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Arsenic contamination of groundwater in di	erent parts of the world is an outcome of natural and/or anthropogenic sources,
leading to adverse e	ects on human health and ecosystem. Millions of people from di	erent countries are heavily dependent on
groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human
health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling
disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic
poisoning culminates into potentially fatal diseases like skin and internal cancers. �is paper reviews sources, speciation, and
mobility of As and global overview of groundwater As contamination. �e paper also critically reviews the As led human health
risks, its uptake, metabolism, and toxicity mechanisms. �e paper provides an overview of the state-of-the-art knowledge on the
alternative As free drinking water and various technologies (oxidation, coagulation 
occulation, adsorption, and microbial) for
mitigation of the problem of As contamination of groundwater.

1. Introduction

Contamination of groundwater, either from anthropogenic
or natural sourceswith several social impacts, has now turned
to be a major environmental concern in di	erent parts of the
world. Millions of people in several countries are exposed to
high levels of As via intake of As-rich groundwater. Elevated
level of As in groundwater has been well documented in
Chile, Mexico, China, Argentina, USA, and Hungary [1, 2]
as well as in the Indian State of West Bengal, Bangladesh,
and Vietnam [2–6]. About 150 million people around the
world are estimated to be a	ected globally with an increasing
prospect as new a	ected areas are continuously discovered
[7]. Arsenic, a well-known carcinogen, is considered as one of
theworld’smost hazardous chemicals [8]. Excessive and long-
term (such as 5–10 years) human intake of toxic inorganic
As from drinking water and food may result in arsenicosis,
a common name generally used for As related health prob-
lems including skin disorders, skin cancers, internal cancers

(bladder, kidney, and lung), diseases of the blood vessels of
the legs and feet, possibly diabetes, increased blood pressure,
and reproductive disorders [9–11].

In terrestrial environment, the inorganic forms of As

(such as trivalent arsenite (AsIII) and pentavalent arsenate
(AsV)) are more prevalent and toxic than the organic forms
in general. As exerts detrimental e	ects on general protein
metabolism with high toxicity by reacting with sul�ydryl
groups existing in cysteine residues [12].

Arsenicosis causes dire consequences for the livelihood,
family life, and earning capability when individuals fall
victim. Deterioration in physical appearance makes women
socially excluded. At larger perspectives elevated As con-
tamination of a region may result in societal stress, disabil-
ity in individuals, poverty, and decreased market value of
potentially contaminated agricultural products leading to low
income to the a	ected farmers [13]. Absence of taste, odour,
colour, and exposure make As impossible for a layman to
detect and avoid. Applying the WHO provisional guideline
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for drinking water of 10–50 ppb of As, a population of more
than 100 million people worldwide is at risk, and of these
more than 45 million people mainly in developing countries
from Asia are at risk of being exposed to more than 50 ppb
of As, which is the maximum concentration limit in drinking
water in most of the countries in Asia [7].

At present, As is estimated to a	ect more than 150million
people worldwide with its increasingly elevated concentra-
tions in drinking water [14]. �e major arsenicosis a	ected
areas have been reported in large deltas and/or along major
river basins across the world [15] such as in Paraiba do
Sul delta, Brazil [16], Bengal delta [17–19], Mekong delta,
Cambodia [20], Danube river basin, Hungry [21], Hetao river
basin, Mongolia [22], Duero Cenozoic Basin, Spain [23],
Zenne river basin, Belgium [21], and Tulare Lake, USA [24].
�e transfer of As to the food chain will ultimately remain as
long-term risks to human and ecological systems [25]. Since
water is the principal route through which As enters into the
human body [26], the understanding of the processes of As
contamination in groundwater, associated health risks, and
mitigation of As problem is required.

�e present review summarizes possible sources of As
contamination of groundwater, global overview of ground-
water As contamination, toxicity, basic chemistry, associated
health risks, and the best available strategies for mitigation of
As pollution in groundwater.

2. Sources, Speciation, and Mobility of
As in Groundwater

Several natural and anthropogenic sources are deemed
responsible for As contamination in groundwater. As occurs
as a major constituent in more than 200 minerals [27] and
the desorption and dissolution of naturally occurring As
bearing minerals and alluvial sediments result in high As
concentration in groundwater in deltas and alluvial plains
even if the As concentration in the solid phase is not high
[28, 29]. �e presence of metalloid in excess concentration
in groundwater may be associated with ore deposits where
As is present predominantly in sul�dic minerals such as
arsenopyrite and pyrite [30]. Arsenopyrite (FeAsS) is the
most abundant As containing mineral generally existing in
anaerobic environments and in various other rock forming
minerals like sul�de, oxide, phosphate, carbonate, and silicate
[1]. It is present as a substitute of S in the crystal lattice
of various sul�de minerals. Realgar (As4S4) and orpiment
(As2S3) represent the two common reduced forms of Aswhile
in arsenolite (As2O3), As is present in oxidized form [21].
Depending on the nature and texture of minerals, As can also
be found in sediments, in the concentration range from 3 to

10mg kg−1 [7].�e areas with high concentrations of Fe oxide
or hydrous metal oxide or pyrites contain very high levels of
As in sediments in comparison to other oxides. In reducing
sediments, the concentration of As is found to be high;
the concentration of As increases gradually with increase in
the depth of the sediment [31]. Fe and Al oxides present
in sediments play a signi�cant role for the contamination
of groundwater. Reductive dissolution of Fe and Al metal

oxides along with the activity of indigenous metal reducing
bacteria is now deemed as the prominent release mechanism
of As, directly e	ecting the mobility of As [32, 33]. �e main
anthropogenic sources for contamination of groundwater
with As are mining, burning of fossil fuels, use of arsenical
fungicides, herbicides and insecticides in agriculture, and
wood preservatives [21]. Burning of coal has profound e	ect
on contamination of As in the environment. Emission of As
takes place in the environment by volatilization of As4O6 due
to burning of coal, which condenses in the 
ue system and
ultimately transferred into water reservoirs [27]. �e degree
of groundwater arsenic contamination by aforesaid anthro-
pogenic sources is much less as compared to the natural
sources; however, their contribution cannot be neglected.

