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Abstract. In several application domains, such as sign language, medicine,
and sensor networks, events are not necessarily instantaneous but they
can have a time duration. Sequences of interval-based events may con-
tain useful domain knowledge; thus, searching, indexing, and mining such
sequences is crucial. We introduce two distance measures for comparing
sequences of interval-based events which can be also used for several data
mining tasks such as classification and clustering. The first measure maps
each sequence to a set of vectors that hold information about all con-
current events. These sets are then compared using an existing dynamic
programming method. The second method attempts to find correspon-
dence between intervals by mapping the two sequences into a bipartite
graph. Similarity is inferred by employing the Hungarian algorithm. The
performance of the proposed measures is tested on data from three do-
mains: sign language, medicine, and sensor networks. In addition, we
present a linear-time lower-bound for the second measure. Experiments
show that our measures are robust in terms of retrieval accuracy even
for high levels of artificially introduced noise.

Keywords: Event-interval sequence, distance measure, Dynamic Time
Warping, Hungarian algorithm

1 Introduction

Sequences of temporal intervals exist in many application domains, such as hu-
man motion databases, sign language, human activity monitoring, and medicine.
Their main advantage over traditional sequences, which model series of instan-
taneous events, is that they incorporate the notion of duration in their event
representation scheme. Due to this, they are used in a broad range of fields such
as geo-informatics [30], cognitive science [4], linguistic analysis [5], music [25],
and medicine [13]. Essentially, a sequence of temporal intervals corresponds to
a collection of labelled events accompanied by their start and end time values.
We will call such sequence, event-interval sequence, and each labelled interval,
event-interval. An example of such sequence—containing five event-intervals—is
shown in Figure 1.

So far, most studies on event-interval sequences have been focusing on the
aspect of knowledge discovery, such as mining patterns and association rules that
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Fig. 1: An example of a sequence of interval-based events. This repre-
sentation corresponds to the following sequence of event-intervals: S =
{(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.

might be of interest to domain experts [2, 11]. Surprisingly, very limited attention
has been given on assessing the similarity of event-interval sequences [14]. Robust
similarity measures for comparing such sequences would enable the utilization
of existing clustering and classification methods, introduce new index structures
for similarity search in event-interval sequence repositories, and would facilitate
the implementation of recommendation systems and assistive applications.

Fig. 2: Two different sequences of interval-based events where the mapping to a
sequence of instantaneous events produces the same representation for both.

Existing similarity measures on symbolic sequences or time series are not di-
rectly applicable to event-interval sequences [14]. One could, for example, convert
a sequence of event-intervals to a sequence of instantaneous events by only con-
sidering the start and end points of each event interval, and associating each of
the two points with the same event label. This would result in a simplification of
the representation of these sequences as they would be mapped to traditional se-
quences of instantaneous events. Thus, the solution to the problem would reduce
to applying an existing distance/similarity measure for sequence matching, such
as edit distance [17]. Nonetheless, this solution suffers from several shortcomings.
Firstly, the size of the sequence alphabet (i.e., set of all possible event labels)
would double since each event-interval label would be mapped to two instanta-
neous event labels. Secondly, crucial information about the pairwise temporal
relations between the event-intervals in the sequence will be lost. Consider the
example shown in Figure 2, where each sequences consists of two event-intervals
with the same label. Obviously, the mapping for both sequences is the same,
i.e., {Astart, Astart, Aend, Aend}. The relation between the two event intervals,
however, is different. Hence, we can deduce that in order to provide a robust sim-
ilarity measure for such sequences, their representation should include additional
information about the relations between the event intervals.
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Our contributions. In this paper, we formulate the problem of comparing
sequences of event-intervals and show that solving the problem by directly map-
ping it to string matching fails to capture any temporal dependencies between
the interval-based events. In addition, we propose two distance measures to solve
this problem: the first one maps the event-interval sequence to a sequence of vec-
tors that can also be seen as a multi-dimensional time series, while the second
one takes into account the temporal relations that may occur between the events
and employs bipartite maximal matching to infer a similarity score. Moreover,
we propose a lower bound for the second method that can achieve significant
speed-ups during similarity search. Finally, we present an extensive experimen-
tal evaluation on real datasets from three different domains. The methods are
benchmarked with respect to their robustness to noise, nearest neighbor classi-
fication accuracy, and scalability. In addition, we study the pruning power and
tightness of the proposed lower bound.

2 Event-Interval Sequences

Sequences of interval-based events can be represented in many ways. In this
paper, we use the e-sequence [27, 28] representation, which explicitly considers
the start and end time stamps of each event.

Definition 1 (E-Sequence) Given an alphabet σ of event labels, an event-
interval sequence or e-sequence S={S1, . . . , Sn} is an ordered set of events oc-
curring at time intervals. Each Si = (Ei, t

i
start, t

i
end) is called event-interval,

where Ei ∈ σ, and tistart,t
i
end denote the start and end time of Ei, respectively.

