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Abstract—Micromirror arrays are promising components for
generating reflective slit masks in future multiobject spectro-
graphs. The micromirrors, 100 µm × 200 µm in size, are etched
in bulk single crystal silicon, whereas a hidden suspension is real-
ized by surface micromachining. The micromirrors are actuated
electrostatically by electrodes located on a second chip. The use of
silicon on insulator (SOI) wafers for both mirror and electrode chip
ensures thermal compatibility for cryogenic operation. A system
of multiple landing beams has been developed, which latches the
mirror at a well-defined tilt angle when actuated. Arrays of 5 × 5
micromirrors have been realized. The tilt angle obtained is 20◦ at
a pull-in voltage of 90 V. Measurements with an optical profiler
showed that the tilt angle of the actuated and locked mirror is sta-
ble with a precision of 1 arcmin over a range of 15 V. This locking
system makes the tilt angle independent from process variations
across the wafer and, thus, provides uniform tilt angle over the
whole array. The surface quality of the mirrors in actuated state is
better than 10-nm peak to valley and the local roughness is about
1-nm root mean square.

Index Terms—Deep reactive-ion etch (DRIE), micromirror, mi-
crooptoelectromechanical system (MOEMS), mirror array, multi-
object spectroscopy (MOS).

I. INTRODUCTION

T
HE EUROPEAN Cosmic Vision program and the NASA’s

Origin program bring into fashion what astronomy always

wanted to do, explaining our origin by studying the formation

of the galaxies and their evolution, as well as the formation

and evolution of planets around the nearby stars. Hence, two

requirements become a necessity: multiplexing and high spatial

resolution capabilities.

Because of its multiplexing capabilities, multiobject spec-

troscopy (MOS) is becoming the central method to study a large

number of objects by simultaneously recording hundreds of

spectra and utilizing a target selection mechanism in the field of

view. For one of the most central astronomical programs, deep

spectroscopic survey of galaxies, the density of objects is low,

and it is necessary to probe wide fields of view. The objects

of interest have to be selected based on different criteria such

as distance, color, and magnitude within deep spectroscopic
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Fig. 1. Principle of a multiobject spectrograph with a micromirror array.

surveys. This saves time and, therefore, increases the scientific

efficiency of observations.

The remote source-spectra are strongly shifted toward higher

wavelengths due to the expansion of the universe (Doppler ef-

fect), this is the so-called red-shift effect. Therefore, the spec-

trographs have to work in the IR wavelengths and, in order to

avoid the emission of the “warm” elements at these wavelengths,

the instrument must be able to work at cryogenic temperatures

inside cryostats for ground-based instruments or in the space

environment for space telescopes.

In order to obtain spectra of hundreds of objects simul-

taneously, future generation of near-IR MOS requires a

reconfigurable multislit device (MSD). Conventional masks

or complex fiber-optics-based mechanisms could be replaced

by microoptical components based on the microelectronics

fabrication process, the so-called microoptoelectromechanical

systems (MOEMS). MOEMS have produced a wide range

of applications such as sensors, switches, microshutters,

beam deflectors, and microdeformable mirrors. There are two

solutions: micromirror arrays (MMAs) for generating reflecting

slits [1], [2] and microshutter arrays (MSA) for generating

transmissive slits [3].

Fig. 1 shows the MOEMS-based MOS concept, with MMA

as a programmable slit mask. By placing the programmable slit

mask in the focal plane of the telescope, the light from selected

objects is directed toward the spectrograph (“on” state), while

the light from other objects and from the sky background is

blocked (“off” state). Any required slit configuration might be

obtained with the capability to match point sources or extended
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objects. The MMA enables the use of the so-called “long-slit”

mode, which astronomers often use with the conventional slit

mask. In long-slit mode, a slit longer than the actual size of the

studied objects is generated. This is used for the simultaneous

recording of both the spectrum of the object and the nearby spec-

trum of the background; by subtracting the background spec-

trum, the pure spectrum of the object is finally obtained. A pos-

sible MMA candidate would be the digital mirror device (DMD)

from Texas Instruments (TI), but this component is not suited

for astronomical MOS due to the small size of the micromirrors

and the impossibility to work at cryogenic temperatures.

