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This work concentrates on the development of an optimization technique which is capa-

ble of minimizing the noise impact of an arriving aircraft by optimizing its flight trajectory.

Actions needed from pilots to gradually establish the landing configuration are considered

because it is expected that the pilot workload throughout this phase should be remained

or even reduced compared with the current standard arrival procedures. Therefore, the

conventional point-mass equations of motion are reformulated in such a way that the vari-

ations of the aerodynamic performance of the aircraft of different configurations can be

easily taken into account. A set of independent state variables are chosen to be param-

eterized with Bernstein polynomials in order to convert the infinite-dimensional optimal

control problem into a finite-dimensional parametric optimization problem. The number of

awakenings is selected as the performance index and finally written into a function of the

parameters introduced by the parameterization process. Genetic algorithms are employed

to optimize these parameters within a search domain in order to minimize the number of

awakenings while satisfying all constraints on both state and control variables. A number

of numerical examples, for a Boeing 747-400 aircraft arriving at an airport with different

population distribution situations, are provided to demonstrate the feasibility and effec-

tiveness of the proposed optimization technique. Without loss of generality, this particular

technique is also able to deal with a departing aircraft since most of the models are built

into replaceable modules.

Nomenclature

x state vector
u control vector
f vector of state functions
g vector of reformulated state functions
t flight time
x horizontal distance from the runway threshold to the aircraft
y lateral distance from the runway centerline to the aircraft
h flight altitude
VT true airspeed
γ flight-path angle
χ heading angle
α angle-of-attack
µ bank angle
VI indicated airspeed
T thrust
m aircraft mass
g gravitational acceleration
L aerodynamic lift force
D aerodynamic drag force
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CL aerodynamic lift coefficient
CD aerodynamic drag coefficient
m dimension of the state vector
r dimension of the control vector
B Bernstein polynomials
b Bernstein basis polynomials
τ independent variable in Bernstein polynomials
J cost function
Subscript

i initial
f final
Superscript

∗ optimal

I. Introduction

Trajectory optimization for passenger aircraft has been attracting wide attention because noise impact
of civil aviation is one of the environmental issues with top priority in the field of air transport and aircraft
operations. Community noise1 (also called environmental noise, residential noise, or domestic noise) is
defined as the noise emitted form all sources except the noise at industrial workplaces. Although many
airports were originally built at some distances from the communities they intended to serve, air traffic is
counted as one of the main sources of community noise because of the ceaselessly increasing number of flight
movements and the lack of space for the significantly expanding residential communities.

For the purpose of certificates, commercial aircraft have to meet certain standards on noise set by the
International Civil Aviation Organization (ICAO). The latest and also strictest standard2 was introduced
in October 2001 and revised in March 2002, which are applicable for certain types of aircraft currently in
service and certificates submitted after January 1, 2006. In addition to setting a threshold for the entrance
of the market, it is intended to gradually phase out those aircraft that do not fulfill the requirements. Next
to this standard, airports also adopt noise-related operating restrictions on aircraft in order to reduce the
noise impact on surrounding residential communities. For example, at Amsterdam Airport Schiphol (AAS)
in The Netherlands, the number of flight movements within a certain time period is limited and noise levels
on a daily basis are carefully measured and monitored to avoid the statutory limit values for noise impact
being exceeded. Reconsidering the fact that there may be other tools than aircraft phasing-out and operating
restrictions, the ICAO brought out the concept of “Balanced Approach”3 to address the noise issue of civil
aviation in an environmentally responsive and economically responsible way in 2004. Encompassed are four
principal elements as follows:

• reduction of noise at source;

• land-use planning and management;

• noise abatement operational procedures; and

• operating restrictions on aircraft.

In the present work, “land-use planning and management” is not under consideration and thus the distribu-
tion of residents around the airport is assumed to be fixed. Furthermore, it has been acknowledged by most
of the ICAO contracting countries that “operating restrictions on aircraft” should not be taken as the first
resort but after evaluating the benefits which can be gained from the other elements. Therefore, “reduction
of noise at source” and “design of noise abatement operational procedures” become the only available options
under this situation. Next to optimizing the shape of the aircraft and designing quiet engines, “reduction
of noise at source” can also be achieved by flying the aircraft slower of cleaner configurations and reducing
the thrust required from the engines. As a matter of fact, these two tricks are both considered when “noise
abatement operational procedures” are designed. At present, quite a number of noise abatement operational
procedures have been proposed and implemented in practical cases. For instance, noise abatement departure
procedures designed by the ICAO are intended to minimize the total area impacted by the noise of a depart-
ing aircraft by climbing steeply or executing thrust cutbacks. As for arriving aircraft, procedures based on
the Continuous Descent Approach4 (CDA) are employed to help reduce the noise impact when the air traffic
is not too busy. Different from traditional step-down approaches, these CDA-based procedures reduce the
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noise perceived by the people on the ground via reducing the thrust to flight ideal and keeping the quieter
aircraft higher for longer. By definition, possible operational procedures for noise abatement may include
one or more of the following:

1. the use of noise preferential runways to direct the aircraft away from noise-sensitive areas;

2. the use of noise preferential flight paths to assist the aircraft in avoiding noise-sensitive areas; and

3. the use of noise abatement procedures designed to optimize the distribution of the noise on the ground.

Corresponding to the third category, the objective of this work is the design of departure and arrival tra-
jectories by optimizing the distribution of the noise on the ground to minimize the overall noise impact.
By definition, minimizing (or maximizing) a certain performance index by choosing the flight trajectory is
often referred to as “trajectory optimization”. In this work, the optimization routine aims at generating
environment-oriented optimal trajectories for an arriving aircraft whose noise impact is selected as the per-
formance index to be minimized. Note that the performance index can be replaced by fuel consumption or
else and the aircraft can be one that is departing, for which the principle of the optimization holds out but
details need to be adjusted to adapt to the specific situation.

The optimization technique presented herein combines an aircraft model, the acoustic model of the
selected aircraft, the population distribution around the scheduled airport, and then employs genetic algo-
rithms to generate an optimal trajectory with respect to a preselected criterion. Considering a trajectory
optimization problem, the movement of the aircraft is governed by the point-mass equations of motion.
Conventionally, these equations include derivatives with respect to the flight time. In this work, however,
state variables are selected in such a way that the equations of motion in the conventional form can be
reformulated in to ones only involving derivatives with respect to the indicated airspeed. As a result, the
variations of the aerodynamic performance of the arriving aircraft of different configurations can be easily
taken into account. A well-established and highly successful approach to reach the solution of such a problem
is to implement discretization on states or controls or both of them to yield a finite-dimensional parametric
optimization problem5 which is computable using most of the existing algorithms. Approaches characterized
by discretization followed by optimization are usually referred to as “direct methods”, next to which are
“indirect methods” as another category of feasible approaches6 for solving the general optimal control prob-
lems of infinite dimensions. In this work, state parameterization7,8 using Bernstein polynomials, considered
as one direct method, are employed. A number of independent state variables are parameterized with the
expectation that the remaining state and control variables can also be written into functions of the intro-
duced parameters a. Determined by the histories of some of the state and control variables, the performance
index is also expected be written into a function of these parameters. Subsequently, genetic algorithms are
employed to solve the newly formed finite-dimensional parametric optimization problem. Note the fact that
it is very possible that optimal trajectories generated by optimization algorithms make the structure of the
air traffic flow a lot more complex because the aerodynamic and acoustic performances of different aircraft
are usually different and thus optimal trajectories for different aircraft may differs greatly. Meantime, it is
also expected that advanced air transportation systems would impose less and weaker constraints on aircraft
trajectories in the future. As a matter of fact, tools for communication, guidance and surveillance have been
available or right under development so that trajectory optimization has been developing rather quickly.

In order to demonstrate the feasibility and effectiveness of the proposed optimization technique, a set of
numerical examples are provided under a number of user-defined situations. In all cases, a Boeing 747-400
aircraft9 is assumed to be a point-mass subject approaching the scheduled runway. Combining the Noise-
Power-Distance (NPD) tables of the selected aircraft and some of the formulas given in the Integrated Noise
Model10 (INM) yields a measure of calculating the noise levels at observing points located in the vicinity of
the airport. Given these noise levels, one can finally calculate the number of awakenings generated by the
arriving aircraft. With the number of awakenings as the performance index of the optimization, it can be said
that the entire vicinity of the airport is under consideration and the optimal trajectory is indeed designed
by optimizing the noise distribution on the ground. For the sake of simplicity, the population distribution is
not from an actual airport but only built by the authors with a regular grid. For the purpose of comparison,
however, there is more than one population distribution model presented in this work.

This paper is structured in the following way. In Section II, the authors first describe the reformulation of
the point-mass equations of motion, as a result of which the derivatives on the left-hand side of the formulas
become ones with respect to the indicated airspeed rather than the flight time. In addition, the authors

aIt is possible that the analytical expressions of some of these remaining variables are not approachable. In this case,

numerical integration has to be applied to obtain the histories of these variables.
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also introduce the relation between noise levels and the percent of awakenings in order to calculate the
number of awakenings as the performance index. In Section III, state parameterization of independent state
parameters using Bernstein polynomials and associated derivations are described step by step to obtain the
performance index and those unparameterized state and control variables. In Section IV, models required in
the optimization routine are presented with details. In Section V, a set of numerical examples are provided
to demonstrate the usefulness of the proposed optimization technique. In the end, this work is concluded by
Section VI.