Arsenic in groundwater exists primarily as oxy anions
representing two oxidation states: arsenic (arsenite) and
arsenic (+V) (arsenate) [34, 35]. Arsenic in groundwater
exists primarily as oxy anions representing two oxidation

states: arsenic AsIII (arsenite) and arsenic AsV (arsenate) [34,
35]. Both AsIII and AsV exist within the pH range of 6–9.

�e predominant AsIII species are uncharged H3AsO3 while
the primary arsenate species are monovalent H2AsO

−4 and
divalent HAsO2

−4. Geology and groundwater environment

make one form, either AsIII or AsV dominant [36, 37].
Although AsV is thermodynamically favored in oxic waters

and AsIII in anoxic waters, they have been also reported to
coexist in both types of waters [38, 39]. Many researches of
localized studies [40–43] have reported the value of arsenic
speciation information in explaining and understanding the
behavior and characteristics of arsenic in the environment
(solubility, mobility, etc.). �e toxicity and the removability

of arsenic di	er between AsIII and AsV. AsIII is considered
to be more toxic and more di�cult to remove from water
than AsV [8]. �e variability of the arsenic concentration in
groundwater is ascribed to the arsenic content of the aquifer
and the varying dissolution/desorption processes releasing
the arsenic from the solid phase into the liquid phase [36, 37,
44, 45]. Reductive dissolution of Fe oxides is considered as
the principal cause of As release from aquifer sediments [46].

3. Global Overview of Groundwater
Arsenic Contamination

�e contamination of As can be propagated defectively into
the groundwater system because As in groundwater and
aquifers is mobilized (e.g., hydraulic fracturing). Hence, its
contamination can a	ect a large population of people [47].

Groundwater concentration of As has been documented
in the literature which reveals a very large range from less
than 0.5 to 5000 ppb covering natural As contamination
found in more than 70 countries [7]. Some of the best
reported and most severe cases of arsenic contaminated
groundwater have been found in aquifers across the globe
which has been cited in Table 1. It represents that provisional
guideline values for As concentration in groundwater are
commonly set at 10 ppb, although it can reach up to 50 ppb.
�e outcomes of this comparison a�rm that As contamina-
tion is a widespread global phenomenon and severe enough
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Table 1: Status of As contamination in natural groundwater in various countries.

Serial
number

Country Region Groundwater As level (ppb)
Permissible
limit (ppb)

References

1 Afghanistan Ghazni 10–500 10 (WHO) [21]

2 Australia
Victoria (around the
gold-mining regions)

1–12 (Groundwater);
1–73 (Drinking-water);
1–220 (Surface water)

— [17, 21, 216]

3 Bangladesh Noakhali <1–4730 50 (WHO) [18, 21, 217]

4 Brazil
Minas Gerais

(Southeastern Brazil)
0.4–350

(Surface water)
10 (WHO) [17, 216, 218]

5 Cambodia
Prey Veng and

Kandal-Mekong delta
Up to 900
1–1610

10 (WHO) [20, 21]

6 Canada
Nova Scotia

(Halifax county)
1.5–738.8 10 (WHO) [17, 21]

7 China — 50–4440 50 (WHO) [219]

8 Finland Southwest Finland 17–980 10 (WHO) [17, 216, 218]

9 Greece
Fairbanks

(mine tailings)
Up to 10,000 10 (WHO) [1, 21]

10 India
West Bengal
Uttar Pradesh

10–3200 50 (WHO) [1, 21, 216, 220, 221]

11 Japan
Fukuoka Prefecture
(southern region)

1–293 10 (WHO) [17, 216]

12 Mexico Lagunera 8–620 25 [1, 21, 216]

13 Nepal Rupandehi Up to 2620 50 [21, 219, 222]

14 Pakistan
Muza	argarh

(southwestern Punjab)
Up to 906 50 [17, 22, 216]

15 Taiwan — 10–1820 10 (WHO) [1, 21, 216]

16 �ailand Ron Phibun 1–>5000 10 (WHO) [1, 21, 216]

17 USA Tulare Lake Up to 2600 10 (USEPA) [21, 24, 223]

18 Vietnam

Red River Delta
(Northern Vietnam)

Mekong Delta
(Southern Vietnam)

<1–3050 10 (WHO) [1, 219]

exceeding such guideline values. In fact, people consuming
As-rich water for prolonged periods are reported to su	er
from serious health problems in many parts of the world.

4. Arsenic: Health Risks

Arsenic contamination in the environment is turning to
be a serious public health problem in several parts of the
world. It is well-established fact that arsenite AsIII is more
toxic than arsenate AsV, with inorganic As being more
toxic than organic As [48]. However, di	erent organic As
species represent di	erent degrees of toxicity. For instance,

monomethylarsonic acid (MMAV) and dimethylarsinic acid

(DMAV) as �nal As metabolites are less toxic than inorganic
arsenic, whereas the degrees of toxicity of intermediate

metabolites such asmonomethylarsonous acid (MMAIII) and

dimethylarsinous acid (DMAIII) are much more higher than
inorganic arsenic. �e toxicity of various arsenic species

increases in the order of AsV < MMAV < DMAV < AsIII <
MMAIII ≈ DMAIII [48].