The near-IR multiobject spectrograph (NIRSpec) for the

James Webb space telescope (JWST), formerly called next gen-

eration space telescope (NGST), is the most advanced instru-

ment project with MOEMS-based slit masks. JSWT, developed

by NASA, European Space Agency (ESA), and Canadian Space

Agency (CSA) in order to replace the 2.4-m Hubble space tele-

scope, has a primary mirror diameter of 6.5 m and is sched-

uled to be launched in 2013. This telescope will work in the

0.6–28-µm wavelength band. It will be located at the Lagrange

point L2 for a passive cooling down to 35 K. NIRSpec is in

realization phase under ESA responsibility. The Laboratoire

d’Astrophysiqe de Marseille (LAM) has been involved in all

study phases. The selected device is an MSA developed at God-

dard Space Flight Center (NASA) [3].

OPTICON is the network, which is consolidating the re-

search efforts of the European astronomical community for next

generation instrumentation, especially for the future European

extremely large telescope (E-ELT); a Joint Research Activity

(JRA) has been set on smart focal planes for developing the

components to be used in the focal plane of the telescope for

selecting or rearranging the light of the astronomical objects.

Within the framework of this JRA, micromirrors have been se-

lected in order to build the first demonstrator of a European

MOEMS-based slit mask.

We present in this paper the basic concept of the developed

device, its analytical modeling, as well as the finite-element

method (FEM) simulation and the fabrication process. Finally,

we report on the optical and electromechanical characterization

of the first generation devices.

II. REQUIREMENTS

Over several years, we have developed different tools for

the modeling and characterization of these MOEMS-based slit

masks, especially during the design studies on JWST-NIRSpec.

The models, based on Fourier theory, address two key param-

eters for the MOS performance: spectral photometric variation

(SPV) and contrast. The SPV is an unpredictable photometric

variation due to the random distribution of the sources on the slit

mask. The SPV requirement is generally < 10%, but as SPV is

strongly dependent on the object position and wavelength, the

required value cannot be reached. A dithering strategy has been

proposed for solving this problem [4]. Contrast is defined as the

total amount of nonselected flux of light when the device is set

in the “off” position, compared to the amount of light in the

“on” position. To avoid spoiler sources (bright stars or galaxies

Fig. 2. (a) Schematic view of the basic concept and the electrostatic latching
mechanism used to achieve stable tilt angles. (b) and (c) Due to the electrostatic
force, the mirror rotates upward until the first stopper beam, which is attached
to the mirror, hits the electrode. (d) Then, the mirror starts rotating in the inverse
direction until it hits the second stopper beam, which is attached to the mirror
frame and remains electrostatically fixed in this position.

within the instrument field of view) and background to pollute

spectra, its value has to be as high as possible. According to

the density of objects (stars and galaxies) in the field of view

and their magnitude, a contrast requirement of 3000:1 has been

established during NIRSpec studies. A characterization bench

has been developed for the measurement of these parameters. A

DMD made by TI has been used for the first experiments, and

contrast values for 10◦ as well as 20◦ tilt angles between “on”

and “off” position have been measured. The 3000:1 contrast

requirement could be fulfilled only with the tilt angle of 20◦ [5].

The specifications for our MOS micromirrors are partially

based on the JWST-NIRSpec studies. The mechanical tilt angle

is required to be set at 20◦ at least. The tilted micromirror is

used for the “on” position, and the rest position is considered

as the “off” position. Hence, the amount of parasitic light that

comes from reflections and scattering of the frame surround-

ing the micromirrors and of the underneath electrodes can be

drastically minimized. A uniform tilt angle must be guaranteed

over the whole array in order to send the light through a com-

mon pupil in the MOS. The accuracy requirement tilt angle is

fixed by the F-number of beams on the array and the admis-

sible oversizing of the pupil in the spectrograph; a reasonable

value is 1 arcmin. In the “off” position, the requirement on the

mirror location is less accurate as these mirrors send the light

back toward the telescope. The mirror surface must remain flat

in operation throughout a large temperature range. The impact

of the mirror surface quality on the wavefront error budget of

the whole instrument is minimized, if the flatness is better than

λ/20. The fill factor of more than 90% is essential, at least along

the long slit. One astronomical object is set to fit one mirror. This

implies a mirror size of at least 100 µm× 200 µm, in order to

correspond with the plate scale of 8-m-class telescopes as well

as the future extremely large telescope (ELT). Future IR instru-

ments for ground-based telescope as well as space telescopes

must be cooled down to cryogenic temperatures for background

noise reduction. The micromirror array must, hence, work at

cryogenic temperatures.
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III. CONCEPT

