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ARRAY SIDELOBES, ERROR TOLERANCE, GAIN, 'AND‘BEAMWIDTH

INTRODUCTION

Directivity, beamwidih, and sidelobe levels are the three most important parameters of a phased
array. These parameters are determined by the system requirernent. However, they are related to each
other. These three parameters determine the cost of a phasad array. However, another important fac-
tor concerning cost is the array error tolerance. Particularly in recent years the requirements of jam-
ming proof and clutter rejection radar lead to a need of extremely low sidelobe array antennas.
Theoretically, one can design an array with any sidelobe level as one desires. However, the array errors
limit the actual sidelobe level one can achieve. Naturally, the lower the sidelobé level one wishes to
achieve the tighter is the array error required and the cost of the array increases accordingly. This
brings up the question of whether one may design an array withk much lower sidelobe level than
required and then let the sidelobe level deteriorate to achieve a better array error tolerance. However,
as is well known, as soon as one brings down the sidelobe level the directivity and beamwidth are all
affected. To keep the constant directivity and beamwidth, the array size must be increased. Hence, it
is a trade-off of increase in array size to achieve a better error tolerance. It would be extremely useful
if some relations between these factors can be established.

Many papers have been published on the effect of the random errors in the performance of array
antennas. Ruze [1] published the first work on this subject and pursued the effect of small random
phase and amplitude errors on the average sidelobe level. His results showed that the effect of the dis-
tribution error is to add an essentially constant power level proportional to the mean square error to the
mean sidelobe. Individual arrays and particular spatial directions show sidelobe radiation differing from
this constant value. Bailin and Ehrlich 2] considered the problem of a linear standing-wave fed slot.
array and investigated the effect in the radiation pattern of a Gaussian distribution of errors in slot
length and slot positions. Their results cannot be used for a general case. Gilbert and Morgan [3]
treated the effect on gain and sidelobe level of random geometrical errors in a general twn-dimensional
aperture. Their results were again in terms of average sidelobe similar to Ruze’s conclusion. Elliott [4]
has extended the problem to a two-dimensional scanning dipole array subject t. random mechanical and
electrical excitation errors. He has shown the sidelobe increase due to random errors does not depend
upon scan angle. However, his results were also in terms of expected sidelobe level.

One may notice that most of the previous works treated the effect of random errors on the aver-
age sidelobe level. The reason to adopt this approach is that the average sidelobe is a deterministic
function while the individual sidelobe level is a probabilistic function. In a modern radar system, the
peak sidelobe level, however, is more important. Operation requirements are usually specified in terms
of peak sidelobe level, in particular for a low sidelobe system. The reason is that for jamming rejection,
it is most important that a jammer noise comes from a spatial location at the peak of a sidelobe and this
noise must not interfere with the radar detection. Average sid=lobe level in this case does not help.
An array may have a very low average sidelobe level, but at the same time, it may have a few high
peak sidelobes located at the wrong spot, which renders the radar system vulnerable.

In this report we relate this peak sidelobe level as function of the array errors. We also present a
set of design curves which enable a designer to choose a design sidelobe level to achieve a desired

Manuscript approved May 8, 1984,
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sidelobe with an acceptable array error tolerance. Often in the system design stage, detailed array
design data such as illumination function are not available. However, parameters such as directivity
and beamwidth, which are directly related to. the system requirement, are known. It would be advanta-
geous if these parameters can be used to estimate the array error tolerance without the knowledge of
the array detailed design data. A set of design curves for such a purpose is presented, and examples are
given.

THE STATISTICS OF RADIATION PATTERNS OF AN ARRAY WITH ERRORS

The array pattern of a planar array can be represented by

Gu.v) = FF Apm exp [i(mu + m)l )

where
u=2mdJ/x (sin @ cos ¢ - sin 6 cos do).
v=2x d/\ (sin 9 sin ¢ — sin 8 sin ¢o),

and d, and d, are the array element spacings, respectively, in the x and y directions while A is the
wavelength. Angles 8 and &¢ are the beam noint direction and @ and ¢ are the direction of a field
point.

