
ENVIRONMENTAL EPIGENETICS (A BACCARELLI, SECTION EDITOR)

Arsenic Exposure and Epigenetic Alterations: Recent Findings
Based on the Illumina 450K DNA Methylation Array

Maria Argos1

Published online: 8 April 2015
# Springer International Publishing AG 2015

Abstract Arsenic is a major public health concern world-
wide. While it is an established carcinogen and associated
with a number of other adverse health outcomes, the mo-
lecular mechanisms underlying arsenic toxicity are not
completely clarified. There is mounting evidence from
human studies suggesting that arsenic exposure is associ-
ated with epigenetic alterations, including DNA methyla-
tion. In this review, we summarize several recent human
studies that have evaluated arsenic exposure using the
Illumina HumanMethylation 450K BeadChip, which in-
terrogates more than 485,000 methylation sites across
the genome. Many of these studies have observed novel
regions of the genome associated with arsenic exposure.
However, few studies have evaluated the biological and
functional relevance of these DNA methylation changes,
which are still needed. We emphasize the need for future
studies to replicate the identified DNA methylation sig-
nals as well as assess whether these markers are associat-
ed with risk of arsenic-related diseases.

Keywords Arsenic exposure . Epigenetics . DNA
methylation . Illumina 450K . Environmental epidemiology

Introduction

An estimated >200 million people worldwide, including ∼17
million in the USA, consume drinking water contaminated
with arsenic at levels associated with a variety of adverse
health effects and shortened lifespan [1, 2]. Furthermore, re-
cent studies have suggested that food-derived inorganic arse-
nic exposure is also an emerging public health concern [3–7].
Epidemiologic research has established arsenic as a potent
human carcinogen and has associated arsenic exposure with
cancers of the skin, lung, bladder, kidney, liver, and possibly
prostate [8]. Arsenic exposure has also been associated with
detectably increased risk of cardiovascular disease (including
coronary and ischemic heart disease, acute myocardial infarc-
tion, and hypertension) [9–11], respiratory disease [12, 13],
diabetes mellitus [14–16], and impaired neurodevelopment
[17]. Recent studies have observed increased infant mortality
and low birth weight to be associated with prenatal arsenic
exposure at moderate-to-high doses [18, 19]. With respect to
its frequency, toxicity, and potential for human exposure, ar-
senic holds the highest ranking since 1997 on the Agency for
Toxic Substances and Disease Registry (ATSDR) Substance
Priority List [20].

The mechanisms underlying arsenic toxicity and resulting
human health effects are not completely clarified; however,
epigenetic events have been hypothesized as a possible medi-
ating pathway. There has been mounting evidence of support
from animal and human studies to show that arsenic contrib-
utes to epigenetic modifications of the genome [21]. DNA
methylation is an epigenetic event with a hypothesized role
in gene expression, development, and disease [22]. In humans,
methylation is typically of the DNA base cytosine, which is
modified reversibly by adding a methyl group (–CH3) to its 5-
carbon position [23]. This modification occurs on cytosines
that precede a guanosine in the DNA sequence, referred to as

This article is part of the Topical Collection on Environmental
Epigenetics

* Maria Argos
argos@uic.edu

1 Division of Epidemiology and Biostatistics, School of Public Health,
University of Illinois at Chicago, 1603 West Taylor Street, MC923,
Chicago, IL 60612, USA

Curr Envir Health Rpt (2015) 2:137–144
DOI 10.1007/s40572-015-0052-1



the CpG dinucleotide. Short regions of 0.5–4 kb in length,
known as CpG islands, are rich in CpG content. These islands
are typically found in or near promoter regions of genes where
transcription is initiated. In normal somatic cells, the vast ma-
jority of CpG dinucleotides in the genome are methylated,
whereas CpG islands often remain unmethylated, allowing
gene expression to occur. Whereas in disease pathways, this
pattern of CpG methylation is thought to be disrupted, with
increased methylation within promoter regions of genes caus-
ing abnormal gene silencing, in addition to global hypome-
thylation of genomic DNA, which promotes chromosomal
instability, translocation, and gene disruption [24]. Unlike
CpG island regions, there is greater biologic variability in
methylation of CpG dinucleotides in CpG shores (within
2 kb of a CpG island), CpG shelves (2–4 kb from a CpG
island), as well as isolated CpG loci in the genome [25].
DNA methylation levels are influenced by various factors
including genetic, environmental, and dietary factors [26–28].

