University
of Glasgow

Cockshott, W.P. (2004) Array languages and the challenges of modern
computer architecture. ACM SIGAPL APL Quote Quad 34(3):pp. 13-109.

http://eprints.gla.ac.uk/3526/

Deposited on: 17 April 2008

Glasgow ePrints Service
http://eprints.gla.ac.uk

Array Languages
and the Challenge
of Modern
Computer
Architecture

Paul Cockshott

There has always been a close relationship
between programming language design and
computer design. Electronic computers and
programming languages are both ’computers’ in
Turing’s sense. They are systems which allow the
performance of bounded universal computation.
Each allows any computable function to be
evaluated, up to some memory limit. This
equivalence has been understood since the 30s’
when Turing machines (Turing 1937) were shown to
be of the same computational power as the A
calculus.

The initial relationship between languages and
machines was one of logical equivalence, but
practical distinction. The designers of the first
generation computers like the Manchester Mark 1
(Lavington 1980), or Turing’s ACE were concerned
with the practical task of getting a machine to
compute for the first time.

Stack machines

During the 1950°s the first programming
languages COBOL, FORTRAN and ALGOL came
to be developed. The existence of these languages
affected the design of the second and third
generation computers. One minor effect was to
ensure that decimal arithmetic was supported in
machines like the 360(Emerson W. Pugh and Palmer
1991) in order to accommodate the needs of
COBOL compilers. A more significant influence
was the invention of stack machines by Burroughs
(Lonergan and King 1985) in 1960. These were
designed to support block structured languages like
ALGOL 60 (Naur and Backus 1960). The influence
of the B5000 and ALGOL persisted into the 1970s

June 2004, Volume 34, Number 3

when the Intel 8086 (Morse, Ravenel, Mazor and
Pohlman 1985) was released.

The 8086 incorporated a stack based procedure
calling mechanism designed to optimise the
implementation of block structured languages of the
Algol family, though given the date at which it was
released, Pascal rather than Algol would have been
the intended language. Shortly afterwards Intel
released the stack oriented floating point processor
8087(Palmer and Morse 1984) that supported a
reverse polish notation for floating point arithmetic.
The availability of the 8087 chip on the original
IBM PC was a critical factor in enabling IBM to
launch an efficient APL interpreter on that machine.
The Pentium processors in modern PCs retain the
basic stack oriented arithmetic unit of the 8086 and
the Pascal call mechanisms of the 8086.

The IBM 5100 micro-coded APL

Figure 1:
microcomputer of 1975.

APL machines

During the 1970s attempts were made to directly
implement high level languages in hardware most
famously with the SYMBOL (Smith, Rice, Cheskey,
Laliotis and Lundstrum 1985) computer which
incorporated an interpreter and virtual storage
manager for a heap based programming language
directly in the hardware. In addition micro-coded
APL machines were proposed or implemented
(Abrams 1970, Hassitt, Lageshulte and Lyon 1973,
Hakami 1975). The most widely used microcoded
APL machine was the IBM 5100 which was a
precursor of the IBM PC. The aim of these machines
was to narrow the semantic gap between machine
code and the language used by applications
programmers. Improved performance was a
consideration but not the primary one. The 5100 had
only an 8 bit ALU and had a performance
comparable to other 8 bit micros.

13

= vector Integer Add () |

--E--I Wector Shifc 43 I

——
.-H—.
=] W ector Logical iz |
—_—
W eotor
Regigters
Float —F t Add &
-IEI—I o A LT LT =] I

=] FF BAuleiply 7y |

| = ' ee=—m| FP Reciprocal fpx (14) |

= lureger Add (3)

e
=)
2
—_
it
=
—
-

=

=== Scolor Logical (1)
me=—ma| S calar Shife (23
em—m| Population Cat. (3]

Address Add (2) |
Address Mult. (8) |

Figure 2: Basic Cray 1 architecture showing vector registers.

Super computers

Another strand of development at this stage was
the invention of vector and SIMD super-computers.
These aimed, above all, at getting the highest
possible performance. Each represented a different
approach to overcoming the bottleneck imposed on
conventional computers by their need to fetch and
update variables in memory a word at a time.

The vector processors pioneered by Cray
(Russell 1985) based themselves on the principle of
pipelining vector operations with the aim of
delivering one floating point result every clock
cycle. Instructions operated between vector
registers, each of which could hold 64 floating point
values. Thus a vector instruction like

VI=V2+V3

would add the corresponding elements of vectors V2
and V3 storing the result in the register V3. The use
of pipelining enabled the results to be delivered one
every 10ns, which was astonishingly fast at that
time. With care it was possible to break up complex
FORTRAN expressions in such a way that the
intermediate results of an expression would be
stored in vector registers. Only the initial loading
and storing of the V registers required access to
main memory, and this was done by what amounted

14

to fast DMA transfers. It was found that if memory
accesses took the form of streaming transfers, the
effective bandwidth of the memory could be much
faster than for random access transfers. A streaming
transfer reduced the set-up time needed to transmit
addresses and also allowed effective use of bank
interleaving to reduce memory latency.

