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Array insertion grammars have already been considered as contezrtual array
grammars in [5], whereas the inverse interpretation of a contextual array rule as
a deletion rule has newly been introduced in [2] and [3]. The results described
in this extended abstract were elaborated in [3] for one-dimensional arrays and
in [2] for two-dimensional arrays.

Sequential Grammars

A (sequential) grammar G (see [4]) is a construct (O, Or,w, P,=—>¢) where O
is a set of objects, Or C O is a set of terminal objects, w € O is the aziom (start
object), P is a finite set of rules, and =-¢C O x O is the derivation relation
of G induced by the rules in P.

L, (G) = {v €O0r |w=>¢ v} is the language generated by G (in the *-

mode); Ly (G) = {v € Or | (w = v) APz (v=¢ z)} is the language gener-
ated by G in the t-mode, i.e., the set of all terminal objects derivable from the
axiom in a halting computation. The family of languages generated by gram-
mars of type X in the derivation mode §, § € {*,t}, is denoted by Ls (X). The

family of recursively enumerable d-dimensional array languages is denoted by
L. (d-ARBA).

Arrays and array grammars

Let d € N; then a d-dimensional array A over an alphabet V is a function
A 2 2% — V U {#}, where shape (A) = {v e Z?| A(v) ##} is finite and
# ¢ V is called the background or blank symbol. The set of all d-dimensional
arrays over V is denoted by V*¢. For v € Z? v = (vy,...,vq), the norm of
v is ||v|| = max {|v;| | 1 <i<d}. The translation 7, : Z% — Z? is defined by
7, (W) = w4+ for all w € Z<. For any array A € V*? 1, (A), the corresponding
d-dimensional array translated by v, is defined by (7, (A)) (w) = A (w — v) for
all w € Z%. For a (non-empty) finite set W C Z< the norm of W is defined as
W[ = max { o — w] | v,w e W }.

[A] ={BeV*®|B=r,(A) for some v € Z?} is the equivalence class of ar-
rays with respect to linear translations containing A. The set of all equivalence
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classes of d-dimensional arrays over V' with respect to linear translations is de-
noted by [V*d] etc.

Ga = ((N U T)*d T+ Ay, P, zGA) is called a d-dimensional array gram-
mar, where N is the alphabet of non-terminal symbols, T is the alphabet of ter-
minal symbols, NNT = 0, Ay € (N U T)*d is the start array, P is a finite set of d-
dimensional array rules over V,V := NUT, and =, C (N UT)* x (N uT)*
is the derivation relation induced by the array rules in P.

A d-dimensional contextual array rule (see [5]) over the alphabet V is a
pair of finite d-dimensional arrays (A;,.A2) with dom (A1) N dom (Az) = ) and
shape (A1) U shape (Az) # 0; we also call it an array insertion rule, as its effect
is that in the context of A; we insert As; hence, we write I (A;,.As). The pair
(A1, Az) can also be interpreted as having the effect that in the context of
A; we delete As; in this case, we speak of an array deletion rule and write
D (A, A2). For any (contextual, insertion, deletion) array rule we define its
norm by ||dom (A1) Udom (Az)||. The types of d-dimensional array grammars
using array insertion rules of norm < k and array deletion rules of norm < m
are denoted by d-D™I* A; without specific bounds, we write d-DIA.

(Sequential) P Systems

For the the area of P systems, we refer the reader to [6] and the P page [7].

A (sequential) P system of type X with tree height n is a construct IT =
(G, p, R,ig) where G = (0,01, A, P,)—>¢) is a sequential grammar of type X;
1 is the membrane (tree) structure of the system with the height of the tree
being n, the membranes are uniquely labelled by labels from a set Lab; R is a
set of rules of the form (h,r,tar) where h € Lab, r € P, and tar, called the
target indicator, is taken from the set {here,in,out} U {iny | h € Lab}; iy is the
initial membrane containing the axiom A.

A configuration of IT is a pair (w, h) where w is the current object (e.g., string
or array) and h is the label of the membrane currently containing the object w.
A sequence of transitions between configurations of II, starting from the initial
configuration (A, 1), is called a computation of II. A halting computation is a
computation ending with a configuration (w,h) such that no rule from Rj can
be applied to w anymore; w is called the result of this halting computation if
w € Op. The language generated by IT, L; (II), consists of all terminal objects
from Or being results of a halting computation in I7.

By £ (X-LP) (L, (X—LP<”>)) we denote the family of languages generated
by P systems (of tree height at most n) using grammars of type X. If only the
targets here, in, and out are used, then the P system is called simple, and the cor-
responding families of languages are denoted by L; (X-LsP) (L, (X—L3P<">)).

Undecidability and Computational Completeness Results

An instance of the Post Correspondence Problem (PCP) is a pair of sequences of
non-empty strings (uq, ..., u,) and (vi,...,v,) over an alphabet T. A solution of
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this instance is a sequence of indices 41, ..., ¢, such that w;, ... u;, = v ... 05,
we call u;, ...u;, the result of this solution. Let L ((u1,...,upn), (v1,...,0n))
denote the set of results of all solutions of the instance ((ug,...,u,), (v1,...,0,))

of the PCP, and let the homomorphism hx be defined by hyx : X — XT with
hs(a) =ad for all a € X.

Lemma 1. (/3]) Let I = ((u,...,up), (v1,...,v,)) be an instance of the PCP.
Then we can effectively construct a one-dimensional array insertion P system

IT such that
[L ()] ={LL hy (w)RR' | w € L ((u1,...,un), (v1,...,0n))}-
Hence, the emptiness problem for L, (1—DIA—LP<k>) is undecidable.
For d > 2, even the emptiness problem for £; (d-C A) is undecidable, see [1].

Theorem 2. (/3]) Ly (1-D'I*A-LsP®) = £, (1-D?I?A) = L. (1-ARBA).

It remains as an interesting question for future research whether this result
for array grammars only using array insertion and deletion rules with norm at
most two can also be achieved in higher dimensions; at least for dimension two,
in [2] the corresponding computational completeness result has been shown for
2-dimensional array insertion and deletion P systems using rules with norm at
most two.

Theorem 3. ([2]) L, (2-D*I?A-LsP®?) = L, (2-ARBA).
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