Furthermore, evidence shows cell- and tissue-specific pat-
terns of DNAmethylation, with the largest variability in DNA
methylation across tissues for CpG islands located within the
body of a gene as well as CpG dinucleotides located outside of
CpG islands [29]. This presents an important consideration for
epigenetic epidemiologic studies. First, the cellular composi-
tion of the biological specimen needs to be considered. For
example, in blood-based DNA methylation studies, extracted
DNA is derived from a mixture of different leukocytes (i.e.,
monocytes, lymphocytes, granulocytes) found in the blood.
Individual cell types in blood differ not just because of specific
surface markers that have been traditionally used to differen-
tiate immune cells, but also systematically differ in DNA
methylation patterns at a subset of CpG sites. Therefore, dif-
ferentially methylated loci associated with an environmental
factor of interest may be observed not due to a direct impact on
DNA methylation but due to the effect of the environmental
factor on a shift in the distribution of white blood cells, as
illustrated in Fig. 1. This shift in cellular composition would
therefore confound the association of interest between the en-
vironmental factor and alterations in DNA methylation. In a
recently proposed novel statistical method, the DNA

methylation patterns at a subset of CpG sites across the ge-
nome have been used for immunophenotyping to infer the
proportions of white blood cell types in a given measured
sample [30•] so that this potential source of confounding can
be evaluated. Arsenic-related cell type shifts in blood have
been observed in previous studies detailed below, although
these cell type shifts have been estimated to account for a
small proportion of the overall variability in DNA methyla-
tion. Second, the correlation of DNA methylation patterns in
the measured surrogate biological tissue with the target tissue
of interest needs to be considered. In human studies, access to
target tissues of interest is often not feasible; therefore, studies
are more commonly conducted using blood as a surrogate
tissue. For the subset of CpG sites that are not correlated
between leukocytes and the cells of the target tissue, differen-
tially methylated CpG sites associated with the environmental
factor in the target tissue will not be detected using DNA
methylation measures from blood, missing potentially impor-
tant genes and molecular pathways associated with the expo-
sure. Conversely, differentially methylated CpG sites associ-
ated with the environmental factor in blood may be observed
that are not relevant for the target tissue of interest. This is a
more challenging consideration to overcome and may be in-
formed by future publically available databases such as the
Genotype-Tissue Expression Project (GTEx) as well as future
studies with access to diverse tissues to enable the evaluation
of tissue-specific patterns of DNA methylation.

Several human studies have examined global DNA meth-
ylation in blood in relation to arsenic exposure using surrogate
markers of global DNAmethylation, such as long interspersed
nucleotide element-1 (LINE-1), Alu element methylation,
methyl incorporation assays, or luminometric methylation as-
says (LUMA). The findings from these studies have been
inconsistent, although they included a number of differences
in exposure measures and doses across studies [31–40]. A
number of studies have also evaluated arsenic in relation to
candidate gene-specific DNA methylation, most frequently
assessing p16 and p53 promoter methylation [36, 39,
41–45]. Studies evaluating global and candidate gene DNA
methylation in relation to arsenic have been the subject of
previous detailed reviews [21, 46, 47].