The basic concept of the device is shown in Fig. 2. The

micromirrors are actuated electrostatically. Thermal actuation

is not suited for IR applications, piezoelectric actuation is not

suited due to its small stroke, and magnetic actuation is very

complex on system level [3]. The electrostatic actuation com-

bines the required low power dissipation, high stroke, and sim-

plicity on system level. As the device is used as object selector,

it is operated in binary mode, i.e., there is an “off” and an

“on” state. The flat nonactuated state of the mirrors [shown

in Fig. 2(a)] is considered as the “off” state, wherein both the

mirror and the electrode are grounded. The pull-in state of the

mirror, precisely when the mirror is tilted as shown in Fig. 2(d),

is considered as the “on” state.

A single cell of the device consists of a mirror, which is sus-

pended to a supporting frame by a flexible beam, an electrode,

and a spacer element that provides a constant gap between the

mirror and the electrode. In 2-D arrays, the frame is designed to

run along only the long side of the mirror, which makes near-

100% fill factor possible along this direction. Stopper beams

located on the mirror and on the frame provide tilt-angle con-

trol. Physically, the device is realized on two different chips:

the mirror chip and the electrode chip. The latter contains the

spacer elements.

In order to have mirrors with a planarity better than λ/20,

the mirrors must be sufficiently thick—on the other hand, the

mirrors must be as thin as possible to minimize the gap size

between the mirrors. The minimal achievable gap size is related

to the substrate thickness by the maximum aspect ratio imposed

by the etching technology. A gap size as small as possible is de-

sirable for maximizing the fill factor and minimizing stray light

originating from below the mirror array. Simulations showed

that a thickness of 5 µm is sufficient for the 100 µm× 200 µm

large mirrors to remain flat during the operation. However, a

10-µm-thick substrate has been chosen in order to withstand

potential strains originating from the metal coating. Since bare

silicon is transparent for IR light, a gold coating on the mirrors

is needed for good reflectivity in the IR range. The effect of the

metal coating on the mirror planarity can be minimized by using

a sandwich-style coating, i.e., coating the front and back side of

the mirror with the same thickness of the same material. Thus,

potential strains coming from a differential thermal expansion

coefficient between gold and silicon are partially compensated

for. The flexion-hinge-type suspension is situated on the back-

side of the mirror. This hidden suspension beam configuration

leads to a higher fill factor than lateral suspension beams. As the

suspension is covered by the mirror (except for the small gap be-

tween the mirror and the frame), we have no stray light coming

from the bent beams, which means less degradation of the con-

trast. The maximum contrast value depends upon the tilt angle

of the mirror, which is the angle between the “off” and the “on”

state of one mirror. The degradation of the contrast is usually due

to the stray light originating from the mirror edges, supporting

frame, suspension, and backscattered light from the electrode.

As the suspension is hidden by the mirror and the gap size be-

tween mirror and frame is small, the degradation of the contrast

is mainly due to the rounding of the mirror edges, and surface

roughness of the mirror and the frame. The tilt angle is a function

of the gap between the electrode and the mirror and the geom-

etry of the suspension. With an intended gap height of 35 µm,

tilting angles between 15◦ and 24◦ can be achieved. A system of

landing posts (or stopper beams) on the mirror and on the frame

has been developed to assure a precise and constant tilt angle.

This concept is shown in Fig. 2: Once the mirror (i.e., the landing

post located on the mirror) touches the electrode, it will not stop

moving but will start turning into the opposite direction around

this new rotation axis, i.e., the tilting angle tends to decrease

once the mirror has landed. This is due to a nonzero (and oppo-

site to the mirror tilting motion) torque around the point where

the landing post is attached to the mirror. The reverse turning

movement is stopped at a well-defined tilt angle by the stopper

beam attached to the frame adjacent to the mirror. The mirror is

now electrostatically latched in a position defined by the geom-

etry of the landing posts and the gap between the electrode and

the mirror.

