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Abstract
In the application of parallel mechanisms, it is necessary to calibrate the
kinematic parameters and improve the positioning accuracy for accurate task
performance. However, there are strong correlations between all the
parameters in the kinematic calibration of a parallel mechanism. Therefore,
it is difficult to identify all kinematic parameters included in a kinematic
model of the parallel mechanism from measuring data. In this study, we
proposed to use a priori knowledge of the kinematic parameters to eliminate
their correlation and to give robustness to the calibration. A priori
knowledge can be given without extra measurement when the
manufacturing process of the mechanism is under quality control. Using
a priori knowledge, all kinematic parameters of the parallel mechanism are
identified in the artefact calibration without divergence. First, an artefact
calibration with a priori knowledge is formulated. Second, the estimation
of a priori knowledge under quality control is described. Finally, the
robustness and effectiveness of the artefact calibration with a priori
knowledge is demonstrated through simulations.

Keywords: parallel mechanism, geometric calibration, kinematic calibration,
artefact calibration, a priori knowledge, least squares method

1. Introduction

To improve a robot’s accuracy, it is necessary to improve
both its repeatability and accuracy of positioning. In the
case of a parallel mechanism, the improvement of accuracy
is difficult in contrast to the improvement of repeatability
because of the difficulty in the calibration, in which all
kinematic parameters whose error results in a non-negligible
positioning error of the end-effector must be identified [1, 2].
However, parameter identification for a parallel mechanism
is challenging, because there are strong correlations among
all the parameters. The correlations are derived from closed
kinematic chains composed in the calibration system [3].
To calibrate a parallel mechanism, we must eliminate these

correlations. One method for eliminating correlations is to
change the arrangement of the measurement of the end-effector
location [4]. Another is to change the observation equation in
the least squares method [5]. However, these methods are not
enough to give robustness to the calibration.

In this study, we propose to use a priori knowledge of
the kinematic parameters to eliminate correlations. Usually,
a priori knowledge of each parameter is given through its
direct measurement. Hence, extra measurements are needed.
Moreover, a priori knowledge is difficult to obtain when
direct measurement is hard or impossible. Here we assume
that the manufacturing process of the mechanism is under
quality control, each true value of a kinematic parameter is
close to its design value and the parameter’s error is within
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Figure 1. Calibration model of a Stewart Platform.

the design tolerance, which means we can use the design
value and its tolerance for a priori knowledge. In this case,
no extra measurement is needed and a priori knowledge of
any parameter is available. Using a priori knowledge, all
kinematic parameters of the parallel mechanism are identified
in the kinematic calibration using calibration artefacts (artefact
calibration) with the least squares method.

First, artefact calibration with a priori knowledge is
formulated. Second, the estimation of a priori knowledge
of all kinematic parameters from their design values and
tolerances is described. Finally, the artefact calibration for the
parallel mechanism with a priori knowledge is demonstrated.
Using this method, all kinematic parameters are converged to
adequate values.

2. Formulation

Figure 1 shows a calibration system of a six degrees of freedom
Stewart Platform. The main components of the Stewart
Platform are a hexagonal base plate, six linear actuators with
encoders and a hexagonal end plate. The components are
connected with spherical joints, and a tool is fixed on the
end plate. To calibrate the Stewart Platform, some calibration
artefacts, for example, the block gauge, ring gauge, double ball
bar and so on, are arranged in its workspace and, through their
measurement, the kinematic parameters included in kinematic
models of the Stewart Platform are identified.

2.1. Kinematic parameters

To improve a robot’s accuracy through calibration, true values
of all kinematic parameters whose variations lead to large
geometrical pose errors of the robot should be approximated.
The first step of artefact calibration is describing the kinematic
model of the mechanism with necessary and sufficient
kinematic parameters [6]. A classical modelling method for
robots is to use the Danavit–Hartenberg parameters [7], but
this method is not effective for describing the calibration model
[8]. Here, we describe the calibration model only with linearly
independent parameters [8–10].

Two coordinate systems are set up for the Stewart
Platform. The fixed coordinate system B{XB, YB,ZB} is
located at the centre of a spherical joint on the base plate.
The mobile coordinate system E{XE, YE,ZE} is located at
the centre of a spherical joint on the end plate [9, 10].