Let us assume that each array element is subject to an independent and random error. For con-
venience, we shall separate this error into two parts; the amplitude error § and the phase error ¢ [5].
The above equation then becomes

Glu,w) = FF Aum(l +8,0) exp ( dpm) exp li(mp + nv)l. v ¢))

When the array illumination is symmetrical and no error is present, the atray pattern function G(u,»)
becomes a sum of cosine functions. Therefore the pattern function of Eq. (2) is similar to the case that

was analyzed by Rice [6] in which a steady sinusoidal current is added with a random noise. In the

present case, it is slightly different in the sense that separate amplitude and phase errors are added to
each cosine term. However, it can be shown that the probability density function of G (u,») is similar
to the case treated by Rice and it has a Rician distribution in the form {5,7]

p(R) = fz- exp [ —(RY+ )20 I, l—t?—] 3)

where R = G(u,v) and g, is the real part of the expected value of G(u,v). When the array is sym-
metrically illuminated and the phase error is small, it can be shown that g; is approximately equal to the
ideal (design) array pattern function. Quantity o is the standard deviation of the array error which can
be approximated in the following form. When array error § and ¢ are small (see tt< appendix of this

report) {7,8]
ol = -%-(o-} +e)3T 4k | @)

where oy and o4 are the rms values of the amplitude error (measured in fraction of 4,,) and phase
error (measured in radians) respectively. The amplitude error is also assumed to have zero mean. For
better comparison, it is also assumed that the illumination function 4,, is normalized such that

zmz Apm=1. (5)

In other words, the main beam has an amplitude of unity or 0 dB. All sidelobe levels and o values in
later discussions are referred to this level. The function I5(x) is the modified Bessel function of zero

order.
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_ Equation (3) relates the actual sidelobe level (R) and the array o as a function of g, (u,») which
L:-f - is equal to the design sidelobe level. One may normalize both R and o with respect to the function g,

s and achieve a universal function which is independent of the design sidelobe level. If this is done, one
- has the following cumulative probability function: '

NI ’ 5. § s2+1|. (s

:':: P(S<SL)-J; ﬁexP’—‘?—loﬁds 6)
_}_; . where S is the normalized sidelobe level in the sidelobe region and o’ is the normalized . Both S and

| © o' are normalized with respect to the design sidelobe.

: Figure 1 is a family of such curves with o' as the parameter. Each of these curves presents the

o : cumulative probability that S (in terms of design sidelobe) is less than or equal to a level S; for a given-
' o'. Since this curve is presented in such a way that it is not a function of the angle (u,»), the curve

; applies to all points in the sidelobe region. Secondly, the curve is normalized with respect *o the design

sidelobe level. It represents the probability of the deviation of sidelobe level from the design value.
-':: , Although the curves are no. presented explicity 2s a function of (u,»), they are related to the sidelobe
[.': ) level. For example. at the peak of a sidelobe, the normalizeu o' may be only equal to 0.1, but at a
t:" P e point where the sidelobe level is ten times smaller, the normalized o' then becomes 10 times larger.
N - One can see the difference in the probability distribution for these two cases. This set of curves is
ﬁ. universal. It applies to arrays \'vith different illumination designs, different sizes, and different errors.
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Fig. I = Cumulative probability of sidelobe level with different array error standard devia-

tion ;r' (both o’ and sidelobe level are normalized with respect to the designed sidelobe
level

With the aid of this plot, one may easily determine the required error tolerance to achieve a
desired sidelobe level. For example, one may wish to design an array having a 50 dB sidelobe, with
probability of 90% that the sidelobe level will not exceed the designed level by more ihan 30%. The
curve for ¢’ = 0.2 satisfies this condition, because at § = 1.3 the cumulative probability is 90%. Since
o’ = 0.2 is equivalent to ~14 dB, the required o? is approximately ~64 dB (50 + 14).
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CONSTANT PROBABILITY OF SIDELOBE LEVEL -