Epigenome-Wide DNA Methylation Studies
Using Illumina 450K Platform

Relatively few epigenome-wide association studies have been
conducted to investigate DNA methylation alterations in rela-
tion to arsenic exposure in humans. Published studies to date
have been primarily focused on two main areas of research
including the evaluation of 1) cord blood DNAmethylation in
relation to in utero arsenic exposure [48•, 49•, 50•, 51•] and 2)
white blood cell DNA methylation in adults in relation to a

Fig. 1 Illustration of the potential impact of cellular heterogeneity in
epigenetic studies of arsenic exposure in relation to DNA methylation
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variety of arsenic constructs including arsenical skin lesion
status [52, 53•], urinary arsenic species [54], toenail arsenic
concentration [55•], and blood arsenic and urinary total arse-
nic concentrations [56•]. Only one study has evaluated
epigenome-wide DNA methylation patterns in tissue other
than blood, which was a study of arsenic-related urothelial
carcinomas [57]. Among these studies, all but three were con-
ducted using the same epigenome-wide DNA methylation
platform, the Illumina HumanMethylation 450K BeadChip
(Illumina, San Diego, CA, USA), which interrogates 485,
577 methylation sites per sample [48•, 49•, 50•, 51•, 53•,
55•, 56•]. Of the remaining studies, two used the Affymetrix
GeneChip Human Promoter 1.0R array (Affymetrix, Santa
Clara, CA, USA) [52, 54] and one used the previous genera-
tion Illumina HumanMethylation 27K BeadChip [57]. As
summarized in Table 1, the studies utilizing the Illumina
450K platform are the further focus of this review.

In Utero Arsenic Exposure and Umbilical Cord Blood
DNA Methylation

Four epigenome-wide association studies to date have inves-
tigated umbilical cord blood DNA methylation in relation to
prenatal arsenic exposure [48•, 49•, 50•, 51•]. In a study of
low-dose prenatal arsenic exposure, Koestler et al. evaluated
maternal urinary arsenic concentration at 24–28 weeks gesta-
tion in relation to umbilical cord blood DNA methylation
among 134 mother-child dyads from the New Hampshire
Birth Cohort Study [49•]. Maternal urinary total arsenic con-
centration was the primary measure of in utero arsenic expo-
sure (median (interquartile range)=4.1 μg/L (1.8–6.6)) in the
study. At a nominal significance threshold (P<0.05), 18 % of
interrogated CpG loci were associated with maternal urinary
arsenic concentration, although none remained statistically
significant after accounting for multiple comparisons. The au-
thors employed a novel statistical method to infer major leu-
kocyte components of whole blood based on a subset of DNA
methylation loci [30•] and observed a significant positive as-
sociation between maternal urinary total arsenic concentration
and proportion of CD8+ T lymphocytes in cord blood.

A study of moderate- to high-dose prenatal arsenic expo-
sure was conducted by Kile et al. to evaluate maternal well
water arsenic concentration in relation to umbilical cord blood
DNA methylation among 44 mother-child dyads from a pro-
spective birth cohort study in Bangladesh [48•]. Maternal well
water arsenic concentration at ≤16 weeks gestation was the
primary measure of in utero arsenic exposure (median
(range)=12 μg/L (<1.0–581)). A positive significant associa-
tion between maternal well water arsenic concentration and an
intergenic DNA methylation locus on chromosome 19,
cg00498691 (P=5.89×10−8), was observed, after accounting
for multiple comparisons. Additionally, maternal well water
arsenic concentration was observed to have a significant

positive association with the proportion of CD8+ T lympho-
cytes and a negative association with CD4+ T lymphocytes in
cord blood, based on the Houseman et al. statistical method
[30•].