2.1.1. Base plate. The base plate is described as a rigid
polyhedron whose vertices are at the positions of each
spherical joint in the fixed coordinate system. Thus, we
describe the base plate with 18 parameters (xb1, yb1, zb1, . . . ,

xb6, yb6, zb6). Six of these 18 parameters should be checked off
the parameter identification objects because they are linearly
dependent on the others. Therefore we consider these six
parameters, xb1, yb1, zb1, xb2, zb2, zb3, as constants.

2.1.2. Linear actuator. Linear actuators are described as
segments whose lengths are the sum of the initial length plus
each expansion. Expansion can be measured with the encoder
attached to it. However, the initial lengths of the linear
actuators are unknown. Hence we introduce six parameters
for these initial lengths (l1, l2, . . . , l6).

2.1.3. End plate and tool. The end plate is described
as a rigid polyhedron whose vertices are at the positions
of each spherical joint in the mobile coordinate system.
Thus, we describe the end plate with 18 parameters
(xe1, ye1, ze1, . . . , xe6, ye6, ze6). The tool is also described as
a vertex of the polyhedron in the same coordinate system.
Hence it is described with three parameters (xeT , yeT , zeT ).
As in the case of the base plate, six parameters of these 21
parameters should be checked off the parameter identification
objects. Therefore we consider these six parameters,
xe1, ye1, ze1, xe2, ze2, ze3, as constants.

2.1.4. Calibration artefact. In this paper, we use balls whose
radii are known for calibration artefacts. We arrange n balls
in the workspace of a Stewart Platform. In this case, it is
necessary to identify the position of the centre of each ball in
the fixed coordinate system. Therefore, we introduce 3 × n

parameters for these centres (xc1, yc1, zc1, . . . , xcn, ycn, zcn).

2.2. Calibration formulation

Kinematics of the Stewart Platform are described as follows
[11]:

|Bi − AE→BEi | = li + qi, (i = 1, . . . , 6), (1)

where Bi are the coordinates of the ith spherical joint
(xbi ybi zbi)

T in the coordinate system on the base plate, Ei

are the coordinates of the ith spherical joint (xei yei zei)
T in

the coordinate system on the end plate, li and qi are the initial
length and expansion, respectively, of the ith linear actuator
which connects the ith joint on the base plate and the ith joint
on the end plate and AE→B is the coordinate transformation
from the coordinate system on the end plate to that on the base
plate. Solving equation (1) for AE→B , the forward kinematic
solution f , the position of the end of the tool in the fixed
coordinate system, is given by

f(q,p) = AE→BET , (2)

where q is the expansion vector of linear actuators when the
tool is positioned on the surface of a calibration ball and p is
the kinematic parameter vector as follows:

p = (yb2 . . . zb6 l1 . . . l6 ye2 . . . zeT )T . (3)
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When we position the tool on a ball m times, the
observation equations vector is given by

O =




c(f(q11,p))
...

c(f(qij ,p))
...

c(f(qnm,p))




, (4)

where c is the function vector of the forward kinematic solution
f(q,p) and qij is the expansion vector of the linear actuators
at the j th position on the ith ball.

The kinematic parameter vector is calculated as the least
squares solution by the Newton–Raphson method as follows:

pnew = pold + (J T W−1J )−1J T W−1O, (5)

where W is the error matrix associated with the measurement,
and the Jacobian matrix J is

J =




∂c(f(q11,p))/∂p1 · · · ∂c(f(q11,p))/∂pk

...
. . .

...

∂c(f(qnm,p))/∂p1 · · · ∂c(f(qnm,p))/∂pk


 .

(6)

2.3. Parameter identification with a priori knowledge

When we calibrate kinematic parameters p from the same
measurement data set {q}, we can obtain better solutions by
choosing an adequate formulation of the observation equation
that presents a good calculation condition of the least squares
method. Furthermore, we can make a robust calibration under
difficult conditions when a priori knowledge of each parameter
is available.

Using a priori knowledge, equations (4) and (6) are
reconfigured as follows:

Ô = [
cT p − ṕ

]T
,

Ĵ =
[

J

Ek,k

]
,

Ŵ =




W O

O

σ 2
p1

. . .

σ 2
pk


 ,

(7)

where ṕ is a priori values of the kinematic parameters
estimated from their design specification or some other
measurements, Ek,k is a k × k unit matrix and σpi

is the
a priori standard deviation of the kinematic parameter pi

which approximates its tolerances. Identified values of pi

are bound around ṕ + o
(
σpi

)
. A reasonable σpi

provides the
robustness for the least squares method, and thus kinematic
parameters are identified without divergence.