4.1. Uptake and Metabolism of Arsenic. In terrestrial envi-
ronment, As is mainly present as inorganic As, which exists

as pentavalent (AsV) under aerobic condition and trivalent
(AsIII) under anaerobic environment [28]. AsIII is generally
found as a neutral species (As (OH)3∘, pKa = 9.2) in aqueous

solution at physiological pH. AsIII and AsV cause toxicity
di	erently [49]. Due to its structural similarity to glycerol,

AsIII can be transported into cells through aquaglyceroporins,
a pore protein for transporting small organic compounds

such as glycerol and urea [50]. However, AsV takes di	erent
pathway into animals and human cells. As a phosphate
analog, they have similar dissociation constants (pKa of
arsenic acid: 2.26, 6.76, and 11.3 and pKa of phosphoric acid:
2.16, 7.21, and 12.3) [51]. Similar to phosphate, AsV is found
in water as an oxy anions in solution, that is, H2AsO2

−

and HAsO2
2− at pH 5–7. As chemical analogs, they compete

for their entry via phosphate transporters [52]. Having

entered into the human and animal cells, AsV is rapidly

reduced to AsIII. �erea�er, AsIII undergoes multisteps in
cells through arsenite methyltransferase (AS3MT) using S-
adenosylmethionine (SAM) as the methyl donor, resulting
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in the formation of methylated As compounds including

MMAIII, DMAIII, MMAV, and DMAV [53]. Challenger [54]
�rst proposed the classical pathway of As methylation. He
proposed that arsenic methylation involves a chain of oxida-
tion and reduction steps (Figure 1(a)). �erea�er, Zakharyan

and Aposhian [55] suggested that AsIII can be methylated
nonenzymatically in the presence of both methylcobalamin
and glutathione (GSH) (Figure 1(b)). In several studies
later on, researchers extensively explored the mechanism
of arsenic methylation and concluded that the enzymes
play crucial role in arsenic methylation. A new enzymatic
metabolic pathway for arsenic methylation has been shown
in Figure 1(c). �e –OH groups of As (OH)3 are substituted
by glutathionyl moieties, leading to the formation of GSH
conjugates As (GS)2–OH and As (GS)3 [56]. A�erwards, as
the major substrates for AS3MT, AsIII-glutathione complexes
are further methylated to monomethylarsonic diglutathione
MMA (GS)2 and dimethylarsinic glutathione DMA (GS).
Since DMA (GS) is unstable, it is immediately oxidized to

pentavalent DMAV, which is the major metabolite and is
excreted from cells [57].

Naranmandura et al. [58] demonstrated a di	erent path-
way of arsenic metabolism via investigating the hepatic and
renal metabolites of arsenic a�er an intravenous injection of

AsIII in rats (Figure 1(d)). �ey asserted that AsIII con�ned
to the proteins (AsS3 protein) is metabolized in the body at
the time of successive reductivemethylation byAS3MT in the
presence of GSH and SAM and the reduced metabolites are
excreted outwardly. Consistent with the mechanisms, both
trivalent and pentavalent inorganic and organic arsenicals
were detected in the urine of individuals a�er chronic
exposure to arsenic and in cell culture medium followed by
in vitro exposure to arsenic [59].

4.2. Toxicity of Arsenic. Several review articles have docu-
mented arsenic toxicity in humans and animals (Figure 2).
Arsenic is a potent carcinogen, leading to skin, bladder, liver,
and lung cancers [60, 61]. Arsenic induces epidemiological
toxicity. It results in the formation of excess ROS thereby
damaging organisms [62, 63]. Arsenic is also known to cause
cytotoxicity [64, 65] and genotoxicity [66, 67]. In addition, it
is well-established fact that chronic exposure to arsenic can
lead to arsenicosis, including skin lesions, blackfoot disease,
peripheral vascular disease, and cancers. However, several
studies have reported arsenicosis due to elevated level of As
[68].

4.2.1. Epidemiology. As a well-known human carcinogen, As-
induced mechanism of carcinogenesis has been extensively
explored in several studies.Mounting evidences have demon-
strated that arsenic hinders a series of gene proliferation
processes (e.g., DNA damage and repair, cell cycle, and dif-
ferentiation) and distorts signal transduction pathways (e.g.,
protein 53 signaling pathway, Nrf2-mediated redox signaling
pathway, and MAPK pathway) [69, 70]. ROS formation
induced by As also plays a crucial role in triggering o	 cancer
[71]. Further, investigations were of the opinion that methy-
lation metabolites of arsenic are also potent carcinogens. Wei

et al. [72] demonstrated that DMA causes cancer of urinary
bladder in rats. Besides beingwell-known carcinogen, arsenic
also causes a number of noncancerousmultisystemic diseases
including cardiovascular disease, dermal disease, hyperten-
sion, and diabetes mellitus [73, 74]. Researchers have pointed
out that trivalent arsenicals (AsIII, MMAIII, and DMAIII)
can induce diabetes via distortion of glucose metabolism
based on intact pancreatic islets from mice [75, 76]. In
addition, As led inhibition of pyruvate and �-ketoglutarate
dehydrogenases has been found to be the principal cause of
diabetes [77]. Cardiovascular diseases are closely linked with
hypertension.�ere are several pathways for arsenic-induced
hypertension, including promotion of in
ammation activity
and endothelial dysfunction, alteration of vascular tone in
blood vessels, andmalfunctioning of kidney [78]. In addition,
several researchers were on the consensus that ROS’s role
in As-induced noncarcinogenic e	ects cannot be discounted
[79, 80]. Arsenic-induced ROS has been correlated with
alteration in cell signaling, apoptosis, and increase in cytokine
production, leading to in
ammation, which in turn results
in formation of more ROS and mutagenesis, contributing to
pathogenesis of arsenic-induced diseases [81].