The mirror and the electrode chip are fabricated separately on

different wafers and then assembled afterward. The mirror chip

is made out of a silicon-on-insulator (SOI) wafer. The 10-µm-

thick SOI layer (or device layer) is structured into (horizontal)

mirrors and frame by bulk micromachining. The optical active

side of the mirror is the backside of the device layer, which

must be released during fabrication. Intrinsically, the device

layer backside is optically flat in terms of roughness and, when

released, optically flat in terms of planarity. The suspension

structure and the landing posts are realized by surface microma-

chining of a deposited and doped polycrystalline silicon layer

underneath the mirror and frame. Polysilicon is used rather than

any other material, as it has a thermal expansion coefficient sim-

ilar to single crystal silicon. This is important for the operation

in cryogenic environment. In order to assure thermal expansion

compatibility with the mirror chip, the electrode chip is also

based on an SOI wafer. Beside the electrodes, connecting lines,

and connecting pads, the electrode chip also contains the spacer

elements, which ensure a constant gap between the electrode

and the mirror chip. The spacer height is fixed and defined by

the thickness of the device layer of the electrode chip, therefore

the uniformity of the spacer height (and the uniformity of tilt

angle) depends on the uniformity in thickness of this silicon

layer.

IV. MODELING

The required mechanical tilt angle of the MOS micromirrors

is 20◦. For this given tilt angle, we want to minimize the required

gap height, i.e., the spacing between the mirror and the electrode.

This for the following reasons.

1) For a given geometry of the flexure beam, the actuation

voltage is proportional to the gap height.

2) The present actuator architecture implies that a part of

the tilted mirror (“on” state) is optically blocked from the

adjacent frame. This covering reduces the operational fill

factor. It can be minimized by minimizing the gap height.
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Fig. 3. Suspension model. The electrostatic forces acting on the mirror are re-
placed by a resulting force and moment acting on the endpoint of the suspension
cantilever.

3) The crosstalk between two adjacent mirrors depends upon

the gap height; the smaller the gap height, the less pro-

nounced the crosstalk.

In this section, we discuss the effects of the suspension and

stopper geometry and electrode position on the behavior of the

actuator.

The dimensions of the flexion beams are determined by the

constraint on the resonance frequency, actuation voltage, and

the maximum allowable stress. The only degrees of freedom to

influence the tilt-angle-per-gap-height ratio are the suspension

attachment offset (parameter b in Fig. 3) and the relative position

of the electrode (parameter e in Fig. 3).

We consider the case of a cantilever suspension as shown in

Fig. 3. Assuming a thin (i.e., width ≫ thickness) cantilever,

we can neglect the in-plane movement of the mirror and can

consider only the movement in the plane perpendicular to the

mirror. Furthermore, if we consider that the mirror is much

thicker and larger than the cantilever, we can assume the mirror

to be rigid.1 The electrostatic forces acting on the mirror can

then be reduced to a resulting force and moment acting on the

point where the cantilever is attached to the mirror, as shown in

Fig. 3. The resulting piston movement and tilt angle due to the

force F and the moment M is obtained by linear superposition,

i.e., summation of the two individual contributions. Considering

small deflections, thee y-deflection of the cantilevers end can be

stated as

δ = δF − δM

=
l2c

EIy

(

Flc
3

− M

2

)

(1)

and of the angle as

α = αF − αM

=
lc

EIy

(

Flc
2

− M

)

(2)

where lc is the cantilever length, E is the Young’s modulus,

and Iy is the moment of inertia around the y-axis [6]. The

moment of inertia is given with Iy = wd3/12, where w is the

width of the cantilever and d the thickness. The (vertical) piston

movement of the mirror is represented in 1, whereas 2 represents

the tilt angle. Note that the ratio α/δ [obtained from 1 and 2]

decreases with the length of the cantilever lc. It is obvious from

2 that for a mirror motion as shown in Fig. 2(b), we must

1The deflection δ due to a force F of a beam with rectangular section wh
can be written as δ ∼ F/wh3 Assuming a beam with 10 µm× 0.5 µm section
and a mirror with a 200 µm× 10 µm section, having the same length, a force
F would deflect the mirror 20

4
= 160 000 times less than the cantilever.