II. Problem Statement

Dealing with a trajectory optimization problem, the aircraft is in general assumed to be a point-mass
subject. Since the operating airspace is small enough and the flight time is short enough, the Earth is
considered to be flat and non-rotational. Weather conditions, mainly wind, are not included in this work. It
is assumed that all the forces acting on the aircraft go through its center of gravity and the angle between
the engine thrust and the longitudinal axis of the aircraft is assume to be equal with zero. Additionally, the
angle α is generally so small that following assumptions are applied:

{

sinα = 0

cosα = 1
. (1)

A. Reformulation of Equations of Motion

Denoted by OXeYeZe, a local coordinate system on the ground (the surface of the Earth) is constructed in
such a way that the origin O locates at the threshold of the scheduled runway, with OXe lying on the ground
plane pointing from the threshold to the other end of the runway, with OYe perpendicular to OXe pointing
to the left horizontally, and with OZe pointing from the ground to the sky vertically. The coordinate system
and all associated angles can be seen in Figure 1.

MINIMUM 

MAXIMUM 

IN 

M 

FT - IN
 

M 

9.80 

33 - 6 

10.23 

25 - 11 

7.91 

5.18

c

g
m

Figure 1. The Earth-fixed coordinate system and associated angles from different views.

Under all the assumptions and settings mentioned above, the point-mass equations of motion governing
the movement of the aircraft have a general form of:

dx

dt
= f (x(t),u(t), t) , (2)
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in which x = [x, y, h, VT , γ, χ]
T
is the state vector of the system and u = [α, µ, T ]T is the control vector into

the system. The detailed expressions of Equation (2) are given by Equation (24) in the appendix. Both of
the aerodynamic forces, L and D appearing on the right-hand side of the equations, are functions of α, h
and, more importantly VI . A relation between VI and VT is necessarily required to introduce VI in order to
replace VT in the equations. In this work, the International Standard Atmosphere (ISA) model is employed
so that the conversion11 from VI to VT has the form of:

VT = VI

[

171233(288− 0.006496h)−2.128
]

. (3)

Then the first derivative of VT with respect to t can be written as

dVT

dt
=

[

171233(288− 0.006496h)−2.128
] dVI

dt
+ 0.013823488VI

[

171233(288− 0.006496h)−3.128
] dh

dt
. (4)

By substituting Equation (3) into Equation (24), VT can be replaced by the appearances of VI and h.
Moreover, with the assist of Equation (4), the fourth equation in Equation (24) can be rewritten into an
equation with the derivative of VI with respect to t on the left-hand side. By doing so, the general form
of the equations of motion and the control vector hold out but VT is replaced by VI at any place in the
equations. In order to step further to complete the reformulation, the chain rule is employed as follows:

dx

dVI

=
dx

dt
×

dt

dVI

. (5)

Reformulation based on Equation (5) yields a new set of equations of motion with the general form of:

dx

dVI

= g (x(VI),u(VI), VI) (6)

with x = [x, y, h, t, γ, χ]
T
and u = [α, µ, T ]T as the state vector and control vector, respectively. The detailed

expressions of Equation (6) are given by Equation (25) in the appendix.

B. Optimal Control and Performance Index

By definition, a history of the state variables during the time interval [ti, tf ] is call a “state history” and
a history of the control variables during the same interval is called a “control history”. In this work, the
interval changes into [VI,i, VI,f ] but the names remain. In essence, VI correlates with t in a one-to-one
fashion. That is, the optimal control history from ti to tf can be obtained when the optimization routine
is terminated. The objective of the optimization is to find the optimal control history from VI,i to VI,f to
minimize (or maximize) a certain performance index. Clearly, different performance indexes lead to different
optimal control histories and the resulted state histories are also different. To describe the noise impact
of an arriving aircraft, candidates include noise contours at certain noise levels, complaints on noise from
residential communities, sleep disturbance, etc. As mentioned in Section I, trajectories are designed by
optimizing the distribution of noise on the ground around the airport. In order to do so, sleep disturbance
on all residents in all the residential communities around the airport is selected as the performance index of
the optimization.