Note that an event-interval corresponds to an event that occurs over a time
interval. The temporal order of the event-intervals in an e-sequence is ascending
based on their start time and in the case of ties it is descending based on their
end time. If ties still exist, alphabetical ordering is applied based on labels. An
example of an e-sequence is shown in Figure 1, and it corresponds to:

S = {(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.

According to our formulation the same event label can occur many times
within an e-sequence. Effectively, this allows two event-intervals of the same
label to overlap, which is a perfectly acceptable scenario, for example, nested
for-loops in programming languages.

For simplicity, in this paper, we are only interested in the types of temporal
relations between event-intervals in an e-sequence, and not in the actual duration
of each event-interval. Let I = {r1, . . . , r|I|} be the set of all legal temporal
relations that can exist between any pair of event-intervals. Based on Allen’s
model for interval temporal logic [3], we define I by considering seven types of
relations between two event-intervals: meet, match, overlap, contain, left-contain,
right-contain, follow. These relations are shown in Figure 3 and are described in
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Fig. 3: The seven temporal relations between two event-intervals that are con-
sidered in this paper.

detail by Papapetrou et al. [28]. Hence, I = {meet,match, overlap, contain, left-
contain, right-contain, follow}.

Using the above definitions, the problem studied in this paper can be formu-
lated as follows:

Problem 1. (E-sequence Distance) Given two e-sequences S and T , define a
distance measure D, such that ∀S, T it holds: D(S, T ) ≥ 0, D(S,S) = 0, and
D(S, T ) = D(T ,S) .

The degree to which S and T differ should be reflected in the value of D(S, T )
and should be in accordance with the knowledge obtained from domain experts.

3 Distance Measures

In this section we define two distance measures for comparing e-sequences and
propose a lower bound for the second measure.

3.1 The Vector-based DTW Distance

The first method employs a vector-based representation of e-sequences. For each
e-sequence, a set of vectors is defined, where each vector indicates which and how
many event-interval labels are active at specific time points in the e-sequence.
The selected time points are all the instances in which an event-interval begins
or ends.

Definition 2 (Event Vector) Given an e-sequence S defined over an alphabet
σ, an event vector V t = {V t1 , . . . , V t|σ|} is a set of integer values, where each V ti
records the number of occurrences of event Ei at time stamp t in S.

Hence, an e-sequence S can be mapped to a set of event vectors VS =
{V t1 , . . . , V tm}. The set of time stamps {t1, . . . , tm} includes all time points in S
where the “status” of at least one event-interval changes, i.e., an event-interval
starts or ends.
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Example. Consider the e-sequence S shown in Figure 1. Given that |σ| = 4, the
size of each event vector for S is also 4. The set of event vectors of S is defined as
follows: VS = {(1, 0, 0, 0), (1, 1, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 0),
(1, 0, 1, 1), (0, 0, 1, 1), (0, 0, 0, 0)}.
Complexity. Given two e-sequences S and T , their corresponding sets of event
vectors VS and VT can be computed in linear time. These sets of vectors can
also be seen as |σ|-dimensional time series; thus, their distance can be computed
using Dynamic Time Warping (DTW) [15]. The time complexity of this DTW
computation is O(|VS ||VT ||σ|). Significant speedups in similarity search under
DTW can be achieved using the LB Keogh lower bound [12] or its extension
for multidimensional time series [32].

Despite the simplicity of this method, it only takes into account the temporal
ordering of the event-intervals but does not explicitly consider any temporal re-
lations. This may end up matching two different e-sequences exactly by mapping
them to the same set of event vectors.

3.2 Artemis: A Bipartite-based Matching Distance

The second method, called Artemis—shorthand for Assessing coRrespondence
of Temporal Events Measure for Interval Sequences—is based on determining
correspondence between pairs of event-intervals to infer the overall similarity of
e-sequences. Given two e-sequences, correspondence is determined by the frac-
tion of common relations between event-intervals in the e-sequences. The overall
similarity score is derived from the sum of pairwise scores using the Hungarian
algorithm (also known as Kuhn-Munkres algorithm) [24]. Artemis consists of
two main steps: (a) the mapping step and (b) the matching step.

The mapping step. The first step of Artemis is to map each e-sequence S to
an ordered set of temporal relations between event-intervals. Given the set of
legal temporal relations between event-intervals I and two event-intervals Si and
Sj , r(Si, Sj) is the event-interval relation between Si and Sj , with r(Si, Sj) ∈ I.

More specifically, for each event-interval Si ∈ S we record the set of relations
of Si with Sj ∈ S,∀j 6= i in the same e-sequence. Three sets of relations are
computed:

– rleft(Si) = {r(Sj , Si)|0 ≤ j < i}: which contains the temporal relations of
Si with all event-intervals with located on the left side of Si in S.

– rright(Si) = {r(Si, Sj)|i < j ≤ |S|}: which contains the temporal relations
of Si with all event-intervals located on the right side of Si in S, and

– r∅(Si) = {r(∅, Si) = follow}: which is a set of follow relations between Si
and ∅—an extra symbol such that ∅ /∈ σ.