Compare to this the approach adopted by ICL,
whose Distributed Array Processor (Reddaway
1973) or DAP used 4096 small processors operating
in parallel. Each processor had a simple 1 bit
arithmetic unit to which a single 1 bit wide RAM
chip was proximally connected. These processing
units were so arranged that on each clock cycle each
and every one of them performed the same logical or
arithmetical operation. If you were to hold in your
mind an image of a battalion of the Guards
performing square drill, each foot-soldier moving in
perfect synchrony to the regimental drum under the
orders of the Sergeant Major, you would then have a
perfect metaphor for the operation of the DAP. The
DAP operated as an auxiliary processor to a
conventional 2980 mainframe with the DAP
memory array forming part of the general purpose
memory of the 2980. The fact that each processor
could operate on but one bit, was circumvented by
their performance of bit serial arithmetic.
Alternatively the processors could be grouped in

APL Quote Quad

blocks of 8, 16, 32 or 64 to perform wider
arithmetic. Thus in the widest mode the DAP could
operate on 64 x 64bit numbers each step.

The ability to tailor the word length to the
application was particularly useful in graphics where
one operated on arrays of bits or bytes. The DAP
architecture and that of Hillis’s (Hillis 1986)
derivative Connection Machine was referred to as
SIMD - Single Instruction Multiple Datastream.

Experience with programming these classes of
super-computer led to the development of new
FORTRAN compilers (Perrott and Zarea-Aliabadi

standard FORTRAN and attempted to detect loops
that could be vectorised. The DAP FORTRAN on
the other hand allowed array parallel operations in
APL style so that one could write:

V(5 add 5 to the 64 elements of V

M.GT.0 generate a 4096 bit truth matrix

V(VI) VI is an integer vector that
indexes V

V(B) B is a Boolean mask that selects
V(I) where B(]) is true

IV(,5,6)/V 64 element vector IV is divided
element by element by V

FTEERFPEFEEE PEEEE F EE

1986). The Cray FORTRAN compiler took
programs that were syntactically identical to

e s

lw bit procésser-._ _ &E“) T

| |

| D |

S

1 m,JA

| e

: T (? IBUSl /

ts s - - — - K

" IcL 2980

MEMORY
ARRAY
INCLUDING

EEEEEE’@EE TEREEEEE
Eﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁ@ﬁﬁﬁ
TEEEEEEREE JE_EZJE_Emg_T_JE_Ei
PTERERERRERERERERER

R EPEREREEEEEEEREEE

PEEFEEERE PEEEEEEE
Sriieisiis oo

DAPARRAYS |

o EE
e
i
)
o
T
e
-
=0 kil [
%ﬁ
i
e
'
e
I“%jl
S

Figure 3: The ICL DAP showing a bit processor and 16th of the array of 4096 such processors

This sort of notation was later incorporated into
standard Fortran90, High Performance FORTRAN
(Ewing, Richardson, Simpson and Kulkarni 1998)
and the Fortran90 subset F (Metcalf and Reid 1996).

Microprocessor based
architectures

June 2004, Volume 34, Number 3

The next generation of super-computers tended
to be shared memory multi-processors initially from
makers like Cray but later from other manufacturers
like Sun or IBM. The move to such machines was an
effect of the production of high performance
microprocessors. Large specialised vector machines
of the earlier generation met limits in their
performance in terms of clocking that could be bye-
passed in an economical way through the use of
replicated standard microprocessors. These in turn

15

sparked off another round of array language
development with languages like ZPL (Snyder
1999), Nesl (Blelloch 1995) and SAC (Grelck and
Scholz 2003, Scholz 2003) borrowing APL concepts
but being targeted at shared memory multi-
processors. The aim in these languages was to split
array operations over a group of processors, with all
of the processors sharing the memory space within
which the arrays were stored.

By the late 1980’s microprocessors had reached
an architectural complexity equivalent to the
mainframe computers of an earlier generation. Faced
with the problem of how to use an exponentially
growing number of transistors, their designers
started to copy techniques already pioneered in high
performance mainframes. Initially this involved the
introduction of super-scalar execution, but from the
late 90s, SIMD and Vector processing features
started to be incorporated. The Intel MMX
architecture incorporated a modest sized SIMD co-
processor on the die. With the P4 this was enlarged
giving the architecture shown in Figure 4. There is a
SIMD unit capable of operating on 16 byte wide
operands. Alternatively, as with earlier SIMD
designs, the byte processors can be ganged to form 8
x 16-bit processors, 4x32-bit processors or 2x64-bit
processors. When ganged in 32-bit or 64-bit form,
the SIMD processors can perform floating point as
well as integer arithmetic. When operating with
bytes they can perform saturated arithmetic which
involves clipping the results on overflow to 255 or
to 0 on underflow. This feature is particularly useful
in image processing.