4.2.2. Cytotoxicity. Cytotoxicity develops when cell repre-
sents anomalies caused by toxic chemicals/contaminants.
Arsenic led cytotoxicity in cells via several pathways has
been explored by several researchers [82, 83]. Arsenic induces
cytotoxicity by generating ROS [84]. ROS levels inside the cell
increase dramatically when cell is exposed to elevated level of
As. Arsenic results in ROS production by inducing NADPH
oxidase [85]. Excess ROS causes damage in lipids and proteins
as well as facilitating mitochondrial damage and its functions
[86, 87]. Shen et al. [88] found that ROS-induced oxidative
stress is caused by a mitochondria dependent apoptotic
pathway. It has been well documented that ROS exerts cyto-
toxic e	ects by activating c-Jun N-terminal kinases (JNK),
an important subgroup of the mitogen-activated protein
kinases, which intercedes diverse cellular functions such as
cell proliferation, di	erentiation, and apoptosis [89]. In addi-
tion, ROS can also act as modulators of signal transduction
pathways, a	ecting various biological processes including cell
growth, apoptosis, cell adhesion, and HIV activation [90, 91].
Arsenic results in cytotoxicity by a	ecting the status of tumor-
suppressor protein 53 [92, 93]. Protein 53 plays a very crucial
role in a wide range of cellular functions by modulation of
transformation and regulation of cell growth and control of
cell cycle, DNA synthesis, DNA repair and di	erentiation,
and apoptosis [94, 95]. Yih and Lee [93] reported that arsenic
may induce protein 53 accumulation in human �broblasts,
which ultimately results in cell apoptosis by promoting
Bax translocation from the cytoplasm to the mitochondria,
releasing cytochrome c and activating caspase-9 through
Apaf-1 and the apoptosome [96, 97]. In addition, protein 53
can also result in inducement of cell cycle arrest at G2/M stage
of the cell cycle by transcriptionally activating protein 21,
the inhibitor of cyclin-dependent kinases [98, 99], and may
induce autophagy in a DRAM (damage-regulated autophagy
modulator) dependent manner [100].
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Figure 1: Pathways of arsenic metabolism in cells: (a) arsenic methylation in Scopulariopsis brevicaulis [54], (b) nonenzymatic As
methylation in rat liver [55], (c) arsenic metabolic pathway in rat liver [56], and (d) metabolic pathway in rat liver [58], where SAM: S-
adenosylmethionine; SAH: S-adenosylhomocysteine; CH3

+: methyl group; GSH: glutathione; (CH3)(OH)2AsO
−: monomethylarsonous acid;

(CH3)2(OH)AsO−: dimethylarsinic acid; (CH3)3As: trimethyl arsine oxide; As (GS)3: arsenic triglutathione; MMA:monomethylarsonic acid;
DMA: dimethylarsinic acid; MAsIII (GS)2: monomethylarsonic diglutathione; DMAsIII (GS): dimethylarsinic glutathione; DMAsIII: trivalent
monomethylarsonous acid; DMAsV: pentavalent dimethylarsinic acid; MMAV: pentavalent monomethylarsonic acid [224].
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Figure 2: Arsenic toxicity in humans and rats [224].

4.2.3. Genotoxicity. Damage of genetic information inside
the cell results in genotoxicity which ultimately leads to
mutation. Till date, there are several studies addressing the
genotoxicity of As [101, 102]. As induces genotoxicity by
generating ROS in similar fashion as cytotoxicity [103]. ROS

present in excess amount within the cell reacts with cellular
components and result in genotoxicity. Genotoxicity occurs
since ROS reacts with both deoxyribose and bases in DNA,
causing base lesions and strand breaks. In addition, ROS are
also involved in oxidation of DNA, alteration of DNA repair,
gene regulation mechanism, and threatening of gene stability
[104]. As interacts with DNA repair proteins possessing func-
tional zinc �nger motifs, which are involved in transcription,
DNA repair proteins, and DNA-protein and protein-protein
binding [105, 106]. Zhou et al. [106] reported that AsIII a	ects
zinc �ngers by binding with its target molecule PARP-1,
ultimately leading to breaks of single-strand and double-
strand of DNA and oxidative DNA damage [107]. Studies
have found that arsenic can directly a	ect DNA repairing
e�ciency by lowering repair and expression of the nucleotide
excision repair pathway member ERCC1 [108, 109]. Chronic
exposure of cells to elevated level of arsenic can also result
in induction of SAM depletion in cells, leading to loss of
DNA methylation, and subsequently DNA hypomethylation
in turn a	ects the genomic instability [110, 111]. Moreover,
arsenic and trivalent methylated arsenic have been reported
to interactwith enzymes of SAMsynthesis pathways [112, 113].
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�is is in agreement with Zhong andMass [114] who a�rmed

that AsIII or its metabolites can alter the activities of DNA
methyltransferases and subsequently inhibit or stimulate the
enzymes of SAM synthesis pathways. Similar to cytotoxicity,
arsenic can also cause genotoxicity by a	ecting the status of
protein 53 [115].

5. Mitigation of As Problem: Assessment of
Technological Solutions

Selection of appropriatemethod to supplywater with reduced
As content relies on several factors and is complicated as
the majority of the a	ected population lives in rural areas
deprived o	 infrastructure and with decentralized water
supplies frommillions of shallow tubewells (STW) extracting
water from shallow aquifers. Mitigation strategies for As con-
tamination problem in groundwater therefore should address
both technological and the socioeconomic considerations
[116].�e various available options suited for getting drinking
water with low As content can be divided into two categories
which include

(i) �nding an alternative As free water source,

(ii) removal of As from the existing water source.

5.1. Alternative for Free Water Sources

5.1.1. Deep Groundwater. Literature reviews from the Bengal
and the Mekong deltas insinuate that As-rich water occurs
mainly in the shallow groundwater, whereas groundwater
from deeper aquifers is almost completely free from As. For
example, the study by BGS revealed that only 5% of the
deep tube well (>150m deep) waters had As concentrations
above 10 ppb and 1% exceeded the 50 ppb [117]; thus, water
supply relying on manually operated deep tube wells (DTW)
could be an appropriate source. However, the depth to As-
free aquifers di	ers between the locations. For example, in
the Bengal delta, generally water extraction below 150/200m
deep is considered as deep aquifer, but in many cases this
can be below 200m [118]. However, in the Red River and
the Mekong deltas, As concentration is low at depths at
only >50m and >70m [119]. �e major restriction to the
deep water extraction option is its costly installation, leading
to its applicability only on community basis. Some other
drawbacks to this option include availability of the As free
deep aquifer, the uncertainty of the groundwater recharge
mechanism [120], the risk of salt water intrusion in coastal
areas, and very high concentrations of dissolved Fe and
Mn [121]. Mn and Fe cause obnoxious taste and stains in
water and laundry even at quite low concentrations exceeding
100 ppb. �e permissible limit of Mn for same human health
in groundwater for Mn is 400 ppb [9].