Sleep disturbance is a major noise concern of the residential communities since sleep is essential for
both physical and emotional health. Noise can make it difficult to fall asleep and it can also interfere with
the sleepers to lower the quality of their sleep. Another reason of choosing sleep disturbance is that it is
reasonable to expect all the residents to return home for sleep during the night and thus the distribution
of possible victims of aviation noise can be obtained directly from census data. A main disadvantage of
selecting sleep disturbance is that the extent to which aviation noise impacts on those residents varies from
individual to individual. These variations make it difficult for researchers to obtain a fixed relationship
between sleep disturbance and flight movements. However, in 1997, the Federal Interagency Committee
on Aviation Noise (FICAN) predicted a conservative relationship12 between the percentage of the exposed
residents to be behaviorally awakened (percent of awakenings) and the exposure to a single event (the indoor
sound exposure level), as can be seen in Figure 2. This curve could be interpreted as predicting the maximum
percent of the people expected to be behaviorally awakened by the single event. The curve is represented by
the equation as follows

PA,F = 0.0087(SELin − 30)1.79 , (7)
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where PA,F is the percent of awakenings and SELin is the indoor A-weighted sound exposure level. More
recently, in 2008, the standard13 published by the American National Standard Institute (ANSI) and the
Acoustical Society of American (ASA) presented another relationship written as

PA,A =
100

1 + e−z
, (8)

with z = −6.8884+ 0.04444SELin. The curve can also be found in Figure 2. It is clear that Equation (7) is
more conservative than Equation (8) and the former one better describes the upper bound of the data14–16

from field studies. In this work, the relationship given by the FICAN is employed to calculate the percent
of awakenings and finally the number of awakenings as the performance index of the optimization.
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Figure 2. A plot of the percent of awakenings versus indoor sound exposure level.

C. Optimization in A General Form

The goal of the optimization is to minimize

J (x(VI),u(VI)) (9)

subject to

c (x(VI),u(VI)) ≤ 0 , (10)

in which J is a scalar as the cost function of the optimization and c is a vector of all the constraints imposed
on both the state and control variables. In short, an optimization is a smart and efficient search routine
that tries to find the combination of x∗(VI) and u∗(VI) from the search domain defined by Equation (10) for
which the value of the cost function is a minimum, denoted by J∗. This is an infinite-dimensional problem
because the values of x(VI) and u(VI) at any instant value of VI have to specified.

III. State Parameterization with Bernstein Polynomials

This section summarizes the process of state parameterization using Bernstein polynomials. A number of
independent state variables are parameterized and this parameterization process introduces a finite number of
unknown parameters. The remaining state and control variables are written into functions of the introduced
parameters based on Equation (6). In the end, the infinite-dimensional optimal control problem described by
Equation (9-10) can be transformed into a finite-dimensional parametric optimization optimization problem.
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A. Independent State Variables

It is natural to treat control variables as independent variables and state variables as dependent ones, but it
is not always necessary to do so. In certain cases, such as those involving derivatives of the state variables or
terminal constraints on the state variables, it is relatively easy to treat some or all of the state variables as
independent. In this work, the system is described by Equation (6) with initial and terminal values of x, h
and y. That is, derivatives of the state variables and terminal constraints on state variables are both involved.
Therefore, state parameterization is employed to complete the transformation to obtain a finite-dimensional
parametric optimization problem.

The crucial step is to select a set of independent state variables. Without losing generality, denote the
dimension of the state vector as m and the dimension of the control vector as r. Supposing that r ≤ m,
it is usually the case that the number of the independent state variables is r and it is expected that the
remaining m− r state variables and m control variables can be uniquely determined in terms of the selected
independent state variables based on the state equations. As a matter of fact, one of the main drawbacks of
state parameterization is that the determination of the independent state variables may be a cumbersome
task and there is usually more than one way to do the selection if r < m. As for the problem dealt with
in this work, there are six state variables and three control variables, meaning that three independent state
variables have to be parameterized and the rest have to be determined through further derivation based on
Equation (6). Considering that the trajectory is a three-dimensional curve which is always continuous and
differentiable, x(VI), y(VI) and h(VI) are three independent variables to be selected. The initial values of
these variables are:











x(VI,i) = xi

y(VI,i) = yi

h(VI,i) = hi

(11)

and the final values are:










x(VI,f ) = xf

y(VI,f ) = yf

h(VI,f ) = hf

. (12)

The trajectory to be optimized starts at [xi, yi, hi] and ends at [xf , yf , hf ]. The positions of the aircraft
between these two points are parameterized by polynomials as functions of VI .