Another study of moderate- to high-dose arsenic exposure
in Bangladesh was conducted by Broberg et al. to evaluate
maternal urinary total arsenic concentration in relation to um-
bilical cord blood DNA methylation among 127 mother-child
dyads from a prenatal supplementation trial [51•]. Maternal
urinary total arsenic concentrations during early (5–14 gesta-
tional weeks) and late (26–36 gestational weeks) gestation
were separately evaluated as the primary measures of in utero
arsenic exposure (early-gestation median (5–95 percentiles)=
66 μg/L (20–457) and late-gestation median (5–95 percen-
tiles)=89 μg/L (18–562)). Arsenic exposure measured in ear-
ly gestation showed stronger association with DNA methyla-
tion than that in late gestation, and significant associations
were only observed in boys. Three CpG sites in boys (PLIN5
cg15255455, LRRC26 cg13659051, and RPS6KA2
cg17646418) were significantly associated with early-
gestation maternal urinary total arsenic concentration based
on false discovery rate (FDR) <0.05. Among the top 500
nominally associated CpG loci in relation to early-gestation
maternal urinary total arsenic concentration, the authors ob-
served evidence of enrichment for hypomethylated loci
among boys.

A study of moderate- to high-dose prenatal arsenic ex-
posure was also conducted by Rojas et al. to evaluate
maternal urinary total arsenic concentration in relation to
umbilical cord blood DNA methylation among 38 mother-
child dyads from the Biomarkers of Exposure to Arsenic
(BEAR) birth cohort study in Mexico [50•]. Maternal uri-
nary total arsenic concentration at the time of delivery
was the primary measure of in utero arsenic exposure
(median (range)=32.57 μg/L (6.2–319.7)) [58]. There
were 4771 differentially methylated CpG sites (34 %
hypomethylated and 66 % hypermethylated) associated
with maternal urinary total arsenic concentration based
on FDR<0.05. Among the arsenic-related differentially
methylated CpG sites, there was evidence of enrichment
for 3′UTR and gene body regions. Corresponding gene
expression data were also evaluated for the 38 umbilical
cord blood samples, and only weak correlations were ob-
served for a subset of arsenic-associated CpG loci with
mRNA transcript levels. The subset of CpG probes asso-
ciated with gene expression changes were subsequently
evaluated in relation to birth outcomes, with associations
observed for gestational age, placental weight, and head
circumference; the subset of genes associated with both
differential DNA methylation and gene expression were
also observed to be enriched for transcription factor bind-
ing sites compared to genes with altered expression but no
correlation with DNA methylation.
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Future Research Directions

There are notable differences across these studies making
them challenging to synthesize; however, these differences
also raise important issues for further exploration in future
research. The studies varied with respect to the window of
prenatal arsenic exposure assessment, with the study by
Broberg et al. [51•] evaluating both early- and late-gestation
exposures and suggesting that early prenatal exposure may
have stronger effects on cord blood methylation. The studies
also varied in the arsenic exposure levels of the study popula-
tions, which ranged from low- to moderate- and high-dose
exposures. Additional studies will help to determine whether
differentially methylated loci associated with low-dose expo-
sure can be replicated in populations with high-dose exposure
and vice versa. The study by Broberg et al. [51•] was the only
analysis to present results stratified by sex, suggesting there
may be important sex-specific differences in DNA methyla-
tion alterations, which should be systematically explored in
future studies. Koestler et al. [49•] and Kile et al. [48•] ob-
served an immunotoxic effect of prenatal arsenic exposure.
Although the effect of arsenic on altered leukocyte cell types
was estimated to explain a small percentage of the variability
in methylation observed in those studies and is not believed to
explain the association results observed, future studies should
consider this issue as a source of potential confounding in
DNA methylation analyses. Finally, a major innovation in
the study by Rojas et al. [50•] was to evaluate the association
of differentially methylated loci with gene expression, enrich-
ment for transcription factor binding sites, and birth outcomes,
providing additional mechanistic support through functional
evidence and disease risk for the identified loci.

