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During the last few years, it has become increasingly clear
that mitochondria play a major rate-limiting role in apoptosis
(1–3).In general terms, the apoptotic process can be subdivided
into three phases: the initiation phase, the decision/effector
phase, and the degradation phase. During the heterogeneous ini-
tiation phase, which is essentially premitochondrial, specific
pro-apoptotic signal transduction pathways or nonspecific dam-
age pathways are activated. These pathways converge on the
mitochondria during the decision/effector phase, where they
trigger progressive permeabilization of mitochondrial mem-
branes, mostly as a result of the action of the permeability tran-
sition pore complex (PTPC). Thus, the mitochondrion (or to be
more precise, the PTPC, which interacts with the Bcl-2/Bax
complex) “decides” the cell’s fate and determines the point of no
return of the process(4,5). The morphologic and biochemical
features of apoptosis become manifest during the postmitochon-
drial degradation phase, in which soluble intermembrane pro-
teins (SIMPs) released from mitochondria play an active role:
AIF (apoptosis-inducing factor) translocates to the nucleus,
where it induces large-scale DNA fragmentation(6); cyto-
chrome c triggers the activation of pro-caspase-9(7); and pro-
caspases 2, 3, and 9 intervene in a cascade of proteolytic de-
struction(8,9). Inhibition of SIMPs does not prevent cell death
as such, although it may cause a shift from apoptotic to non-
apoptotic cell death(2).

The goal of chemotherapy is to kill tumor cells, mostly by
inducing apoptosis. What then is the practical implication of
PTPC and SIMPs? Some gross alterations in mitochondrial
function, such as a dissipation of the mitochondrial inner trans-
membrane potential (DCm) or the release of SIMPs (via the
outer membrane), are near-to-general features of apoptosis(1–
3). The mere detection of mitochondrial changes thus does not
distinguish between two fundamentally different possibilities,
namely, that a chemotherapeutic agent acts directly on mito-
chondria or rather that it compromises mitochondrial function in
an indirect fashion, by activating extramitochondrial pro-
apoptotic signal transduction or damage pathways. To discrimi-
nate between these possibilities, it is necessary to perform ex-
periments in which the chemotherapeutic agent is added to
purified mitochondriain vitro and local effects (activation of the
PTPC and release of SIMPs) are studied. One particularly inter-
esting possibility is to combine different components of the cell
(e.g., nuclei, cytosols, and mitochondria)in vitro to study the
minimum requirements for caspase activation or induction of
nuclear apoptosis induced by anticancer agents. With this ap-
proach, it has become clear that a number of experimental drugs
act primarily on mitochondria to induce apoptosis. This applies
to lonidamine (an agent used in phase II studies of breast cancer
therapy)(10), betulinic acid (an agent that selectively kills neu-
roectodermal cells)(11,12), thiol-cross-linking agents such as

diamide(13), and ligands of the peripheral benzodiazepine re-
ceptor(14) including photo-activable porphyrin derivatives(15).
In contrast, classical chemotherapeutic agents such as etoposide,
doxorubicin, or cisplatin have no direct mitochondrial effects
(11). Such agents act by inducing p53, by activating ceramide,
by stimulating the CD95/CD95L pathway, and/or by inducing
major shifts in redox potentials. Each of these alterations then
can affect mitochondria in an indirect fashion, p53 by affecting
the redox balance (see below) (16,17),ceramide by formation of
ganglioside GD3 and/or influencing the function of BAD (which
interacts with Bcl-2)(18), CD95 by apical caspases (which act
on mitochondria)(19), and redox imbalances by effects on re-
dox-sensitive sites within the PTPC(20). The level at which a
chemotherapeutic agent acts is likely to have some practical
impact because, on theoretical grounds, agents that directly af-
fect mitochondria should bypass any resistance due to interrup-
tion of the indirect death-inducing pathways (e.g., mutations of
p53 and loss of CD95). Whether this is the case for arsenic
trioxide awaits further confirmation.