B. Bernstein Polynomials

For a function f(τ) defined on the closed interval [0, 1], the Bernstein polynomial17 of order n of f(τ) can
be written into the following expression:

Bn(τ) =

n
∑

i=0

f

(

i

n

)(

n

i

)

τ i(1− τ)n−i
, (13)

in which

bin =

(

n

i

)

τ i(1− τ)n−i (14)

for i = 0, . . . , n are called Bernstein basis polynomials. Evidently, Bn(τ) is a polynomial in τ of order
less than or equal to n. Bernstein polynomials were first used in a constructive proof for the Weierstrass
approximation theorem18 . If f(τ) is continuous on the closed interval [0, 1], then we have:

lim
n→∞

Bn(τ) = f(τ) . (15)

uniformly on [0, 1].
As for the practical optimization problem, a relation is first given as follows:

VI = VI,f + (VI,i − VI,f )(1− τ) , (16)

from which it is easy to tell that VI decreases from VI,i to VI,f when τ increases from 0 to 1. Meaning, if
there is a function of τ , it can also be written into a function of VI in a unique way based on Equation (16).
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Then, there Bernstein polynomials are given with the form of:











































B1(τ,p1) =

n
∑

i=0

p1,inbin(τ)

B2(τ,p2) =

n
∑

i=0

p2,inbin(τ)

B3(τ,p3) =
n
∑

i=0

p3,inbin(τ)

, (17)

where p1,in, p2,in and p3,in are Bernstein coefficients from p1, p2 and p3, respectively. If all the Bernstein
coefficients fall into the interval [0, 1], then the values of the Bernstein polynomials fall into the interval [0, 1]
as well. The differences between the domain of the state variables and the proposed Bernstein polynomials
desire further normalizations. For example, writing x into a function of B1 yields x(B1(τ,p1)) which is
actually x(τ,p1) and finally x(VI ,p1). The same principle applies for y and h to finally obtain y(VI ,p2) and
h(VI ,p3). As for the initial and final values of these state variables, there are equations as follows:























x(VI,i,p1) = x(B1(0,p1)) = xi

y(VI,i,p2) = y(B2(0,p2)) = yi

h(VI,i,p3) = h(B3(0,p3)) = hi

(18)

and






















x(VI,f ,p1) = x(B1(1,p1)) = xf

y(VI,f ,p2) = y(B1(2,p2)) = yf

h(VI,f ,p3) = h(B1(3,p3)) = hf

. (19)

The search domain for each of these introduced parameters is the closed interval [0, 1]. Equation (18) and
Equation (19) are equality constraints on some of the parameters in p1, p2 and p3.

C. Parametric Optimization Problem

A summary of the state parameterization procedures is as follows:

1. Select the set of independent state variables;

2. Specify the parameterization and set a search domain for the introduced parameters; and

3. Determine the rest of the state variables and all control variables based on the state equation.

The first two steps have been finished and the third step requires lots of mathematical derivations. The
result of the derivations is that γ and χ from the state vector and all the variables in the control vector are
written into functions of the introduced parameters. As an exception, the analytical expression of t can not
be derived but the terminal value of t can still be known by numerical integration. Meaning, constraints on
the flight time can still be imposed although there would not be any equalities as shown in Equation (18)
and Equation (19). After executing all the procedures needed for state parameterization, the goal of the
optimization changes into the minimization of

J (VI ,p1,p2,p3) (20)

subject to

c (VI ,p1,p2,p3) ≤ 0 . (21)

Clearly, the goal of the optimization routine is to find p∗

1, p
∗

2 and p∗

3 to obtain a minimum for the cost
function, denoted again as J∗. This is an finite-dimensional problem because the number of unknown
parameters is finite, which is the sum of the dimensions of p1, p2 and p3.
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IV. Models

This section presents all the models needed in the optimization routine, including a Boeing 747-400
aircraft, a number of different population distribution models around the scheduled airport and the acoustic
model of the selected aircraft. Note that the models are all replaceable in order to be able to cope with other
similar problems. One can see that the models given below are quite specific due to the fact that they are
all provided for the numerical calculations in Section V for the purpose of demonstration.

A. Aircraft Model

A Boeing 747-400 aircraft model9 is used in this work. According to the the flap extension speed schedule
given in Table 1, the configuration of the aircraft changes while decelerating from VI,i to VI,f . In practice
there is a transition period for the flaps to be extended mechanically but in this work it is assumed that this
change occurs instantaneously. The schedule is determined by the mass and the landing configuration of the
aircraft. In this work, it is assumed that the mass of the aircraft is 260,000 kg and it remains constant due
to the fact that the fuel consumption is small enough to be neglected. As for the configuration, it is set in
such a way that the aircraft reaches the terminal point with Flaps 20 and landing gears extended. The flaps
will further change to 25 degrees to establish the landing configuration but that part of the trajectory is not
considered in the optimization routine.