Fig. 4. Tilt angle and pull-in voltage versus suspension offset b for a gap
height h = 35µm and flexion beam dimensions d = 0.5µm, w = 10µm, and
lc = 100µm. For comparison, a normalized plot of the analytic formula for the
pull-in voltage is drawn (dashed curve).

have Flc > 2M . If we have Flc < 2M , the mirror tilts in the

opposite direction. The relation between F and M depends

on the suspension attachment offset b and the relative position

of the electrode to the mirror e. Now, consider b = 0 and the

electrostatic pressure on the mirror as pE where the electrode

covers the mirror, and 0 otherwise. The resulting moment can

then be stated as

M = pE

(lm − e)2

2
(3)

and the resulting force as

F = pE(lm − e). (4)

It follows immediately that for lm = lc and e = 0, the angle

α is zero. Thus, we need an asymmetry either in the electrode

positioning or flexion beam geometry for optimum performance

of the device. The optimum positioning of the electrode depends

on the positioning of the flexion beam. Now, considering e = 0,

b �= 0, and the electrostatic pressure p = F/lm, the resulting

force would then be F and the resulting moment would be

M =

∫

0

−b

F

lm
x dx +

∫ lm

0

F

lm
x dx

=
l − 2b

2
F. (5)

By combining 1–5, we can predict the mirror angle and piston in

function of the cantilever attachment offset b. For small angles,

the gap height equals δ + bα. Putting lm = lc = l, the tilt-angle

versus gap-height ratio can be

α

δ + αb
=

b

b2 + l
2
b + l2

12

(6)

The normalized function is plotted in Fig. 4. We note a strong

dependence of the tilt-angle-per-gap-height ratio on the posi-

tioning of the flexion beam attachment point. The maximum

value occurs at b = l/
√

12.
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Considering the real case, where large deflections and large

angles occur, simulations using the FEM must be carried out.

Large out-of-plane movements, especially tilting movements,

often cause convergence problems in coupled electrostatic and

mechanical simulation due to strong mesh deformation and

nonlinearity. Nonlinearity occurs due to stress-stiffening, which

must be taken into account when considering large deflections

of the cantilever that cannot be avoided. Mesh deformation can

be avoided by remeshing the electrostatic and mechanical model

after each iteration. Thus, we developed a script-based custom

2-D electromechanical model for use with ANSYS. The princi-

pal idea is to separate the mechanical and electrostatic model.

The electrostatic model calculates the forces that act on the

mirror; the resulting force and moment is then transferred onto

the cantilever in the mechanical model. The simulation of the

mechanical model then gives the deflection of the cantilever

and the new position of the mirror, which is again transferred

into the electrostatic model. For each iteration, the electrostatic

model is rebuild and remeshed based on the geometrical data

calculated by the mechanical (cantilever) model. Simulations

were carried out by varying the key parameters of the micromir-

ror device: cantilever geometry, cantilever position, electrode

position, and gap height. Tilt angle, pull-in voltage, maximum

stress, and the first resonance frequency were extracted from

the simulations. The first resonance frequency, which is a mea-

sure for shock resistance, is between 800 Hz and 2 kHz for

different designs, which is an acceptable range for the consid-

ered application. The maximum stress in the cantilever ranges

from 120 to 400 MPa. The upper limit of 400 MPa is imposed

for the reliability of the polysilicon suspension. The fracture

strength of polysilicon is reported to be a few gigapascals [7];

however, this threshold may be lowered during postprocessing

and also, stresses may locally be higher in reality than in sim-

ulation. From our experience, we consider 400 MPa to be an

upper limit for safe operation. Based on these simulations, we

set the dimensions of the cantilever to be 70–100 µm in length,

0.3–0.6 µm in thickness, and 3–7 µm in width. The gap height

is set as 35 µm.

For studying the influence of the electrode position and the

cantilever attachment point on the tilt-angle-per-gap-height ra-

tio, we fixed the gap height and searched the highest tilt angle

for this given gap. This comes to the same as minimizing the gap

height for a given tilt angle because, as the simulation confirmed,

the tilt angle goes linear with the gap height for a given con-

figuration. We found that there is indeed a maximum tilt angle

in function of the positioning of the electrode (parameter e), al-

though it is not very pronounced. The position of the maximum

depends upon the cantilever attachment offset b; by increasing

b, e decreases. We set e = lm/10, which corresponds to the ideal

position for b = lm/5.