3. Calibration simulation

We identify kinematic parameters through the measurement of
balls whose radii are calibrated. In this section, we compare the
results of four simulations using the same measurement data.

Table 1. Conditions of the calibration simulation.

Number of artefacts (balls) 27
Number of measurement point on an artefact 7
Size of artefact (ball) 5 mm (radius)
Error of artefact size 1 µm
Repeatability of linear actuator 1 µm
Repeatability of positioning tool 1 µm

Table 2. Kinematic parameters: design values (upper) and true
values (lower) for simulation.

Base plate (mm)
xb1 99.620 yb1 −8.716 zb1 0.000

99.700 −8.633 0.079
xb2 99.620 yb2 8.716 zb2 0.000

99.604 8.619 −0.078
xb3 −42.262 yb3 90.631 zb3 0.000

−42.154 90.721 −0.041
xb4 −57.358 yb4 81.915 zb4 0.000

−57.499 81.730 0.053
xb5 −57.358 yb5 −81.915 zb5 0.000

−57.449 −81.824 −0.045
xb6 −42.262 yb6 −90.631 zb6 0.000

−42.202 −90.613 0.033

Linear actuator (mm)
l1 235.000 l2 235.000 l3 235.000

234.934 235.046 235.124
l4 235.000 l5 235.000 l6 235.000

235.003 235.069 234.931

End plate (mm)
xe1 28.679 ye1 −40.958 ze1 0.000

28.695 −41.025 0.054
xe2 28.679 ye2 40.958 ze2 0.000

28.766 41.007 0.036
xe3 21.131 ye3 45.315 ze3 0.000

21.056 45.307 −0.033
xe4 −49.810 ye4 4.358 ze4 0.000

−49.854 4.441 −0.089
xe5 −49.810 ye5 −4.358 ze5 0.000

−49.817 −4.418 0.099
xe6 −21.131 ye6 −45.135 ze6 0.000

21.155 −45.311 −0.067

Tool (mm)
xeT 0.000 yeT 0.000 zeT 60.000

0.099 0.053 60.411

For calibration simulation, we used 27 balls, with 7 calibration
points on a ball, for a total of 189 measurement points.
The calibration points are chosen at random on the lower
hemisphere of each ball. The poses of the tool are also set
at random. Then the measurement simulation data qij are
calculated as the inverse kinematic solutions with the given
calibration points, poses and the true kinematic parameter
values. Other conditions of the simulation appear in table 1.
Design values and true values of kinematic parameters appear
in table 2. Here we assumed that the a priori deviation σp is
0.1 mm. The overview of the calibration system is shown in
figure 2.

Prior to the calibration, we estimated the positioning
accuracy of the Stewart Platform from the law of error
propagation with the design values of kinematic parameters
and a priori covariance matrix

�p = σ 2
pE, (8)
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Figure 2. Geometric model of the calibration system: Stewart
Platform (calibration object) and arrangement of calibration balls
(artefacts for calibration).
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calibration. Positioning accuracy is estimated from the law of error
propagation using a priori parameter variance σ 2

p from the design
values.

where we assume that there is no correlation between the
parameters [12]. Figure 3 shows the standard deviation of
positioning accuracy on the horizontal plane Z = 400 mm.
Positioning accuracy before calibration approximates 0.1 mm.

3.1. Calibration without a priori knowledge

First, we estimate the kinematic parameters without a priori
knowledge. We made two simulations with different
observation equations to observe the effect of changing the
observation equation in the calibration.

3.1.1. Simulation I: using the calibrated radii of balls.
Simulation I is the parameter identification using the
observation equation

cij = ri − |f(qij , p̂)|, (9)

r
i

Tool

Ci

Pij = f(qij, p)

x

y

O

Aij (xci,yci,zci,θij,φij) AijPij= (ri 0 0) T

Coordinate
Transformation

Tool

Figure 4. Coordinate transformation using attached extra
parameters. The measuring position is transformed to the
coordinates (ri , 0, 0).

where ri is the calibrated radius of the ith ball and p̂ is the
vector of parameter identification objects. Equation (9) means
that the distance between the centre of the ith ball and the
measurement point on it should be equal to the calibrated
radius of it. In this calibration, the parameter identification
objects are the 33 kinematic parameters shown in table 2
and 81 coordinates of the centres of the balls. Initial values
of kinematic parameters are substituted for design values in
table 2. Initial coordinates of each ball centre are approximated
on the basis of the values derived from the measurement data
set {q} with the initial kinematic parameters.