Table 1. Flap extension speed schedule of a Boeing 747-400 aircraft.

Flaps Up 1 5 10 20

Gears Up Up Up Up Down

VI (kts) 250→218 218→198 198→178 178→158 158→148

The aerodynamic performance of the aircraft changes when the configuration of the aircraft changes.
Corresponding to different configurations, the expressions of CL as functions of α and the expressions of CD

as functions of CL for the selected aircraft can be seen in Table 2. In essence, the expressions of CD can also
be written into functions of α. This is the reason why the aerodynamic lift and drag forces are both written
as functions of α, h and VI in Equation (24) and Equation (25). In addition, it can be seen from Table 2
that there are both lower and upper bounds on α for each of the configurations, which are reflected by the
constraints in Equation (21).

Table 2. Aerodynamic lift and drag coefficients of a Boeing 747-400 aircraft.

Flaps Gears α CL(α) CL CD(CL)

Up Up [2.0, 8.5] 0.07500(α+ 2) + 0.025 [0.3250,0.8125] 0.10370C2
L − 0.0454CL + 0.0233

1 Up [5.0,10.5] 0.10000(α+ 2)− 0.200 [0.5000,1.0500] 0.07180C2
L − 0.0307CL + 0.0299

5 Up [5.0,12.0] 0.09500(α+ 2)− 0.065 [0.6000,1.2650] 0.05710C2
L − 0.0129CL + 0.0344

10 Up [4.0,13.5] 0.09750(α+ 2) + 0.035 [0.6200,1.5463] 0.07260C2
L − 0.0424CL + 0.0463

20 Down [2.5,13.5] 0.10000(α+ 2) + 0.250 [0.7000,1.8000] 0.04696C2
L − 0.0112CL + 0.0723

B. Population Distribution Model

It is neither realistic nor necessary to calculate the noise level exposed to each of the residents in the
residential communities in the vicinity of the airport. In order to reduce the computational load, the vicinity
of the airport is divided into a number of cells with regular or irregular shapes, named “regular grid” or
“irregular grid”. Each of these cell contains a number of residents and the cell generated in such a way that
it is reasonable to assume that the noise levels exposed to all the residents in an individual cell are the same.
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Therefore, any point in the cell can be used as the observing point at which the A-weighted sound exposure
level generated by the arriving aircraft is calculated. In practical cases, the cells usually have irregular shapes
because they are probably generated by the shapes of these residential communities. In this work, however,
the cells are all rectangles with the same size because the numerical examples given in Section V are just for
the purpose of demonstration.
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Figure 3. Uniformed population distribution to generate baseline results for comparisons.
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Figure 4. Specifically designed population distribution for optimization: case 1
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Figure 5. Specifically designed population distribution for optimization: case 2

As can be seen in Figure 3, a population distribution model is provided in order to generate baseline
results to evaluate and analysis the optimization results that follow. Except for a number of zero-density
cells surrounding the scheduled runway, the population density in each of the other cells is the same. This
zero-density area remains in both models shown in Figure 6 and Figure 7. These two population distribution
models are specifically designed, in which the residents are not distributed in a uniformed way any more. It
can be seen from the figures that in each of them there is a route composed only by zero-density cells. In
all these three models, the settings are following: (1) the black square represents the scheduled runway with
its centerline plotted as a dashed line; (2) the gray rectangles represents cells with a size of 2.50 km × 1.25
km; (3) all the observing points locate at the centers of the rectangles; (4) the “diamond” symbol represents
that there are 3000 residents in the cell; (5) the “square” symbol represents that there are 6000 residents in
the cell; and (6) the “circle” symbol represents that there are no residents at all.

C. Acoustic Model

For aircraft noise modeling, there exist a number of different methods, which can be mainly categorized into
simulation methods and integrated methods. Each of these two groups has its own strengths and weaknesses.
However, it is agreed that integrated methods represent the current best practice, especially in trajectory
optimization problems where noise levels need be calculated in order to calculate the noise impact of a
single event. The Aviation Environmental Design Tool (AEDT) is under development by the FAA. The
AEDT is currently used by the U.S. government to consider the interdependencies between aircraft-related
fuel burn, noise and emissions. AEDT is also being developed for public release and will become the next
generation aviation environmental consequence tool, replacing the current public-use aviation air quality
and noise analysis tools, such as the INM. Before that replacement happens, the method presented by the
INM is used in this work. The INM has been a standard tool for the FAA since 1978 for determining the
predicted noise impact in the vicinity of airports. The core of the method from the INM is the NPD datasets
which are normalized to standard reference conditions19 in order to be most widely used for aircraft noise
modeling. For conditions that are different from the reference, it is required to take into account appropriate
corrections to offset the differences. One example dataset is given in Table 3 for the calculation of A-weighted
sound exposure levels of the aircraft during approach. A flight trajectory has to be divided into a set of
straight-line flight-path segments in order to calculate the outdoor A-weighted sound exposure levels using
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the NPD datasets. Knowing the appropriate geometry information of the flight-path segments, the noise
level can either found directly from the datasets if the slant distance and the engine power are both tabulated
in the tables or obtained using interpolation or extrapolation. Details can be found from a report given by
the ICAO19 in 2008.