Aithough Fig. 1 contains all necessary design information, it is not in a very convenient form to

use. In most cases, a designer would like to know what kind of error budget one has to have in order

to maintain peak sidelobes not to exceed a certain limit. A curve that diectly relates these peak
sidelobe levels and array errors would be most useful. With slight modifications of Fig. 1, a set of con-
stant probability contour curves is presenred in Fig. 2, which is tailored for this purpose. These curves
are plotted for given cumulative probabilities from P = 0.9 tc 0.98 (Eq. (6)). The ratio of the design
sidelobe level to the desired sidelobe level (in dB scale) is used as the abcissa. The desired sidelobe is
the actual sidelobe one can achieve even if one designs the array illumination function to achieve the
design sidelobe level. The product of the square of the sum of the rms phase and amplitude errors and
a factor D is used as the ordinate. The factor D is definedas

D= 3'F Ap/Desired Sidelobe Level. M
. nm

As an example, suppose we design a linear Chebyshev array of 100 elements at a 40 dB peak sidelobe
and we would like to keep the array peak sidelobe no more than —37 dB with a probability of 0.9 after
it is built. The illumination function L 42 = —19 dB. Therefore, the factor Dis D = 37— 19 = 18

dB. We find from Fig. 2 that "
%(o‘} +0d)D=-14dB
or |
%(a’},+ ol) = -324dB.

If we assume that the amplitude error and phase error are equal, then
"~ oy = 0.025
o4 = 1.44 deg.
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Fig. 2 = Constant probability contour; @, and o4 are respectively rms amplitude
and phase errors; D = }:A},,,Idesired sidelobe where 4,3 are array illuminatiors
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In general, it is difficult to achieve a siaaller error. One may, therefore, attempt to design an
array with lower sidelobe level and let it deteriorate more in order to achieve a better array error toler-
ance yet at the same time to maintain the desired sidelobe level. For instance in the previous example,

: if one designs a —45 dB array intead of —40 dB, to achieve the same —37 dB sidelobe, one has from
S Fig. 2:

%(c} + 02D = -8.7 B.

Since the designed sidelobe is changed, the illumination function is also changed and
¥ 4}=-188dB '

L and

' D =—18.8 + 37 = 18 dB

%(a} +0d) = =269 dB

or
oy = 0.0452
a4 = 2.6 deg,

which has a larger error tolerance‘ than the previous example.

The above examples are summarized in Table 1.

Table 1
Probability 0.9 0.9
Designed Sidelobe (dB) | —40 —45
Desired Sidelobe (dB) | —37 -37
Difference (dB) 3 8
T A (dB) -19 -18.8
D (dB) 18 18
Toi+odD@R) | -14 8.7
. Tlod +ad) (@B) -32 | -269
“ " o4 (deg) 1.44 26
- 0.025 | 0.0452

The patterns of the above two examples are vlotted in Fig. 3 for the —40 dB and —45 designs.
/ The phase and amplitude errors of each element o1 these two examples are generated by the random
' number generator built in the computer with a Gaussian distribution of the above prescribed o values
of phase and amplitude errors. The patterns of this array with these random generated errors and that
of the same array without errors are plotted in Figs. 3(a) and 3(b). Comparing the idea pattern and the
L one with errors, one may see that out of these 50 peak sidelobes, three or four of them slightly exceed
e the —37 dB limit, which is about a 10% probability as we predicted. These examples support the va-
R ~lidity of this approximation.
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The probabilities of peak sidelobes to exceed ~37 dB in both cases are the same. However, one
nay notice that the radiation pattern of the case designed at —45 dB is worse in the sense that many
sidelobes are smeared while in the case of —40 dB design, the sidelobes are merely slightly perturbed.
This may be one of the prices one has to pay to achieve a higher array error tolerance. Furthermore,
when a lower sidelobe illumination is used, in general, the array main beam tends t¢c become fatter and
directivity gain reduced. In the next section, this effect is discussed further.
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DIRECTIVITY GAIN AND BEAMWIDTH

The above design procedure requiics a knowledge of the array illumination function. This param-
eter .nay not be available for a system engineer at the system design level, he may not be ready to
commit himself to certain illumination functions at the time being. Therefure, it would be more con-
venient if there are other parameters that he can use and which are specified at the system level. In the
this section we show that the array directivity or beamwidth can be used in place of illumination func-

tion for this design purpose.