Through simulation I, identified values of kinematic
parameters diverge from their true values. The residual norms
of the observation equation vector |O| transits are shown in
figure 5. We see from figure 5 that the observation equation
written in equation (9) results in a bad calibration condition.

3.1.2. Simulation II: using the transformed coordinates.
Next, we change the observation equation by attaching extra
parameters to improve the mathematical condition of the least
squares calculation. When we measured the j th position on
the ith ball, two extra parameters, θij , φij ,were attached to the
parameter identification objects. Then, using five parameters,
xci, yci, zci and attached θij , φij , the measurement ball and the
measured position are transformed as shown in figure 4 [13].
In the new coordinate system, the centre of the ith ball is at the
origin of the system and the j th measured position is on the
x-axis.

The measured position after transformation should have
coordinates (ri, 0, 0), so we can use the observation equation

cij =

ri

0
0


 − f(qij , p̂), (10)

where ri is the calibrated radius of the ith ball and p̂ is the
vector of parameter identification objects. In this calibration,
the parameter identification objects are the 33 kinematic
parameters shown in table 2, 81 coordinates of the centres
of the balls and 378 coordinate transformation parameters
at each measuring position. Initial values of the kinematic
parameters and the coordinates of each ball centre are the
same as in simulation I. Those of the coordinate transformation
parameters are calculated from the coordinates of the initial
centre of each ball and those of the measuring position
calculated from the initial kinematic parameters.

As in simulation I, the identified values of kinematic
parameters in simulation II diverge from their true values.
The residual norms of the observation equation vector |O|
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transits are shown in figure 5. We see from figure 5 that it is
not enough to change the observation equation to improve the
mathematical condition of the simulation.

3.2. Calibration with a priori knowledge

Next, we estimated the kinematic parameters by attaching
a priori knowledge to simulations I and II. Through the
simulations, we see the effect of a priori knowledge on the
calibration. At the same time, we see the effect of changing
the observation equation again.

3.2.1. Simulation III: using the calibrated radii of balls. In
simulation III, we attach a priori knowledge to simulation I.
A priori values and standard deviations of kinematic
parameters are given in table 2. In this case, the a
priori standard deviation of each kinematic parameter is
approximated to be at most 0.1 mm. Those of the coordinates
of each ball centre are given from the initial centre of the
ball and the prior error estimation shown in figure 3. In this
case, the a priori standard deviation of the initial centre is
approximated to be at most 0.1 mm.

Through simulation III, all kinematic parameters and each
ball centre are identified without divergence. The residual
norms of the observation equation vector |O| transits are
shown in figure 8. We see from figure 8 that a priori knowledge
gives robustness to the calibration.

Identified values and standard deviations appear in table 3.
The overview of the identified calibration system is shown in
figure 6. Positioning accuracy after simulation III is estimated
from the law of error propagation with the identified values
of kinematic parameters and covariance matrix. Figure 7
shows the standard deviation of positioning accuracy on the
horizontal plane Z = 400 mm. Positioning accuracy improved
from 0.1 mm to 80 µm through simulation III.

3.2.2. Simulation IV: using the transformed coordinates. In
simulation IV, we attach a priori knowledge to simulation II.
A priori values and standard deviations of the kinematic
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Figure 6. Identified form of the parallel mechanism (simulation III).

(This figure is in colour only in the electronic version)

Table 3. Results of simulation III: identified values (upper) and
standard deviations (lower).

Base plate (mm)
xb1 0 (nominal) yb1 0 (nominal) zb1 0 (nominal)

0 (nominal) 0 (nominal) 0 (nominal)
xb2 0 (nominal) yb2 17.362 zb2 0 (nominal)

0 (nominal) 0.087 0 (nominal)
xb3 −141.7968 yb3 99.3614 zb3 0 (nominal)

0.078 0.086 0 (nominal)
xb4 −156.955 yb4 90.609 zb4 −0.078

0.087 0.083 0.088
xb5 −156.967 yb5 −73.178 zb5 −0.045

0.087 0.083 0.088
xb6 −141.884 yb6 −81.982 zb6 0.080

0.079 0.082 0.087

Linear actuator (mm)
l1 235.041 l2 234.972 l3 235.101

0.076 0.071 0.074
l4 234.972 l5 234.960 l6 235.069

0.082 0.083 0.082

End plate (mm)
xe1 0 (nominal) ye1 0 (nominal) ze1 0 (nominal)