The dependency of the tilt angle (for a given gap and a given

electrode offset) is shown in Fig. 4. First, consider the tilt an-

gle at equilibrium, which is the position where the mirror is

in steady state, at the indicated pull-in voltage and without the

stopper beam system. Note that the simulated curve has the same

shape as the calculated curve, but its maximum is shifted. This

is due to the shifted electrode (e = lm/10) used for the simu-

lation. If we look at the evolution of the tilt angle rather than

the steady state, we note that the tilt angle reaches a maximum

value, before the mirror is settled in the steady state. This result

confirms the hypothesis made for the latching system showed in

Fig. 2(c): Once the mirror hits the electrode, it starts to rotate in

the inverse direction decreasing its tilt angle. In order to have the

mirror latched as proposed in Fig. 2(d), the geometry of the stop-

per beams must be chosen such that they stop the mirror between

the maximum and the equilibrium tilt angle. The range between

the maximum and the steady-state value can be considered

as the tuning range of the tilt angle for a given gap height. One

could, by augmenting the actuation voltage beyond the pull-

in voltage, extend this range, i.e., lower the steady-state value.

However, this is not suited for our application as we intend to use

a hold voltage lower than the pull-in voltage. Ideally, the stopper

beams are adjusted such that the mirror is stopped shortly after

reaching the maximum tilt angle. This way, the useable range

for the hold voltage is maximized. We remark that the difference

between the maximum and the steady-state tilt angle decreases

strongly with increasing b. The absolute value of the maximum

achievable tilt angle also decreases with increasing b. Thus, for

a maximum tilt-angle-per-gap-height ratio and for a maximum

tuning range, we chose 0µm ≤ b ≤ 20µm. The geometry, i.e.,

the length of the stopper beams is chosen such that the mirror is

stopped at an angle 10% of the tuning range below the maximum

value. This margin accounts for process variations. That way,

the proper function of the latching mechanism and, thus, the

uniform tilt angle is assured. The uniform tilt-angle condition

is a crucial requirement for the mirror array to be used in an

MOS system.

V. FABRICATION

Arrays of 2× 2 and 5× 5, as well as single mirrors with either

flexion or torsion beam suspension and different types of elec-

trodes have been fabricated. Mirror sizes of 100 µm× 200 µm,

200 µm× 100 µm, and 250 µm× 500 µm have been imple-

mented. Flexion and torsion beams with various lengths and

widths, and a thickness of 0.6 µm have been realized. The

fabrication includes the processing of the mirror wafer, the pro-

cessing of the electrode wafer, and the assembly of the released

mirror chips and diced electrode chips. Fig. 5 shows the fabri-

cation process of the mirror chip. The 10-µm-thick device layer

of an SOI wafer is structured into the mirrors and the frame by

deep reactive-ion etching (DRIE). At the same time, the trenches

for the dice free release [8] have been defined. During the next

step, 2.2 µm thermal wet silicon dioxide is grown in order to fill

the trenches between the mirrors and the frame. Reactive-ion

etching (RIE) is used afterward to open the SiO2, where the

suspension is attached to the mirrors and the frame. A polysili-

con layer is then deposited by chemical vapor deposition (CVD)

and doped. Then, the suspension and the landing posts are struc-

tured into the polysilicon layer. DRIE has been used, in order to

preserve the dimensions of the fine polysilicon structures to the

maximum extent. A slight overetch is necessary here to avoid

polysilicon residues, which are located in the dips created dur-

ing gap refill. In a final DRIE step, the backside openings of
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Fig. 5. Process flow mirror chip. (a) SOI wafer with a 10-µm-thick device
layer is used as substrate. (b) Mirrors and frame are defined by DRIE, the gaps
are filled by oxidation. (c) Oxide is opened by RIE at the points of attachment
of the suspension and the landing posts, deposition by CVD, and structuring by
DRIE of the polysilicon layer. (d) Opening of the mirrors by backside DRIE.
(e) HF vapor release of the mirrors and the chips.

the mirror and the dice free chip release trenches are etched

into the 350-µm handle layer. First, the mirrors and then, the

whole chips are released in a dry hydroflouro (HF) vapor etch

step [8]. The mirror chips are now ready to be assembled with

the electrode chip. Fig. 6(a) shows a micrograph of a released

single mirror with flexion suspension. The sandwich-style thin

film reflective coating used for IR operation is currently under

development.

Fig. 7 shows the fabrication process of the electrode chip.

