen in Fig. 3 (c), we increase the diversity of

the illumination sent to the image window. Instead of using a single illumination vector

f̂ (ω) we use multiple illumination vectors f̂
illum

(ω), for illum = 1, . . . , Q, which results

in a set of constraints of similar form as the one in (26). For multiple illumination we

solve the optimization problem

min ‖X‖∗ subject to ‖L bf illum(ω)(X) − billum
I (ω)‖ℓ2 ≤ ε, X ≥ 0 , (27)

for illum = 1, . . . , Q. Figures 4 (a) and (b) show the results when 5 and 10 transducers

illuminate the image window, respectively. The configuration is the same as in Fig. 3. It

is apparent that the resolution of both images improves a lot. Both recover the correct

location of the four scatterers, and when 5 and 10 transducers illuminate the image

window, the recovered reflectivities are 0.9790, 0.7865, 0.6209 and 0.4516, and 0.9922,

0.7924, 0.6353 and 0.4731, respectively.

These simulations suggest that constraints of the form L bf(ω)(X) = bI(ω) for the

intensity-only imaging problem have very small curvature around the solution, and

thus the problem is very sensitive to small perturbations in the data when a single

illumination is used. When using more illuminations, and hence adding more constraints

in (27), the robustness of the imaging problem improves.

The formulation (26) can handle more noise in the data. Figure 5 shows the results
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Figure 5. (a) 5% noise in intensity-only measurements and 5 illuminations. (b)

5% noise in intensity-only measurements and 10 illuminations. (c) 5% noise in full

measurements and 1 illumination. (d) 10% noise in intensity-only measurements and

5 illuminations. (e) 10% noise in intensity-only measurements and 10 illuminations.

(f) 10% noise in full measurements and 1 illumination.

with 5% and 10% noise added to the measurements. We also compare the images with

those obtained by solving the ℓ1 minimization with full measurements, that is, when

both intensity and phase are available. As can be seen from the figures, imaging is

much more robust to noise when the phases in the measurements are provided.

Finally, in Fig. 6 we show a simulation in 3 dimensions. The location of the

scatterers in the image window is shown in the Fig. 6. We use a square array on

the xz plane whose dimensions are 10 × 10. The transducers are placed on a uniform

11×11 grid so that N = 121. The image window is a box K, each side of which is 4. The

box is at range L = 100 and a 5 × 5 × 5 grid is placed uniformly in K. The number of

scatterers in K is M = 2 and their reflectivities are 1.0 and 0.8. With this configuration

we have a decision matrix X with 56 unknowns. Solving (17) we recover the location

and reflectivity of the two scatterers very well (see Fig. 6 (a)). The histogram of the

solution matrix X0 is shown in Fig. 6 (c).

6. Conclusion

We consider array imaging of localized scatterers in a homogeneous medium with

intensity-only measurements. We analyze situations in which it is possible to reconstruct

exactly the positions and reflectivities of the scatterers from this partial knowledge of

the data, since phase information is not available. We formulate this imaging problem

as finding the minimum rank solution of a linear matrix equation associated with the
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Figure 6. (a) Two scatterers are placed far apart within 4 × 4× 4 box. The location

and reflectivity are recovered by solving (17). Solid points represent the solution with

color indicating the reflectivity. The circles are the true locations of scatterers which is

the same as the solution. The recovered reflectivity is 0.9898 and 0.8078. (b) Zoom-in

configuration of the scatterers in image window. (c) Histogram of the solution matrix.

locations and reflectivities of the scatterers. We seek therefore a matrix solution of

minimal complexity that matches the intensity data. To find it we use the nuclear norm

heuristic and prove that in certain regimes it recovers the locations and reflectivities

of the scatterers exactly. This is confirmed with numerical simulations. We also show

numerically that this intensity-only array imaging is robust to noise. The theoretical

justification of this robustness is an ongoing research effort.
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