Table 3. NPD data for A-weighted sound exposure levels of a Boeing 747-400 aircraft installed with four

PW4056 jet-engines during approach.

Engine Power Slant Distance [ft]

[lb] 200 400 630 1000 2000 4000 6300 10000 16000 25000

7000 102.9 98.2 94.9 91.5 86.1 80.1 75.6 70.5 65.2 60.1

10000 103.3 98.6 95.2 91.7 86.3 80.3 75.8 70.6 65.2 60.1

13000 103.9 99.1 95.7 92.1 86.6 80.6 76.1 70.9 65.6 60.6

16000 104.6 99.8 96.3 92.6 87.0 80.9 76.5 71.4 66.3 61.4

Furthermore, it is important to note that the goal is to calculate the indoor A-weighted sound exposure
levels in order to obtain the percent of awakenings while the residents are sleeping. The reduction of the
A-weighted sound exposure levels from outdoor to indoor is different when the windows are open or closed
and it is also greatly dependent on the insulation of the house. In this work, it is assumed that the houses
are averagely insulated and the reduction is set to be equal with 20.5 dB.

V. Numerical Examples

Genetic algorithms are employed to solve the optimization problem formed above. With this kind of
algorithms, it is expected to find the global optimum when the optimization routine is terminated by certain
stopping criteria. For each of the numerical examples in this work, the same optimization routine is executed
more than one time and the results are always different, indicating that it is even very hard to guarantee the
global optimum for such a highly nonlinear optimization problem with multiple local optima with genetic
algorithms. The results shown below are the best among all cases carried out by the authors.

A. Baseline Result

An optimal trajectory corresponding to the population distribution model shown in Figure 1 is obtained as
the baseline result to be compared. As can be seen in Figure 1, given are the optimal trajectory and its
projection on the ground. The coordinates of the blue star and the red star are:











xi = −57.869 km

yi = 12.000 km

hi = 10000 ft

(22)

and










xf = −11.341 km

yf = 0 km

hf = 0 ft

, (23)

respectively.
The first part of the trajectory is plotted into a red curve which corresponds to the configuration of

“Flaps Up” and “Gears Up”. Then the flaps are extended for the first time to establish the configuration
of “Flaps 1” and “Gears Up”, which happens at the start point of the yellow part of the trajectory. The
indicated airspeed keeps on decreasing to reach the moment to extend the flaps further to 5 degrees and
start flying along the blue curve instantaneously. The configuration is in fact “Flaps 5” and “Gears Up”.
The next configuration is established at the start point of the green part of the trajectory, which is “Flaps
10” and “Gears Up”. Finally, the flaps are extended for the last time and the landing gears are engaged to
establish the configuration of “Flaps 20” and “Gears Up”, which occurs at the start point of the black curve.
As for this optimal trajectory, the flight time is 398.4 seconds and the number of awakenings is 6347.
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Figure 6. Optimal trajectory corresponding to the population distribution in Figure 1 as the baseline result.

B. Specifically Designed Population Distribution: Case 1

The trajectory starts at the point given in Equation (22) and ends at the point given in Equation (23).
However, the population distribution is specifically designed by the authors with a zero-density route, as
shown in Figure 2. The optimal trajectory and its projection on the ground are given in Figure 7.
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Figure 7. Optimal trajectory corresponding to the specifically designed population distribution in Figure 2.

It is easy to realize that the optimal trajectory is attracted by the zero-density route so that part of the
trajectory is on the other side of the centerline of the runway. The curves with different colors have the same
meanings as those mentioned previously. As for the optimal trajectory in this case, the flight time is 487.8
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seconds and the number of awakenings is 4799. Compared with the baseline result, the flight time increases
by around 22.4% but the number of awakenings decreases by about 24.4%.