Elliott [9] showed that the directivi'ty of a planar array is:
Dy=4md dcost/YTAM )

where

Apm = Ay Ay,
and 4, and 4, are respectively the row and column illumiration of the array. The angle &, is the beam
scan angle from the array normal when the directivity gain is measured, and 4, and 4, are the element
spacings in terms of wavele..gth. The product of d, and d, represent the array grid area. To avoid
superzain and grating lobes, most arrays are designed with element spacings which are equal or slightly
greater than half wavelength depending on the scan range. Hence, '

4d d =A,>1.
The array illumination function can be represented by
33 AL, = A, cos 8/ D,.
4 .

This relation can 'be used to replace the array illumination function. A set of constant probability

curves in Fig. 2 is replotted and shown in Fig. 4. The abcissa of this plot is the same as that shown in

Fig. 2 which is the ratio of the designed sidelobe level to the desired sidelobe level in dB scale. The

ordinate of this plot, however, is in terms of (0§ + ¢3)/F, and the constant factor Fis defined as
2D, S,

m Ag cos 6y

F = (10)

where S, is the desired sidelcbe level. This set of curves is more convenient to use if the directivity
gain is known. For example, if the array is specified to have a sidelobe level better than —40 dB at a
probability of 0.9, the array directivity gain is specified to be 40 dB at the broadside. Assume that the

array grid is half wavelength, then
Ay =1
D,S,, - l \
F = 0.6366.

Suppose that we assume that the ratio of the designed sidelobe to the desired sidelobe is sct at =3
dB. From Fig. 4, we find that

(03 + o)/ F = 0.042.
of + a3 = 0.042 x 0.6366.

Assume
Oy = 0y.
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Fig. 4 — Constant probalility contour; o5 and o4 are respectively rms amplitude
and phase errors. Fy = 2D,S,/n A, cos 8; (see Eq. (9) for details)

Then the required amplitude error is
oy = 0.1156

and phase error is

For the case that the ratio of designed ard desired sidelobe level is set at —8 dB, the amplitude error

becomes

and phase error becomes
oy = 12 deg.

The above example is sumn-: rized "1 Table 2:

Table 2
Probability 0.9 0.9
Desired Sidelobe (dB) ~40 -40
Designed Sidelobe (dB) | —43 —48
Difference (dB) . -3 -8
Directivity Gain D, (dB) | —40 -40
A, 1 1
cos 8y 1 1
Fs 0.6366 |  0.0366
(0 + o/ 0.042 0.144
o 0.1156 0.21
3, (deg) ' 6.63 12.3
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Elliott [9] atso showed that the directivity gain and the beamwidth of a planar is related by the
relation '

D, = 32400/ 8 (n

where B is the acrial 3 dB beamwidth in squa.e degrees measured at the same scan angle #; where the
directivity gain D, is measured. Since it is more convenient to use dB scale, Eq. (11) can be converted
to the form

LN » LI S

LRt ]
P 'Y

L

D, = 45.1 — B (dB). (12)

(. Ad

..
',

For example. if the antenna has a 3.24 square degrees beamwidth measured at broadside, then
B = 5.1 dB and the directivity gain would be 40 dB. This relation can be used in Ea. {9) to determine
the corresponding amplitude and phase ecrois. ' '

e .
CRE A )

AR

r,.

For a lirear arrav, the directivity gain can be approximated by the relation
» D' - 2 A”z ' . {13)
n

if the array spacing is in the order of hall wavelength. The beamwidth of a linear array is related to
the directivity gain by the relation

' D, = 101.5/8, g

where 8, is the Jinear array 3 dB beamwidth.

:: ' These two relations can be used in place of the array illumination function as the examples shown
i in the planar array case. Curves shown in Fig. 4 hence can be applied directly to a linear array case.
i ' Figure 4 shows that the array error tolerance is directly proportional to the ratio of the design

sidzlobe level to the desired sidelobe level. For a fixed beamwidth or directivity. the array tolerance
‘becomes better as the sidelobe ratio increases. However, one should notice that when the design
sidelobe is reduced to maintain a constant beamwidth or directivity, the array aperture size must be
increased. In effect, it is 2 trade-off of a larger aperture for a better error tolerance. An optimal point
of best cost-effectiveness may be achieved. However, it depends on each individual system and array
antenna types.