5.1.2. ShallowGroundwater (Well Switching). �eAs contam-
ination in the shallow groundwater varies greatly [1] and the
countywide study by BritishGeological Survey in Bangladesh
[117] and as reviewed by Chakraborti et al. [122] reported
that in Ganga-Meghna-Brahmaputra plain, the proportion

of As contamination in tube wells is in the range of 20% to
>50% and, hence, it is o�en possible to get uncontaminated
tube wells in many areas within reasonable distances and
well switching to an uncontaminated shallow tube well can
be a suitable option. Among the various tried mitigation
strategies, well switching to shallow tubewells has been found
as most preferred strategy (29%) [123]. �e major drawback
to well switching option is the degree of the spatial and
temporal variation in As level in groundwater, making it
di�cult, unpredictable for its reliably. Further studies reveal
that the As concentration in the tube wells changes over time,
and it is high during the monsoon period as compared to dry
winter season [124, 125]. �is means that the monitoring of
each and every well may be required and, furthermore, long-
term analysis is equally needed to guarantee that the tube
wells will remain As free.

�e other factors making this option unconvincing could
be socioeconomic barriers, because well switching results
in potential usage of other tube wells where entry may be
restricted or barred in case of well being privately owned.

5.1.3. Dug Well Water. By constructing open wells, generally
called dug wells (DWs) with large diameters, As free safe
drinking water can be obtained from As contaminated shal-
low aquifers. DWs used to be one of the alternative sources
of water supply in the Bengal delta, before the installation
of tube wells [126]. Studies have shown that the As level in
most of the DWs is very low [126–128] due to prevailing
oxidative environment and precipitation of Fe or due to
groundwater recharge of the DWs with rainwater with few
exceptions [129]. DWs have been suggested as the preferable
alternatives of safe drinking water by�e National Policy for
As Mitigation in areas marked with high concentration of As
in Bangladesh [130]. �e evaluation of dug well performance
in early stages of implementation establishes that these
options are appropriate [131, 132], although prolonged studies
report that tube wells will be the preferred choice over DWs
[133, 134].

�e reasons for the unpopularity of the DWs are obnox-
ious smell and taste, turbidity, and distance and time bound
limitations to fetch water [131, 133]. Bacteriological con-
tamination is the principal problem associated with the
use of DWs water. �e use of drinking water from these
sources without appropriate treatment may lead to diseases
like diarrhea, dysentery, typhoid, cholera, and hepatitis.
�e frequency of microbial contamination of DWs with
thermotolerant coliforms (TTC) has been found as high
as 94% with seasonal variation with higher contamination
during the monsoon compared to the dry season [135]. New
DWs usually have high bacterial contamination, which can
be regulated by initial or even repeated disinfection like
chlorination [129].

(1) Surface Water. Ponds, lakes, and rivers are generally
low or free of As and can be reintroduced in a	ected
areas as a source of safe drinking water. Most of the As
a	ected areas are in the vicinity of a large river and these
rivers can serve as sustainable mitigation option for long
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run, that is, over decades. Similar to the DWs, the major
and critical limitation of using ponds and lakes is the risk
of potential bacteriological contamination which was also
the main reason behind replacement of surface water with
groundwater as the drinking water source. Reintroduction of
surface water as a source of safe drinking water would require
antimicrobial treatment like incorporation disinfectants, use
of pond sand �lters (PSF) [136], or combined surface water
treatment units. �e use of PSF is preferred by �e National
Policy for As Mitigation for its application in As-a	ected
regions in Bangladesh [130]. About 95% PSFs have been
found microbially contaminated with elevated levels of TTC
in the monsoon season as compared to the dry season [135].

(2) Rainwater Harvesting. Since ancient times, the rainwater
harvesting (RWH) has been widely used practice throughout
the world as a potential method of utilizing rainwater for
domestic water supply [9]. RWH is widely used method at
household level globally and there is also an increasing trend
on its application at larger community level. �e rainwater
is safe if it is hygienically maintained and this technology
is feasible in areas with average rainfall of 1600mm/year or
more [137]. RWH is among one of the preferred choices by
�e National Policy for As Mitigation for use in As-a	ected
areas in Bangladesh [130]. In coastal areas, rainwater is the
main source of drinking water because of the high salinity
in shallow and deep tube wells. In these areas, rainwater
is preserved in large ponds, [138] and the experience from
such areas can be transferred to other As a	ected areas.
One of the critical limitations of grass root implementation
of rain water harvesting technology is its high installation
cost in the form of special roofs and large storage tanks
for collection and storage of rain water [126] due to the
unequal distribution of rainwater over the year. Microbial
contamination is also another limitation [138, 139] which
can be avoided by discarding the rainwater collected from
�rst 
ush [9]. Immense care should also be taken on the
materials that come in contact with rainwater (especially zinc
and lead), as rainwater is slightly acidic and can result in
dissolution of metals and other impurities from materials of
the catchment and storage tank, leading to unacceptably high
concentrations of contaminants in the water [9, 135].

5.2. Removal of Arsenic. Removal of As mainly depends on
the composition and chemistry of the As contaminatedwater.

As occurs as AsIII in most of the major reported cases and

oxidation of AsIII to AsV is considered as necessary to obtain
satisfactory As removals.

5.2.1. Oxidation. �e main aim of oxidation is to convert
soluble AsIII to AsV, which is followed by precipitation of AsV.

�is is essential for anoxic groundwater, since AsIII is the pre-

vailing format near neutral pH [140]. AsV adsorbsmore freely

onto solid surfaces than AsIII and, thus, oxidation followed by
adsorption is deemed to be e	ective for the removal ofAs [141,
142]. Several oxidants have been utilized for the oxidation.
�e kinetics of the reaction with O3, H2O2, Cl2, NH2Cl,
and ferrate are of �rst order reactions with reference to both

AsIII and oxidants and, thus, the concentrations of AsIII and
the oxidant are the critical parameters for e	ective removal
of As from aqueous solution. �e reaction is very fast for
permanganate, chlorine, and ozone as compared to hydrogen

peroxide and chloramine when applied for oxidation of AsIII

to AsV [142–144]. Bajpai and Chaudhuri [145] reported that

54–57% of AsIII can be oxidized to AsV in contaminated
groundwater using air and pure oxygen whereas complete

oxidation of AsIII can be obtained with ozone. Manganese
dioxide polished sand is another oxidant, with the advantage
of being both an oxidizing agent as well as an adsorbent.
�e application of manganese dioxide polished sand is more
e	ective when it is coupled with Fe containing compounds as
the treated products are more �lterable and easy to handle
[145]. Recently, Criscuoli et al. [146] studied the oxidation

of AsIII by MnO2 coated PEEC-WC nanostructured capsules
and demonstrated that they possess a higher e�ciency than
conventional oxidation methods when the water contains a
low level of As. More than 99% oxidation was obtained at 100
to 300 ppb of initial As concentration. However, increasing
the concentration to 700 and 1000 ppb, only 90% and 73%

of AsIII were oxidized, indicating a decreased oxidation

e�ciency of the particle with increase in the initial AsIII

concentration.