Arsenic and White Blood Cell DNA Methylation in Adults

Three epigenome-wide association studies have evaluated ar-
senic exposure in relation to white blood cell DNA methyla-
tion in adults using the Illumina 450K platform. In a prospec-
tive study of low-dose arsenic exposure, Liu et al. evaluated
toenail arsenic concentration in relation to white blood cell
DNA methylation 13 years later among 45 participants from
the Coronary Artery Risk Development in Young Adults
(CARDIA) study [55•]. Toenail arsenic concentration, a bio-
marker of longer-term arsenic exposure, was the main arsenic
exposure measure of interest, with individuals sampled from
the lowest (<0.0649 μg/g) and highest (≥0.1442 μg/g) quar-
tiles of exposure for this study. No statistically significant
associations were observed based on a strict Bonferroni P
value threshold. The effect of arsenic on white blood cell
proportions using the Houseman et al. statistical method
[30•] was evaluated and did not reveal any significant associ-
ations with cell type proportions, although there was a modest

positive association of arsenic exposure with CD8+ T lympho-
cyte proportions, as reported previously by others [48•, 49•].

Seow et al. conducted a prospective study among 10 inci-
dent skin lesion cases and 10 controls among adults in Ban-
gladesh [53•]. Skin lesion cases were defined as the presence
of at least one type of arsenical skin lesion. DNA methylation
was measured at both baseline (2001–2003) and follow-up
(2009–2011) in each study participant to identify DNA meth-
ylation changes associated with incident skin lesions based on
percent methylation difference between the baseline and
follow-up assessments. No differentially methylated loci were
identified, after accounting for multiple comparisons, likely
due to the small sample size of the study.

In the largest study to evaluate arsenic toxicity in relation to
epigenome-wide DNA methylation to date, Argos et al. evalu-
ated blood arsenic and urinary total arsenic concentrations in
relation to white blood cell DNA methylation among 400 Ban-
gladeshi adults with manifest arsenical skin lesions in cross-
sectional analyses [56•]. Blood arsenic (mean=9.3 μg/L, stan-
dard deviation (SD)=11.3 μg/L) and urinary total arsenic
(mean=302 μg/g, SD=364.5 μg/g) concentrations were the
primary measures of arsenic exposure in the study. Statistically
significant associations based on a Bonferroni significance
threshold (P<1×10−7) were observed for PLA2G2C
cg04605617, SQSTM1 (p62) cg01225779, SLC4A4
cg06121226, and IGH cg13651690. A subset of these methyl-
ation loci were replicated in an independent study sample. Ad-
ditionally, urinary total arsenic concentration was significantly
inversely associated with proportions of CD4+ T lymphocytes
and natural killer T cells when comparing the highest versus
lowest quartiles of exposure, based on the Houseman et al.
statistical method [30•]. There was evidence of enrichment for
arsenic-related differentially methylated loci in ocean (isolated
CpG loci in the genome) and CpG island shore regions (within
2 kb from a CpG island). The authors also evaluated the corre-
lation of the top differentially methylated loci in relation to
peripheral blood mononuclear cell gene expression and ob-
served evidence of possible methylation-related gene regulation
for a subset of these differentially methylated loci.

Future Research Directions

There are several important research considerations for future
evaluations of arsenic toxicity in relation to DNAmethylation
alterations in adults. The study by Argos et al. [56•] was a
cross-sectional analysis, whereas Liu et al. [55•] and Seow
et al. [53•] took longitudinal approaches to evaluate arsenic
toxicity with respect to DNA methylation alterations. Future
studies should consider repeated measure analyses to evaluate
the persistence of arsenic-related DNA methylation alter-
ations. These studies all examined DNA methylation alter-
ations in blood. The extent to which DNA methylation pat-
terns in blood correlate with the target tissue and prove to be
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useful markers of disease risk or early markers of disease
detection needs to be further explored [59]. Only one previous
study by Yang et al. [57] evaluated epigenome-wide DNA
methylation alterations in target tissue. Therefore, future stud-
ies should be designed to evaluate not only DNA methylation
alterations in target organ tissues but also whether blood-
based differentially methylated loci are associated with risk
of arsenic-related diseases.