Arsenic trioxide has recently become a therapeutic agent of
choice for the treatment of acute promyelocytic leukemia (APL).
The report by Zhu et al.(21) in this issue of the Journal shows
that arsenic trioxide induces (as do most other chemotherapeutic
agents) an earlyDCm collapse, thus extending the observation
that arsenite (the trivalent inorganic salt formed by arsenic tri-
oxide) causes the release of cytochrome c from mitochondria to
the cytosol(22). Cell-free systems of apoptosis reveal that ar-
senite requires mitochondria to induce nuclear apoptosisin vitro
(23).Moreover, arsenite acts on isolated mitochondria to induce
the opening of PTPC, presumably by acting as a thiol-oxidizing
agent(20). In accordance with this idea, intracellular glutathione
levels determine the dose of arsenite required to kill cells
(21,24). Arsenite also acts on purified PTPC reconstituted in
liposomesin vitro (23). In such a system, recombinant Bcl-2
prevents the opening of PTPC, which is in agreement with the
fact that transfection-enforced overexpression of Bcl-2 protects
cells against the pro-apoptotic effect of arsenite(23).

If these data suggest that arsenic trioxide can induce apopto-
sis via a direct mitochondrial effect leading to caspase activa-
tion, they do not rule out that this pleiotropic agent may have
additional effects that also contribute to induction of cell death.
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Indeed, arsenic may interfere with a staggering variety of cel-
lular processes, e.g., cell cycle progression, DNA repair, ubiq-
uitination, tubulin polymerization, nitric oxide synthesis, and
oncogene expression or activation. In view of this large number
of potential cellular targets, issues such as dose, cell type, or
cellular environment become critical. From a therapeutic per-
spective, differences in arsenic sensitivity should exist between
tumor cells and normal cells. Some reports have highlighted
clear differences in arsenic sensitivity of some cell lines com-
pared with others. For example, human T-cell lymphotropic vi-
rus type I-infected cells, myeloma cells, and transformed lym-
phocytes are exquisitely sensitive to arsenic(25,26). However,
results observed in cell lines should be interpreted with caution.
Indeed, cellular levels of glutathione and selenium (both of
which potentially titrate intracellular arsenic) are major deter-
minants of arsenic-triggered cell death(21,24,27).The redox
state of cell lines in culture is likely to differ from that of cells
in vivo.In that sense, very little is known about the consequences
of in vivo exposure to micromolar arsenic concentrations, with
the notable exception of APL, in which arsenic trioxide induces
dramatic clinical remissions. Although nonleukemic cells show
some toxicity, the selective disappearance of leukemic cellsin
vivo implies their greater sensitivity to the drug.

The mechanism by which eradication of the leukemic clones
is achievedin vivo is still unclear.In vitro studies in cell lines
initially suggested the mechanism to be apoptosis, while lower
doses were later found to induce terminal differentiation(27–
30). In contrast to the observations in established APL cell lines,
primary APL blasts are relatively resistant to rapid apoptosis
induction by arsenite when culturedex vivo.In patients or ani-
mal models, apoptosis and differentiation seem to coexist in the
few cases analyzed, but their respective contribution to clinical
remissions is elusive(30,31).At the molecular level, arsenic was
reported to target the leukemia-specific PML/RARa (i.e., pro-
myelocytic leukemia protein/retinoic acid receptora) fusion
protein for degradation(21,30,32,33).Since the PML/RARa
fusion protein may antagonize both differentiation and apopto-
sis, its degradation could trigger these two events, yet, in some
settings, PML/RARa degradation is observed in the absence of
apoptosis(27). Arsenic has also been reported to alter the intra-
nuclear localization of PML protein, to enhance its pro-apoptotic
properties, and finally to induce its degradation(32,34,35).
However, mouse cells lacking the PML (or PML/RARa) genes
were shown to undergo normal cell death in response to arsenic
(36), a finding conflicting with the results of other reports
(35,37).Finally, prolonged exposure to arsenic can induce the
degradation of RARa (27), which points to a possible effect of
this drug on the retinoic acid (RA) response. In support of this
possibility, arsenic sensitizes some APL cells to RA-triggered dif-
ferentiation(27). Moreover, arsenic and RA cooperate to induce
tumor regression and prolong survival in an animal model of APL
(31). This observation suggests that, especially when used at rela-
tively low doses (in the lowmM range), arsenite may have effects
that can be dissociated from its acute mitochondriotoxicity.

Most anticancer agents have been clinically used before their
modes of action have been understood, and arsenic is no excep-
tion to this rule. The future will tell to which extent progress in
fundamental understanding will invert this order and boost ra-
tional drug design. Irrespective of the molecular details, it ap-
pears that arsenic constitutes a welcome addition to the clini-
cian’s armamentarium for the chemotherapy of leukemia.
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