The significance of this development should be
emphasised. What had once been an esoteric form of
computer architecture, restricted to a few
experimental super-computer sites was now the
standard type of mass-produced PC. When operating

16

on byte wide quantities, the P4 or Athlon
architectures can speed their performance up by a
factor of 10 or more by using the SIMD unit rather
than the scalar processor. Using other bit widths the
performance gains are appreciable but not as
dramatic.

Software support for SIMD on PCs was initially
poor. Intel’s earlier C compilers allowed macro
operations to operate on short vector types that
corresponded to those supported directly in
hardware. Later Intel released a FORTRAN
compiler (Bik, Girkar, Grey and Tian 2002) that
incorporated techniques earlier developed for Cray
FORTRAN compilers to allow automatic SIMD
vectorisation of loops in unmodified FORTRAN
code. C compilers with similar features have been
released by Intel and Codeplay. From the viewpoint
of the Array Programming Language community
such approaches fail to take full advantage of array
architectures. The C and FORTRAN programs are
still written with a sequential, operation at a time,
mindset which can make it hard for programmers to
think in parallel terms. If they have not cast their
algorithm in parallel form to start out with, they may
be unable to carry out the high level algorithmic
transformations necessary to take full advantage of
array architectures.

It was for this reason that the FORTRAN
community incorporated APL concepts in the late
80s. Vector Pascal (Cockshott 2004, Cockshott
2002) is a Pascal extension analogous to High
Performance Fortran that has been targeted at SIMD
PCs. However, like HPF, it requires the programmer
to explicitly allocate and declare arrays which is
markedly less flexible than what occurs in APL.

APL Quote Quad

! A single 8 bit processor unit
/| REGS

SSE attached processor

broadcast SIMD instructions

control

on chip
cache

unit

external
main

g -

dat
32 bit scalar integer core, dual issue
scalar floating point unit
FPU Stack i
stack pointer

Figure 4: Outline of the Intel P4 architecture showing the incorporated Streaming SIMD unit.

Future machines

The SIMD unit of the P4 is targeted at graphics
applications. The byte wide arithmetic is of obvious
value in image manipulation. The ability to operate
on 4 element vectors of floating point numbers is of
particular use in 3D graphics where one performs
viewpoint projection by multiplying 4 element
vectors in homogenous co-ordinates by 4014
rotation, translation and scale matrices. A computer
game may require tens of thousands of vertices to be
transformed in this way for every video frame - at
say 25Hz. The demand for more realistic games has
led chip designers to raise the level of parallelism
even further. The pioneer in this was Sony, whose
Emotion Engine, incorporated in the £100 Play
Station 2 (PS2) included:

1. A MIPS 64 bit core acting as the control
processor.

June 2004, Volume 34, Number 3

2. An integer SIMD unit analogous to that on
the P4.

3. A pair of Vector Processing Units (VPU),
each of which could perform 4x32-bit floating point
operations each clock cycle.

The PS/2 differed from the machines discussed
earlier by incorporating both SIMD and distributed
memory multi-processing. The VPUs can operate as
independent processors fetching their own
instructions. They have vector floating point
registers and also scalar registers for address
manipulation. Instead of cache, they each have a
modest sized private high speed memory on chip.
Annoyingly they are asymmetrical in this with one
having 16K and the other 64K of memory. Vector
processing programs and data reside in this memory.
DMA channels allow the MIPS core processor to
transfer data to and from the private VPU memory
and to initiate jobs on the VPUs.

17

Rendering engine

e A et A

oy ilul
B4b | 64b
. SPRAM

Inst.
MEM

Cata
MEM

Inst.
MEM ME

10

:':':j interface :j:

The Cell processor jointly developed by IBM
and Sony for use in the PS/3 among other
applications extends the model of the PS/2 by
having 7 vector units each with 256K of memory on
chip. These promise to be able to perform of the
order of 50 Gigaflops provided that the VPUs can be
kept busy. Similar architectures are being developed
in other projects (Paulson 2005).

At the crux of making supercomputer-on-a-chip
systems effective will be the programming
necessary to get the most out of the circuitry and
architecture. However, there are few programming
tools and no programming languages optimized for
this purpose (Paulson 2005).

By dint of great ingenuity it has been possible
for vectorising compilers for scalar languages to
detect a certain amount of parallelism. The new
generation of processors raises the bar enormously.
Not only must parallelism be detected, but data must
be distributed among a heterogeneous collection of
processors with private memories and differing
instruction sets.