Research Considerations

With the emergence of epigenetic epidemiology, several re-
search considerations are outlined for future studies evaluating
arsenic epigenetics, which highlight many of the successes as
well as limitations of the existing epigenome-wide DNA
methylation studies evaluating arsenic toxicity.

One of the major concerns for the advancement of arsenic
epigenetics and epigenetic epidemiology in general has been
the interpretation of DNA methylation signals from human tis-
sues due to heterogeneous cellular composition. This issue has
been widely discussed in the literature [60]. The implications
for arsenic epigenetics are such that if arsenic exposure is asso-
ciated with shifts in cell types, in either blood or other tissues,
then observed associations between arsenic and DNA methyl-
ation may be confounded if cellular heterogeneity is not taken
into account [61]. Although arsenic-related cell type shifts in
blood have been estimated to account for a small proportion of
the overall variability in DNA methylation [49•], statistical
methods have been proposed to account for cellular heteroge-
neity [30•, 62•, 63] and should be employed in future arsenic
epigenetic studies to improve interpretation of study findings.

The vast majority of epigenome-wide association studies
have evaluated the effect of arsenic on cord or venous blood
DNA methylation. The results of blood-based studies should
be interpreted cautiously since it is not established whether
arsenic-related DNA methylation patterns are also present in
target organ tissues. To address this, future studies should
evaluate arsenic in relation to the methylome of target tissues
when biological specimens are accessible. Additionally, stud-
ies examining DNA methylation alterations in white blood
cells can be enhanced by evaluating differentially methylated
loci in relation to arsenic-related disease outcomes in order to
generate evidence on whether a differentially methylated lo-
cus identified in blood represents a biomarker of exposure or
biomarker of early biological effect.

Existing epigenome-wide association studies of arsenic have
been conducted in study samples with wide-ranging arsenic ex-
posure. It is not well-established whether DNAmethylation pat-
terns observed in populations with low-dose arsenic exposure
are the same as methylation patterns observed in moderate- and
high-dose exposures. Additionally, future studies may shed light
on the biological impacts of timing of arsenic exposure, whether

differentially methylated regions vary if exposure is during in
utero life, childhood, adolescence, or adulthood. Aging has an
important effect on DNA methylation [64]; therefore, suscepti-
bility of the methylome to arsenic exposure may dramatically
vary by timing of arsenic exposure. Furthermore, it is not known
to what extent DNA methylation alterations persist after arsenic
exposure has been remediated. It will be particularly interesting
for future studies to examine changes in methylation patterns
among individuals with changes in arsenic exposure through
prospective studies with repeated measures.

Many of the previous epigenome-wide DNA methylation
studies in relation to arsenic presented findings from small
study samples, which were not adequately powered to detect
modest methylation effects. Studies with relatively larger sam-
ple sizes are needed to discover novel differentially methylat-
ed loci associated with arsenic as well as to replicate observed
methylation signals.

Finally, epidemiologic studies are increasingly measuring
multiple types of molecular or Bomic^ data that can be com-
bined in order to conduct integrative molecular studies of DNA
methylation and gene expression.When possible, future studies
should evaluate the functional relevance of differentially meth-
ylated loci on corresponding gene expression, as was undertak-
en by Rojas et al. [50•] and Argos et al. [56•] to show that a
subset of differentially methylated loci were associated with
gene expression, which increases confidence that the identified
loci might be related to disease development.

Conclusions

Epigenome-wide DNA methylation studies are a promising
discovery-based approach for the identification of novel genes
and pathways that may be associated with arsenic toxicity. An
overview of the existing literature as well as several consider-
ations for future studies has been presented that highlight the
existing knowledge gaps in arsenic epigenetics as well as ad-
dress the limitations of the existing studies. Future studies
should integrate functional assessments of DNA methylation
alterations as well as characterize disease risk associated with
differentially methylated regions.
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