An SOI wafer with a 50-µm-thick device layer is patterned

using a self-aligned delay mask process [9]. In the first step,

a 0.5-µm-thick thermal silicon dioxide is grown. In the first

photolithography and subsequent RIE step, the spacer mask is

coarsely defined in the oxide mask. In the second photolithog-

raphy and RIE step, the precise form of the spacer is defined in

the oxide mask, and at the same time the electrodes, connection

pads, and connecting lines are patterned into photoresist. Then,

by using time-controlled DRIE, the first couples of microme-

ters are etched. This step defines the height of the electrodes and

connecting lines. After oxygen plasma resist strip, the remaining

thickness of the device layer is etched. In that way, the electrode

and the connecting lines pattern is transferred to the bottom of

the device layer, while the spacers, protected by a silicon diox-

Fig. 6. Fabrication results. (a) Optical microscope image of the suspen-
sion side of a microfabricated single mirror. The size of the mirror is
100 µm× 200 µm. The mirror is suspended by two cantilever flex hinges.
The extra pads at the top will be used for the electrostatic latching mechanism.
(b) Scanning electron microscope close-up view of the fabricated electrode chip.
The structures in white are the integrated spacer elements, which also serve to
passively align the micromirror chip in the assembly step.

Fig. 7. Electrode chip. (a) SOI wafer with a 50-µm-thick device layer is used as
substrate. (b) Definition of spacers (protected by an oxide mask) and electrodes
by a first DRIE step. (c) Transfer of the electrode pattern to the bottom of the
device layer by a second DRIE step. (d) Mirror chip is put on the spacers of the
electrode chip and aligned.

ide mask, still have the initial height of the device layer. In the

final step, the wafer is diced to obtain the individual electrode

chips. Fig. 6(b) shows a closeup of the electrode chip ready for

assembly. The electrodes of the first run showed heights ranging

from 4 to 15 µm, and the spacers showed a height of 48 µm.

Within one chip, the variation of the electrode height is smaller

than 100 nm and the variation of the spacer height is smaller

than 10 nm.
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Fig. 8. Assembled and packaged device mounted on a custom PCB.

The last fabrication step is the assembly of the electrode and

the mirror chip (Fig. 7(d)). The mirror chip is placed upside

down on the angled quad spacers of the electrode. The mirror

chip is then pushed parallel to the angled squads. The angled

squads, with their counterparts on the mirror chip, guide the

mirror chip to a good position. Once the electrodes and the

mirrors are aligned, a clipping system on the mirror chip snaps

in and holds the mirror in the aligned position. The alignment

error is below 5 µm. The clipping system holds the device

together under moderate accelerations, but for durable assembly,

the chip is fixed with conductive silver glue. The assembled

device is packaged and wire bonded in a PGA84 housing. A

printed circuit board (PCB) equipped with a grid zip connector

is used for easy mechanical and electrical interfacing. Fig. 8

shows the assembled and packaged device mounted on the grid

zip socket.

VI. CHARACTERIZATION

A dedicated characterization bench has been developed for

the complete optoelectromechanical analysis of MOEMS de-

vices, actuators, or micromirrors as well as full arrays. This

modular Twyman–Green interferometer allows high in-plane

resolution (3 µm) or large field of view (40 mm). Out-of-

plane measurements are performed with phase-shifting inter-

ferometry showing very high resolution (standard deviation

< 1 nm). Features such as optical quality or electromechanical

behavior are extracted from these high-precision 3-D compo-

nent maps. The range is increased without loosing accuracy by

using two-wavelength phase-shifting interferometry authoriz-

ing measurements of large steps [10]. All measurements have

been confirmed with a Veeco/Wyko NT1100 Dynamic MEMS

(DMEMS) optical profiler.

Electromechanical actuation tests showed the basic function-

ality of the device. The mechanical properties of the micromir-

rors did not change after 106 operations, i.e., the device remained

functional and the actuation voltage required to switch the mir-

ror in the “on” state remained constant. The mirrors showed a

slight negative residual tilt of 1◦ to 2◦ after fabrication. This

may be due to a stressed polysilicon–silicon interface, or due to

a stress gradient within the deposited polysilicon layer.

Fig. 9. Tilt angle versus voltage hysteresis. The mirror with the landing beam
mechanism is electromechanically latched at 20◦. The angle remains stable
within 1 arcmin over a range of 15 V around the pull-in voltage.

The surface quality of uncoated mirrors was measured in the

“off” and the “on” state. The 100 µm× 200 µm mirrors showed

a peak-to-valley deformation of 7 nm, in “on” and in “off”

position. As predicted, the mirrors remain flat when operated.