0 (nominal) 0 (nominal) 0 (nominal)
xe2 0 (nominal) ye2 81.927 ze2 0 (nominal)

0 (nominal) 0.085 0 (nominal)
xe3 −7.654 ye3 86.332 ze3 0 (nominal)

0.074 0.083 0 (nominal)
xe4 −78.490 ye4 45.444 ze4 0.044

0.077 0.081 0.088
xe5 −78.487 ye5 36.474 ze5 0.132

0.080 0.079 0.087
xe6 −7.532 ye6 −4.331 ze6 −0.032

0.073 0.078 0.086

Tool (mm)
xeT −28.853 yeT 41.004 zeT 59.913

0.079 0.074 0.075

parameters and the coordinates of each ball centre are the
same as those used in simulation III. The initial values of
the coordinate transformation are the same as those used in
simulation II. The a priori standard deviation is given from
the radius of each ball and the a priori error estimation. In
this case, the radius of the ball is 5 mm and the positioning
accuracy before calibration is 0.1 mm, and thus it approximates
0.01 radian.
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Table 4. Results of simulation IV: identified values (upper) and
standard deviations (lower).

Base plate (mm)
xb1 0 (nominal) yb1 0 (nominal) zb1 0 (nominal)

0 (nominal) 0 (nominal) 0 (nominal)
xb2 0 (nominal) yb2 17.405 zb2 0 (nominal)

0 (nominal) 0.072 0 (nominal)
xb3 −141.826 yb3 99.310 zb3 0 (nominal)

0.064 0.074 0 (nominal)
xb4 −156.902 yb4 90.592 zb4 −0.107

0.071 0.075 0.085
xb5 −156.904 yb5 −73.167 zb5 −0.058

0.072 0.074 0.084
xb6 −141.863 yb6 −81.929 zb6 −0.031

0.065 0.070 0.082

Linear actuator (mm)
l1 235.033 l2 235.023 l3 235.037

0.068 0.063 0.066
l4 234.983 l5 234.997 l6 235.104

0.079 0.078 0.078

End plate (mm)
xe1 0 (nominal) ye1 0 (nominal) ze1 0 (nominal)

0 (nominal) 0 (nominal) 0 (nominal)
xe2 0 (nominal) ye2 81.927 ze2 0 (nominal)

0 (nominal) 0.075 0 (nominal)
xe3 −7.617 ye3 86.288 ze3 0 (nominal)

0.065 0.076 0 (nominal)
xe4 −78.521 ye4 45.373 ze4 0.042

0.071 0.074 0.084
xe5 −78.522 ye5 36.520 ze5 0.106

0.070 0.074 0.084
xe6 −7.527 ye6 −4.357 ze6 0.043

0.065 0.072 0.081

Tool (mm)
xeT −28.887 yeT 41.034 zeT 59.994

0.076 0.070 0.069

In simulation IV, all kinematic parameters, each ball
centre, and coordinate transformation parameters are identified
without divergence. The residual norms of the observation
equation vector |O| transits are shown in figure 8.

Identified values and standard deviations appear in table 4.
The overview of the identified calibration system is shown in
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Figure 8. Residual norm at each step in simulations III and IV.
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figure 9. Positioning accuracy after simulation IV is estimated
as well as it was in simulation III. Figure 10 shows the
standard deviation of positioning accuracy on the horizontal
plane Z = 400 mm. Positioning accuracy improved from
0.1 mm to 10 µm through simulation IV.
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4. Discussion

In this section, we discuss

(i) the effect of a priori knowledge and
(ii) the effect of improving the observation equation,

by comparing the results of the simulations.

4.1. Effect of a priori knowledge

Comparing simulations I and II with simulations III and IV,
we see that the calibration calculation becomes robust with
a priori knowledge. That is because a priori knowledge
eliminates the correlation between the parameters and anchors
the identified values.

When the correlations are strong, the generalized inverse
matrix written in equation (5) becomes singular. Thus,
the updating vector becomes very large and each kinematic
parameter value diverges. On the other hand, using a priori
knowledge weakens these correlations because the submatrix
of the Jacobian matrix written in equation (7) is the unit
matrix. Use of the Jacobian matrix including the unit
matrix means that some kinematic parameters are directly
measured independently of the others. This independence
of measurement eliminates correlation and improves the
singularity of the Jacobian matrix.