Photochemical and photocatalytic oxidation of AsIII has
also been explored in several investigations. In water, the rate

of oxidation of AsIII can be increased by UV radiation in the
presence of oxygen. UV/solar light facilitates the generation
of hydroxyl radicals through the photolysis of Fe(III) species
(FeOH2

+) and in presence of both hydroxyl radicals and O2,
the rate of oxidation becomes faster [147, 148]. In addition,
oxidation of AsIII to AsV by photocatalytic oxidation and
TiO2 followed by adsorption of As on TiO2 has also been
investigated [149, 150].

A TiO2 coated chitosan bead (TICB) was synthesized by
Miller and Zimmerman [151] andwas applied for oxidation as
well as removal of As from aqueous solution. �ey observed

a higher amount of adsorption of As (6400 �g AsIIIg−1

TICB and 4925 �g As(V)g−1) followed by UV radiation as
compared to the solution that was not exposed to UV light

(2198 �g As (III)g−1 TICB and 2050�g As(V) gl−1). �eir
study concluded that the surface area of the TICB was

increased and TiO2 was able to photooxidize AsIII to AsV

in presence of the UV light. In another investigation, [152]

synthesized nanocrystal line Al2O3 and TiO2 impregnated

chitosan for the removal of As. �e study suggested a

mechanism wherein AsIII is photooxidized to AsV by TiO2
and is subsequently adsorbed by Al2O3. However, further
research is required to implement this system at grass root

level. Furthermore, the initial As concentration, pH, natural

organicmatter (NOM), and the presence of anions essentially

a	ected the rate of adsorption of As(V)on TiO2 [150, 153–
155]. �e TiO2/UV system has an ine�cient removal of

As because of incomplete oxidation of AsIII to AsV when
a trace of TiO2 is present [156]. Presence of interfering

substances such as Fe(II), Mn(II), sul�de (HS− and S2−), total
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organic carbon (TOC), and dissolved organic carbon a	ect

the oxidation of AsIII in water samples. In the presence of
S2− and TOC, the oxidation rate of AsIII by ozone severely
declines [144].

5.2.2. Coagulation-Flocculation. �e incorporation of a coag-
ulant followed by the formation of a 
oc is a potential
method used to remove As from groundwater. Positively
charged cationic coagulants decrease the negative charge of
the colloids and, consequently, larger particles are formed due
to aggregation of particles [157]. �e 
ocs formed in 
occu-
lation process are because of polymeric bridging between the

occulent particles which later agglomerate to form larger
mass particle. Soluble As is precipitated/coprecipitated onto
the 
ocs and thus eliminated from aqueous solution. For As
removal, Fe and Al based coagulants are widely used [158]
among the various chemical coagulants. Pallier et al. [159]
used kaolinite and FeCl3 as a coagulant/
occulent and they

obtained more than 90% and 77% removal of AsV and AsIII,
respectively, using 9.2 ppm of Fe3+. Recently, Hu et al. [160]
used three aluminum based coagulants (aluminum chloride
and two types of poly aluminium chloride) and all of them
were found to reduce the concentration of As below theMCL
with an initial AsV concentration of 280 ppb. �eir study
asserted that the aluminum species regulate the removal
of As and thus As removal e�ciency can be improved by
adjusting the pH. Bilici Baskan and Pala [161] optimized the

e	ects ofmajor operational parameters such as the initial AsV

concentration, the coagulant dose, and pH and achieved 91%

removal of AsV with an initial AsV concentration of 10 ppb
and an Al2(SO4)3 coagulant concentration of 66 ppb, and a

removal of nearly 100% with an initial AsV concentration of
500–1000 ppb and a coagulant concentration of 42–56 ppb.
Fe based coagulants have also been investigated by several
authors [162–165]. Among the chemical coagulants, Fe based
coagulants have been found to be e�cient in treatment of
water than the Al based coagulants [7]. For e�cient removal,
the As requires to be adsorbed on the amorphous metal
hydroxides formed from the coagulant. However, the criti-
cal limitation of the coagulation/
occulation process is the
production of a huge amount of sludge with a considerable
concentration of As. �e management of the contaminated
sludge is important for safeguarding the environment from
secondary pollution and thus reduces the applicability of this
method in �eld conditions.

5.2.3. Adsorption. Removal of As by adsorption onto acti-
vated/coated surfaces is getting popular because of its simpler
operation and sludge free day to day operation. Several of
the adsorbents can be regenerated and reused which is an
extra advantage of this technology. Mohan and Pittman [166]
reviewed more than 40 di	erent types of adsorbents with
more than 500 literature references. In addition, there is an
increasing interest in exploration and improvement in new
adsorbents. However, excluding few adsorbents like activated
alumina and granulated ferric hydroxide, the information
about most of the adsorbents is restricted to laboratory
evaluations. �e removal of As by adsorption techniques in

general depends on pH and the speciation of As with better

AsV removals as compared to AsIII at pH lower than 7 [167–
171]. Lin andWu [172] reviewed that the rate of As adsorption
and capacity adsorbents further depends on presence of other