em—— e e ey e

‘ CONCLUSIONS

The statistical distribution of sidetobe level of an array antenna due to random phase and ampli-

tude errors is Rician. The derivation of its associated parameters of this distribution and their relations

" to the array element errors are shown in the appendix. These results are then used to represent a set of

universal probability curves that relates the array error tolerance, illumination function, achievable

. sidelobe level, and he designed sidelobe level. Constant probability curves for design convenience are

= - presented. Examples are given that show how thes* curves can be used to achieve a better error toler-

. ance yet maintain a desired sidelobe level. Array directivity gain and beamwidth, which are usually

. duaned at the system design level, are shown how they can be used in the design of array error toler-
| ances and sidelobe level.

c—re ® W e o
. v
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APPENDIX
Define a complex random variabie

G=x+jy ' (Al)
ElG-E(G)) =cl+0} (A2)

where ' ‘ .
el=Ellx - E(X))?) (A))
ol=Ely-E ) (Ad)
EIG-E(GF)mat-al+2o, (AS)
o= Ellx - Ey - EQWI (A6)
G(uv) = .)_)‘_"A,,,, 1+ 3,,) exp G ¢,) - exp Ulmu + np)} (A7)
E [G]= Y Io()A,, exp Lilmu + no)l (A8)

where - :

O(k) = fp (¢) exp (ko) do (A9)

is the characteristic function of random variable ¢. When the phaée error ¢ is small, & (1) is very
close to unity, hence £(G) is equal to the array pattern shown in Eq. (1). When the array is symmetri-
cally illuminated £(G) becomes real.

[EGI = REFT TP Ay Ay exp ilm—=5)p + j(n = r)v] (A10)
|G|? = IIIY A 4,0 +8,) (1+38,)
cexp [/(@pm = &,)] - exp Li(m=5)u + jn~r)vi (A1)
CElGP = £F AL+ + TTTT Aum 4, 16D
m#»sorn#®r
cexp U (m = sdu + j(n - r)y) (A12)
where o is the variance of the amplitude error 3.
ol+o}=ElG - E (@]
- E(|GI) - |E (G)]? )
-F3T AL +of - loM (A13)
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(G =FTITY Aum 4, (1 +85,,)(1 +8,)

amey

cexp [ (dpm + &) exp Lilm + s)u + jln + o)
LGl = TIETT A An QUD exp Uilm + s)u + j(n + )]

nmrs

n=rorms*s
+, :".”'2“ +ad)o (D) Anzm exp UQmu + 22v)]

(E(G)) = IITT Aum 4n ®2(1) exp Lilm+s)u+j(n+riv]

ol-ol=RelE ((G)] -~ [E (G)))
= T30+ a0 - &1)] 47, cos 2mpu + 2nv)
o5 = $IM [ GV - [E ()]
= TETI0 + Do ) = & (D] Al sin @mu + 20,

Solving for o, and o, from £qs. (A3) and (A17), one finds

o}= TTF ALIC + D cos Qmu + 2m0)]
ol= -;-22 AL IC = D cos Qmu + 2nv)]

where
C=1+0cf- 02

D=(+cdHo (2) - d1),

since
& (k) -f p(x) exp Ljikoldx.

If the phase error is limited to a small value, the above equation can be approximated;

242
l+jk¢—i‘-24"—+... dx

o k) = [ p(o)

=3 -
¢(l)=1-—-’f’2—+j¢

(M= 1- ¢+ (3)?
=1-qa}
C=of+al
6(2) = 1-241+ ;20
@) =1-¢!-@)?!+2/8
D=ga}-oc

In the above derivation all terms that are higher than 2nd crder have been neglected.
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One may notice that when the phase error and amplitude crror are in the sam: order, then
D = 0. Furihermore if
2mu +2ne =k,

the term Dcos (2 mye + 2 ne) is much smaller than C {see Egs. (A19) and (A20)), under these condi-
tions ' ‘

ki l
al=gls= ?EZ Al i+ a)) {A25)
no :
and if the array is symmetrically illuminated,
a,, =0

The probability density funciion of r;ihd()ﬂ} variable G (u.») hence has a Rician distribution as shown
in Eq. (3). :
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