It seems plausible that only array languages
which allow programmers to specify bulk operations
in a data-parallel style, and which have full control

18

External memory Peripherals

Figure 5: The architecture of the PS/2 processor. The EE core incorporates a SIMD unit analogous
to that shown in Figure 4.

over the allocation and placement of store will be
able to meet these processing needs.

It is a moot point whether this implies compiled
languages like SAC or interpretive languages like
APL or J. Given the number of VPU’s available to
do the bulk calculations, it is plausible that an
interpreter running on the control processor could
dispatch jobs to the VPUs at a sufficient rate to keep
them busy on large problems. In either case, array
languages offer one of the most promising avenues
for the massive parallelism offered by the new
parallel vector machines. But implementing efficient
array language implementations on these machines
will demand some of the most sophisticated
compilers and interpreters so far developed.'

' This paper was submitted for publication on October 11,
2005.

APL Quote Quad

References

Abrams, P.: 1970, An APL Machine, Stanford
Linear Accelerator Center, Stanford University,
Stanford.

Bik, A. J. C., Girkar, M., Grey, P. M. and Tian,
X.: 2002, Automatic intra-register vectorization for
the intel architecture, Int. J. Parallel Program. 30(2),
65-98.

Blelloch, G.: 1995, Nesl: A nested data-parallel
language, Vol. CMU-CS-95-170, Carnegie Mellon
University.

Cockshott, P.: 2002, Vector pascal reference
manual, SIGPLAN Not. 37(6), 59-81.

Cockshott, P.: 2004, Efficient compilation of
array expressions, SIGAPL APL Quote Quad 34(2),
16-25.

Emerson W. Pugh, L. R. J. and Palmer, J. H.:
1991, IBM’s 360 and Early 370 Systems, MIT.

Ewing, A., Richardson, H., Simpson, A. and
Kulkarni, R.: 1998, Writing Data Parallel Programs
with High Performance Fortran, Edinburgh
ParallelComputing Centre.

Grelck, C. and Scholz, S.-B.: 2003, SAC —
From High-level Programming with Arrays to
Efficient Parallel Execution, Parallel Processing
Letters 13(3), 401-412.

Hakami, B.: 1975, Efficient Implementation of
APL in a Multilanguage Environment, International
Computers Ltd.

Hassitt, A., Lageshulte, J. and Lyon, L.: 1973,
Implementation of a high level language machine,
Communications of the ACM 16.

Hillis, W. D.: 1986, The connection machine,
MIT Press, Cambridge, MA, USA.

Lavington, S.: 1980, Early British Computers,
Manchester University Press, Manchester.

Lonergan, W. and King, P.: 1985, Design of the
b5000 system, in D. Sieworek, G. Bell and A.
Newell (eds), Computer Structures, McGraw Hill.

Metcalf, M. and Reid, J.: 1996, The F
Programming Language, Oxford Univesity Press.

Morse, S., Ravenel, B., Mazor, S. and Pohlman,
W.: 1985, Intel microprocessors: 8008 to 8086, in D.
Sieworek, G. Bell and A. Newell (eds), Computer
Structures, McGraw Hill.

Naur, P. and Backus, J.: 1960, Report on the
algorithmic language algol 60, Danish Academy of
Technical Sciences, Copenhagen.

June 2004, Volume 34, Number 3

Palmer, J. and Morse, S.: 1984, The 8087
primer, Wiley, New York.

Paulson, L. D.: 2005, Squeezing supercomputers
onto a chip, Computer 38(1), 21-23.

Perrott, R. H. and Zarea-Aliabadi, A.: 1986,
Supercomputer languages, ACM Comput. Surv.
18(1), 5-22.

Reddaway, S. F.: 1973, Dap a distributed array
processor, SIGARCH Comput. Archit. News 2(4),
61-65.

Russell, R.: 1985, The cray-1 computer system,
in D. Sieworek, G. Bell and A. Newell (eds),
Computer Structures, McGraw Hill.

Scholz, S.-B.: 2003, Single Assignment C —
Efficient Support for High-Level Array Operations
in a Functional Setting, Journal of Functional
Programming 13(6), 1005-1059.

Smith, W., Rice, R., Cheskey, G., Laliotis, T.
and Lundstrum, S.: 1985, The symbol computer, in
D. Sieworek, G. Bell and A. Newell (eds), Computer
Structures, McGraw Hill.

Snyder, L.: 1999, A Programmer’s Guide to
ZPL, MIT Press, Cambridge, Mass.

Turing, A.: 1937, On computable numbers, with
an application to the Entscheidungsproblem,

Proceedings of the London Mathematical Society
42, 230-65.

19

	Citation.template.pdf
	http://eprints.gla.ac.uk/3526/