ions like phosphate, silicate, HCO−3, and Ca2+ competing
for the adsorption sites. Zhu et al. [170] and Kanematsu et
al. [171] also substantiated this fact. �e most widely tested
aluminium oxide is activated alumina (AA) [172–174] and is
prepared by thermal dehydration of aluminium hydroxide.
Various pretreatments like impregnation with Fe [173, 175],
alum [176], manganese acetate [177], and posthydrolysis [177]
have also been explored at lab scale to improve the adsorption
e�ciency of AA with promising results. Field experience is
well documented from various studies, for example, Bamwsp
et al. [178, 179]. Ferrihydrite, granular ferric hydroxide, and
hydrous ferric oxide are the most widely explored iron oxides
and hydroxides for the removal of As yielding promising

results for both AsIII and AsV removals [174, 180–184]. One
of the major problems encountered on the �eld by aforesaid
adsorption methods is the presence of high iron content
in groundwater, which emanates into clogging of the �lter
material thereby reducing the lifetime of the �lter [178, 185].
In the last decade, removal of As using zero valent iron
(ZVI) or Fe(0) for removal of As has been widely explored
by several research groups both in the laboratory [142, 186,
187] and in the �eld [188–192]. �e removal mechanisms for
As and other contaminants using ZVI have been reviewed
by Noubactep in great detail [193]. According to Hussam
and Munir [190], approximately 350,000 ZVI �lters are
operational in Bangladesh, Nepal, Pakistan, India, and Egypt
and there are several studies showing promising results of
As removals in �eld [188–192]. However, �lters should be
maintained properly; otherwise, they are clogged and not
reliable in removing As [134].

latest advancements on arsenic removal by sorption.

5.2.4. Latest Advancements onArsenic Removal by Adsorption.
Awide spectrumof di	erentmaterials have been explored for
adsorption of arsenic fromgroundwaterwater but iron oxides
and oxyhydroxides are the most widely studied and their
commercial products already dominate a major portion of
the market [166, 194]. In water treatment plants, iron oxyhy-
droxides are used as mechanically resistant particles in �xed-
bed pressure columns.�e application of iron oxyhydroxides
is encouraged due to their cheap and easy production.
�e amorphous structure of such hydroxides provides high
speci�c surface area values and their strong a�nity and
relative high selectivity for the most frequently occurring
arsenate species under natural pH-values of potable water.

Tresintsi et al., 2012 [194], synthesized various iron
oxyhydroxides between the pH range 3–12 using the most
common low cost iron salts (FeSO4⋅H2O and FeCl2⋅H2O) in
a continuous 
ow kilogram-scale production reactor under
intense oxidative conditions to serve as arsenic adsorbents.
Synthesized iron oxyhydroxides at acidic (pH 4.0) and highly
oxidizing conditions resulted in a very e	ective arsenic adsor-
bent comprising of uncrystallized schwertmannite. �e high

AsV sorption capacity of hydroxides was mainly determined
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by the reaction parameters controlling the e	ective surface
charge and the positive role of adsorbed sulfates in the ion
exchange with arsenate oxyanions.

�e optimized adsorbent demonstrates the highest
reported adsorption capacity while keeping the residual
arsenic level below 10mg/L (Q10-value) and maintaining
its superiority in column investigations as compared to
commercial granular materials. �is method is simple and
economically viable synthetic method adapted in a contin-
uous 
ow production and a promising technology for scaling
up.

Zhang and Sun, 2013 [195], invented multifunctional
micro/nanostructured MnO2 spheres successfully and
applied them in the removal process of As species from
groundwater. Batch experiments revealed that AsIII species
can be e	ectively oxidized by the synthesized MnO2
followed by the adsorption of AsV species. Experimental
results of this study insinuated that the synthesized material
is repudiated with good adsorption and oxidative capacity
required for the removal of arsenic species under controlled
conditions. In addition, the synthesized MnO2 spheres can
be e�ciently recovered for their reuse by a micro�ltration
process with limited membrane pore blocking owing to
the microstructure of the material. Synthesized MnO2
spheres are multifunctional materials with good oxidation,
adsorption, and separation properties and can be utilized for
water puri�cation.

Cui et al., 2013 [196], synthesized highly porous, nanos-
tructured ZrO2 spheres from amorphous ZrO2 nanoparticles
with the help of a food-safe additive, agar powder, which
yielded a simple, cheaper, and safer process for the synthesis
of ZrO2 spheres. �ese ZrO2 spheres displayed good adsorp-
tion capacity on both AsIII and AsV at near neutral pH, with-
out the requirement of preoxidation and/or pH adjustment
of the arsenic contaminated water. �ese ZrO2 spheres are
highly stable, nontoxic, acid-alkali resistant and with high
arsenic adsorption capacity. �ese ZrO2 nanoparticles seem
to be prospecting material for their promising application in
removal of arsenic from groundwater.

Cui, 2014, [197] conducted batch and continuous-
ow
pilot investigations employing ultrasound (US), ultraviolet
(UV), and a combination of US and UV to gauze the rate

of oxidation of arsenite (AsIII). As compared to the single
processes of US or UV, the combined US/UV system proved

to be the best for AsIII oxidation with a synergy index of

more than 1.5. A high rate constant of AsIII removal was
achieved as ferrous [Fe(II)] ions existed. As an energy-
utilizing oxidation technique does not require a catalyst, the
combined energy system employing US/UV followed by MF

could be a promising alternative for treating AsIII and Fe(II)
simultaneously.

5.2.5. Biological Arsenic Removal: Basic Techniques. Bacteria
play crucial role in geochemical cycling of As by oxi-
dation/reduction reactions, determining its speciation and

mobility [1]. Arsenic pentavalent (AsV) reduction and arsenic

trivalent (AsIII) oxidation are both detoxi�cation mecha-
nisms [198]. Bacterial species coupling anaerobic oxidation

of organic substrates to the reduction of arsenates have
also been reported by several researches. Such bacteria
are known as dissimilatory arsenate reducing bacteria or
arsenate respiring bacteria (ARD), for example, Geospiril-
lum arsenophilus, Geospirillum barnesi, Desulfutomaculum
auripigmentum, Bacillus arsenicoselenatis, and Crysiogenes

arsenatis [199–202]. �ese bacteria use AsV as a terminal
electron acceptor in their respiratory process. �e oxidation

of AsIII is generally carried out by the incorporation of chem-
ical reagents such as ozone, hydrogen peroxide, chlorine,
or potassium permanganate [203–205]. �e use of chemical
reagents in drinkingwater treatment is discouraged as it o�en
leads to the formation of undesirable byproducts such as
trihalomethanes (THMs) [206, 207].