The flatness of the mirror is required to be λ/20 for λ ≥ 1µm,

which gives 50 nm. Thus, our mirror quality is easily within

the specifications. Larger mirrors of 250 µm× 500 µm, which

may be used for larger telescopes, showed a PTV of 15 nm,

still satisfying the requirement of optical flatness. The local

roughness is comparable to an unprocessed silicon wafer, which

is around 1-nm root mean square (rms).

The mechanical tilt angle, in function of the applied voltage,

has been measured for different designs of the suspension and

stopper geometry. First, the applied voltage is increased up to

the pull-in point (at 90 V) or “on” state (and beyond). The tilt

angle at the pull-in voltage equals the tilt angle at equilibrium,

as exhibited in Section IV. From this point onward, the voltage

is decreased until the mirror snaps back to the “off” position.

The tilt-angle value at which the mirror snaps back, is equal to

the maximum tilt angle of the mirror during the transition from

the “off” to the “on” state,2 as simulated in Section IV. The

resulting tilt angle versus voltage hysteresis is plotted in Fig. 9,

for two mirrors with a suspension attachment offset b = 20µm:

one mirror equipped with the stopper beams and one mirror,

serving as reference, without stopper beams. We observe that

the maximum tilt angle and the equilibrium tilt angle are in

good agreement with the simulated values: For a suspension

attachment offset b = 20 µm, we have from Fig. 4 a maximum

tilt angle of 21◦ (21.6◦ measured) and an equilibrium tilt angle

of 20◦ (19.8◦ measured). Furthermore, the flat region around

the pull-in point of the mirror with the stopper beams proves

2This is true, as both simulation and measurement consider quasistatic cases.
Considering the real dynamic transition between the “off” and the “on” state,
the maximum tilt angle and the snap-back tilt angle might not be exactly the
same. So far, we have not succeeded either in measuring or in simulating the
dynamic transition.
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Fig. 10. 3-D optical profiler image showing a 3× 3 subset of a 5× 5 mi-
cromirror array. One row is actuated, implementing the long-slit mode. The fill
factor is 97% along the slit.

Fig. 11. CCD images corresponding to the imaging plane of the spectrometer.
In the first image, two objects are present in the field of view, in the second and
third image, one out of the two objects is selected, blocking completely the light
of the other object. The projected object has a diameter of 50 µm.

the latching mechanism. The stopper beams hold the mirror in

a stable position. Precisely, the tilt angle remains stable within

1 arcmin over a voltage range of 15 V. This way, process vari-

ations that are translated into a variation of the tilt angle for a

given voltage, can be suppressed. Thus, the uniformity of the

tilt angle over large arrays will merely depend on a uniform

spacing between the micromirrors and the electrodes. A multi-

column system guaranteeing uniform spacing over large areas

is currently under development.

A dedicated setup, which simulates the field of view of a

telescope, was used to demonstrate the capabilities of the device

for object selection. The field of view, in our case, consists of

two objects (e.g., galaxies) and is situated on two different arms

of the optical setup. These objects are imaged on the 5× 5

micromirror array, which is again imaged by a charge coupled

device (CCD) camera, simulating the spectrograph function. In

a real MOS system, the spectrograph would be at the place of

the CCD camera. The long-slit mode is used to select either

one or the other object in the field of view. Fig. 10 illustrates

the long-slit mode, i.e., all five mirrors in a line of the 5× 5

micromirror array are tilted at the same time. Note that the fill

factor along the slit is is very high, i.e., 97%. First, both objects

are selected, that is the mirror lines where the object is projected

on are tilted. Then, simultaneously, only either the right or the

left object is selected. Fig. 11 shows the series of images as seen

by the CCD camera (spectrograph).

VII. CONCLUSION

The presented device mostly fulfils the key parameters for

use in future multiobject spectrographs. It features optical flat

mirrors that can be tilted by 20◦ with an actuation voltage below

100 V. A system of multiple landing posts, which provides a

uniform tilt angle has been demonstrated. The long-slit mode,

featuring 97% fill factor along the slit, has been used to demon-

strate object selection. Currently, large micromirror arrays of

up to 100× 200 mirrors are being fabricated. To cope with this

large number of actuators, we develop a column-line address-

ing scheme, which reduces the number of driving voltages from

n2 to 2n and through-wafer interconnects. The construction of a

cryogenic chamber is under way, which allows a complete opto-

electromechanical characterization of the device in a cryogenic

environment.
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