C. Specifically Designed Population Distribution: Case 2

Again, the trajectory starts at the point given in Equation (22) and ends at the point given in Equation (23).
The population distribution model employed in this example is the one given in Figure 3. The optimal
trajectory and its projection on the ground are given in Figure 8. Again, the optimal trajectory is attracted
by the zero-density route which is specifically located and the curves with different colors have the same
meanings as those mentioned previously. Another main difference between this optimal trajectory and the
other two given in previous subsections is that the aircraft descends more steeply at the beginning and then
takes a shallow descent to reach the red star. As for this optimal trajectory, the flight time is 433.8 seconds
and the number of awakenings is 3588. Compared with the baseline result, the flight time increases by
around 8.9% but the number of awakenings decreases by about 43.5%.
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Figure 8. Optimal trajectory corresponding to the specifically designed population distribution in Figure 3.

D. Discussions

The number of residents enclosed in the area under consideration remains constants although they are
distributed in different ways. That is the reason why the authors provide the first example as the baseline
result. The results show that there are different optimal trajectories corresponding to different distribution
situations of residents on the ground in the vicinity of the airport. These two specifically designed cases are
a bit extreme because such zero-density routes barely exist in practice. Nevertheless, both of them function
very well as demonstrations, indicating that the proposed optimization technique is able to find the optimal
trajectory to generate the minimum number of awakenings.

VI. Conclusions

In this work, a technique is developed to optimize the trajectory of an arriving passenger aircraft in
order to minimize the noise impact generated within the entire phase of approach. Operations in the
cockpit are taken into account by replacing the true airspeed by the indicated airspeed in the dynamic
system. In order to do so, the conventional point-mass equations of motion are reformulated so that the
derivatives in the formulas are with respect to the indicated airspeed instead of the flight time. Further, the
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infinite-dimensional optimal control problem is transformed into a finite-dimensional parametric optimization
problem via state parameterization using Bernstein polynomials. The new optimization problem is solved
using genetic algorithms. A set of numerical examples are provided to show that the proposed optimization
technique is able to minimize the number of awakenings generated by an arriving aircraft, taking into the
population distribution situation in the vicinity of the scheduled airport.

In future, the results presented in this work can be used as references to evaluate the performance of
optimization algorithms developed based on interval analysis20–23 . In theory, optimization using interval
analysis guarantees the global optimum of the problem given by Equation (20) and Equation (21). Results
will be given in following publications.

Appendix

Corresponding to Equation (1), the conventional point-mass equations of motion governing an aircraft
moving in a 3-dimensional space are given by:































































































dx

dt
= VT cos γ cosχ

dy

dt
= VT cos γ sinχ

dh

dt
= VT sin γ

dVT

dt
=

T −D(α, h, VT )−mg sin γ

m

dγ

dt
=

L(α, h, VT ) cosµ−mg cos γ

mVT

dχ

dt
=

L(α, h, VT ) sinµ

mVT cos γ

(24)

where x = [x, h, y, VT , γ, χ]
T
and u = [α, µ, T ]

T
are the state vector and control vector, respectively.

Corresponding to Equation (6), the point-mass equations of motion governing an aircraft moving in a
3-dimensional space after reformulation are written as:























































































































dx

dVI

=
mVI

[

171233(288− 0.006496h)−2.128
]2

cos γ cosχ

T −D(α, h, VI)−mg sin γ − 0.013823488mV 2
I [1712332(288− 0.006496h)−5.128] sin γ

dy

dVI

=
mVI

[

171233(288− 0.006496h)−2.128
]2

cos γ sinχ

T −D(α, h, VI)−mg sin γ − 0.013823488mV 2
I [1712332(288− 0.006496h)−5.128] sin γ

dh

dVI

=
mVI

[

171233(288− 0.006496h)−2.128
]2

sin γ

T −D(α, h, VI)−mg sin γ − 0.013823488mV 2
I [1712332(288− 0.006496h)−5.128] sin γ

dt

dVI

=
m

[

171233(288− 0.006496h)−2.128
]

T −D(α, h, VI)−mg sin γ − 0.013823488mV 2
I [1712332(288− 0.006496h)−5.128] sin γ

dγ

dVI

=

L(α, h, VI) cosµ−mg cos γ

VI

T −D(α, h, VI)−mg sin γ − 0.013823488mV 2
I [1712332(288− 0.006496h)−5.128] sin γ

dχ

dVI

=

L(α, h, VI) sinµ

VI cos γ

T −D(α, h, VI)−mg sin γ − 0.013823488mV 2
I [1712332(288− 0.006496h)−5.128] sin γ

(25)

where x = [x, h, y, t, γ, χ]
T
is the newly selected state vector and the control vector remains u = [α, µ, T ]

T
.
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