Biological oxidation of AsIII can be applied as an alter-
native to the chemical oxidation. Iron and manganese are
typical unwanted constituents in drinking water causing
aesthetic problems known to play signi�cant role in arsenic
concentrations in groundwater. Several species of bacteria
have been reported to carry out biological oxidation of As [35,
208, 209]. Speci�c indigenous bacteria mediating biological
oxidation of arsenic are known as “iron and manganese-
oxidizing bacteria.” �ese bacteria have been successfully
applied for the biological arsenic oxidation directly in con-
tinuous groundwater treatment [210–212].

�e biological oxidation of iron by two bacteria, Gal-
lionella ferruginea and Leptothrix ochracea, has been found
to be a promising technology for e	ective removal of arsenic
from groundwater [213]. In this process, iron oxides are
coated on �lter medium, along with the microorganisms,
which o	er an ideal environment for arsenic to be adsorbed
and removed from the water. Under optimum experimental
conditions, trivalent arsenic has been found to be oxidized
by these bacteria, contributing to almost complete arsenic
removal (up to 95%) even when initial arsenic concentrations
were 200mg/L [213]. �e pentavalent arsenic content, under
the aforesaid experimental conditions, can be removed sig-
ni�cantly, leading to residual concentrations below the newly
enforced limit of 10mg/L.�is technology e�ciently removes
arsenic from groundwater and o	ers several advantages
as compared to conventional physicochemical treatment
processes. It avoids the incorporation of chemical reagents
for the oxidation of trivalent arsenic; therefore, it is a cost
e	ective and eco-friendly option. In addition, it does not
need monitoring of a breakthrough point, as in various
sorption processes, because the sorbents (iron oxides) are
consistently produced in situ. Due to being a combined
treatment process (biological oxidation, �ltration, sorption
process), it can be used for the simultaneous removal of other
inorganic contaminants such as iron, manganese, and arsenic
from groundwater [213].

Katsoyiannis et al., 2008, [214] demonstrated the applica-
tion of a treatment method for the removal of iron, ammo-
nium, manganese, and phosphate from groundwater. In this
method, the biological oxidation of ammonium and Mn(II)

for the simultaneous AsIII oxidation and subsequent AsV

removal by coagulation from groundwater was applied. �is
method is a combined groundwater treatment approach, that
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is, bioremediation coupled with physicochemical treatment
with lowoperational costs [214]. Awater treatment unit based
on this technology is operational in northern Greece in the
city of Malgara. �e same can be e	ectively applied at grass
root level in other arsenic contaminated parts of the world.

Katsoyiannis et al. 2013 [215] studied removal of AsIII

and AsV from groundwater by the application of biological
oxidation of dissolved iron and manganese in a pipe reactor
(PR), followed by micro�ltration (MF). �e groundwater
under test (Berlin, Marienfelde) contained average Fe(U)
and Mn(II) concentrations of 2.9 and 0.6mg/L, respectively.
Oxidation of these metals imparted adequate adsorption
sites and, therefore, arsenic species could be removed from
groundwater e	ectively. �e residual concentrations in all
cases were found to be reduced up to 10 �g/L. �e initial
concentration of arsenic in water was in the range of 20 to
250�g/L.

Advantageous aspect of this technology is the uptake
of oxidized iron and manganese onto recirculated sus-
pended solids which 
occulated in the pipe reactor, thereby
eliminating the requirement for mechanical cleaning of
the membrane, while keeping the transmembrane pressure

(TMP) constantly low. �e AsV removal capacity of this
hybrid PR-MF unit was found to be signi�cantly higher
than that achieved by conventional coagulation-�ltration
with Fe(III). Conclusively, the very latest PR-MF process
e�ciently removes iron, manganese, and arsenic without
using chemical reagents for oxidation or pH adjustment,
and without the requirement of regular regeneration or
backwashing, and thus it follows the principles of green
chemistry [215].

6. Conclusion

Arsenic contamination of groundwater is an alarming prob-
lem on a global scale. In several parts of the world, biogeo-
chemical processes have resulted in dissolution of naturally
occurring As into groundwater. In present review, we tried to
elaborate on di	erent natural and anthropogenic sources of
As in groundwater including its speciation and mobilization
pattern in groundwater. We have also reviewed problem of
As contamination in groundwater in di	erent parts of the
world followed by detailed outlook in epidemiology and
toxicity mechanisms of As in animals and humans. In order
to combat arsenic problem, various remediation methods
based on conventional, modern, and hybrid technologies for
removal of As in several parts of theworld have been critically
reviewed.�emerits and demerits of these technologies have
been discussed in detail. Most of the existing technologies for

removal of As involve the direct removal of AsV or converting

AsIII to AsV followed by removal of AsV. �e implementation
of mitigation options can be facilitated by setting proper
guidelines and to control implementation at appropriate
intervals. �e awareness of the population is deemed equally
important inmaintaining and choosingmitigation. However,
even for well-aware population, the dilemma is o�en the abil-
ity to meet prohibitive costs versus the wish to improve their
situation. For communities public participation encounters

the same constraints. Governmental and donor �nancial and
logistic assistance may be essential to reduce arsenicosis.
Besides, extensive research should address the understanding
of the occurrence, origin, and distribution pattern of arsenic.
�e government should monitor industrial and agricultural
activities leading to As pollution. More technical assistance
should be rendered to mining or chemical plants to deal with
sewage and sludge storage and waste treatment. Supervision
departments should increase the frequency of sampling and
analysis of the discharge from industrial plants. We sincerely
hope that this paper will be of considerable interest to
the readers. �e paper re
ects the latest state of the art
on understanding of various interdisciplinary facets of the
problem of arsenic in environmental realm, mechanisms of
mobilization in groundwater, biogeochemical interactions,
and the measure for remediation.
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