After these correlations are eliminated, the update vector
may be very large when the pose of the tool is close to its
singular position. In such a case, a priori knowledge operates
as an anchor. This anchoring strength depends on the initial
estimation prior to the calibration. Note that when the prior
estimation is irrelevant, it obstructs the appropriate parameter
identification. When the anticipated standard deviation is very
small and the initial value of the parameter is far from its
true value, its identified value cannot reach its true value
because of too strong anchoring. For example, when the
standard deviation of the parameter is pre-estimated at zero, the
identified value is not updated from its initial value. Therefore,
weak anchoring strength must be assumed when using
a priori knowledge for calibration. From the viewpoint of
the weakness of the anchoring strength, the approximation
given from the law of error propagation with initial tolerances
is appropriate. For this reason, it is reasonable to use a priori
knowledge estimated without extra measurement.

4.2. Effect of the improvement of the observation equation

Next, we discuss the difference between the results of the
simulations using different observation equations.

Comparing simulation III with simulation IV, positioning
accuracy after simulation IV is higher than that after simulation
III, which means that the calibration in simulation IV is more
effective than that in simulation III (see figures 7 and 10). This
difference comes from the difference of observation equations
used in each calibration. Using the observation equation given
by equation (9), information about the distance between the
centre of the ball and the position of the tool is available.
On the other hand, using the observation equation given by
equation (10), information about the relative coordinates
between them is available. This difference influences the

Jacobian matrix. Each element of the Jacobian matrix is
the partial differential coefficient of the observation equation.
Here we assume that a parameter influences the positioning
error but not the value obtained in equation (9). As a result, this
parameter cannot be identified from the observation equation
given by equation (9). Having done the simulations, we
are now certain that the positioning error includes three-
dimensional data. In turn, we are certain that at least
one element of the observation equation vector written in
equation (10) is influenced by the error due to this parameter.
This means that using the observation equation (10), we can
observe the influence due to any kinematic parameter error
when the parameters considered are linearly independent of
each other. This fact suggests the superiority of using the
transformed coordinates for calibration.

Comparing the condition numbers of the covariance
matrix given from equations (9) and (10), we determine that
the former is 1.3 × 108 and the latter is 6.9 × 108. This
difference means that the observation equation (10) provides
better conditions for the calibration [14]. As shown in tables
3 and 4, standard deviations after calibration in simulation
IV become smaller than those in simulation III. This fact
also implies the effectiveness of the calibration using the
transformed coordinates.

5. Conclusion

We described here a method for artefact calibration with
a priori knowledge. Features of this method include:

• getting a priori knowledge without any extra
measurements,

• using a priori knowledge to eliminate the correlations
between kinematic parameters,

• using a priori knowledge to anchor the identified values
of kinematic parameters and

• using transformed coordinates for the observation
equation.

In the simulations, we estimate a priori knowledge from
the initial values and tolerances of kinematic parameters.
Using the law of error propagation, we also estimate other
a priori knowledge of extra parameters attached to the
calibration object without any extra measurement.

Through the simulations, we confirmed that a priori
knowledge given by our method provides the robustness for
the calibration. This robustness comes from the unit matrix
included in the Jacobian matrix and the restriction of the
updating vector in the Newton–Raphson method.

We note that improper a priori knowledge obstructs
the appropriate parameter identification. We also note that
adequate weak anchoring strength, in other words, reasonable
largeness of a priori standard deviations of kinematic
parameters, must be assumed when using a priori knowledge
for calibration. We conclude that our method gives appropriate
a priori knowledge.

Comparing the simulation results, we confirmed the
superiority of using the transformed coordinates for the
observation equations. This observation equation gives a
better condition and simulation results than does using the
radii of measured balls. Because the error of kinematic
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parameters causes the three-dimensional positioning error of
the end-effector, the observation equation of the transformed
coordinates cannot fail to detect it.

Through the calibration made on the assumption that
the repeatability of positioning is 1 µm and the accuracy of the
calibration artefact is 1 µm, the positioning accuracy of the
parallel mechanism is improved from 0.1 mm to 10 µm. This
value is still lower than its repeatability. More improvement
of the positioning accuracy can be expected by changing the
arrangement of measuring points in the workspace [4].
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