Definition 3 (Event-interval Relation Set) Given an e-sequence S, for each
event-interval Si ∈ S, the event-interval relation set of Si is defined as follows:

r(Si) = rleft(Si) ∪ rright(Si) ∪ r∅(Si). (1)
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Note that ∅ is introduced so that event labels are also taken into account: e-
sequences that differ in event-interval relations but share similar event labels
will be assigned with smaller distance values than e-sequences that differ in
both event labels and event-interval relations. Another important note is that
the order in which the relations appear in r(Si) matters and should be followed
strictly as given in Eq. 1.

The matching step. Given two e-sequences S and T , the matching step of
Artemis computes a distance value for each pair of event-intervals Si ∈ S and
Tj ∈ T as follows:

dm(Si, Tj) =
max{|S|, |T |} − |r(Si) ∩ r(Tj)|

max{|S|, |T |}
, 0 ≤ dm(Si, Tj) ≤ 1. (2)

Let DS,T be an |S| × |T | matrix, with D(i, j) = dm(Si, Tj), Si ∈ S and
Tj ∈ T . We call DS,T the event-interval distance matrix of S and T . Problem 1
reduces to the following optimization problem:

Problem 2. (The Assignment Problem) Given S, T , and DS,T , assign each
event-interval in S to exactly one event-interval in T so that the total assignment
cost is minimized.

Problem 2 can be solved by the Hungarian algorithm. Let the output of the
algorithm be the following setH(S, T ) = {h(S1), . . . , h(S|S|} with an assignment
cost C(S, T ). Each h(Si) ∈ H(S, T ) denotes the event-interval in T that Si ∈
S is matched to by the Hungarian algorithm. The assignment cost C(S, T )
corresponds to the distance—called Artemis Distance—between S and T .

Definition 4 (Artemis Distance) Given S, T , DS,T , and H(S, T ), the Artemis
distance of S and T is defined as follows:

Artemis(S, T ) =

max{|S|,|T |}∑
i=1

D(Si, h(Si)), Si ∈ S, h(Si) ∈ H(S, T ). (3)

To handle the case of arrangements of different size, “dummy” event-intervals
are added with distance 1 from all other event-intervals.

Fig. 4: Two e-sequences S and T used as an example for Artemis.

Example. Figure 4 shows two e-sequences S and T . The event-interval rela-
tion sets will be first computed by the mapping step. For S, these sets are:
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{follow(∅, A), overlap(A,B), follow(A,C)} forA, {follow(∅, B), overlap(A,B),
overlap(B,C)} for B, and {follow(∅, C), follow(A,C), overlap(B,C)} for C.
For T , these sets are {follow(∅, A), follow(A,B), follow(A,D)} for A, {follow
(∅, B), follow(A,B), overlap(B,D)} for B, and {follow(∅, D), follow(A,D),
overlap(B,D)} for D. At the matching step the Hungarian algorithm would give
H(S, T ) = {A,B,D}. Finally, Artemis(S, T ) = (2/3 + 2/3 + 1) = 7/3.

Complexity. Let m = max(|S|, |T |). Then, at the mapping step, O(m2) rela-
tions are enumerated, while the complexity of computing D(S, T ) using hash-
tables is O(m3). The cost of applying the cubic Hungarian algorithm to the two
event-interval relation sets results to a total time complexity of O(m3). A lower
bound for speeding up the computation of Artemis is described next.

3.3 Lower Bounding Artemis

The proposed lower bound can be computed in linear time and is based on the
comparison of event label counts. By knowing the number of labels in which two
e-sequences differ, we can determine a lower bound for their Artemis distance.

Given an e-sequences S, we define an |σ|-dimensional vector vS , that stores,
for each event label in σ, the count of event-intervals in S that share that label.

Theorem 1 Given S and T , the lower bound of Artemis(S, T ) is defined as

ArtemisLB(S, T ) =
k

2
+

(
m− k

2

)(
k

2m

)
= k − k2

4m
, (4)

where k = ||vS − vT ||1 and m = max(|S|, |T |).

Proof. Knowing that ||vP − vQ||1 = k we can be sure that the distance is at
least k/2; those k event-intervals are matched with each other giving a score of
1 for each of the k/2 pairs. If k/2 is equal to the length of the e-sequences, then
it is also their distance. However, if the differences refer to only a subset of all
event-intervals, than these differences are reflected in the matching scores of the
rest of the event-intervals. So, given that m = max(|S|, |T |) and m > k

2 , the rest
of the m − k/2 event-intervals would have at least k/2 non-common relations.
Thus, yielding an additional distance of (m− k/2) · (k/2m).

The proposed lower bound focuses on label counts and not on relations of
event-intervals. When the differences of two e-sequences are restricted to event-
interval labels, the lower bound is equal to the distance obtained by Artemis. On
the other hand, when the e-sequences share the same event labels and differ only
in the type of event-interval relations, then the lower bound yields zero score.
The tightness and pruning power of the lower bound is studied on three datasets
in Section 4.

4 Experiments

The performance of the proposed methods has been benchmarked on three real
datasets. We studied their robustness to noise, classification accuracy, and scal-
ability.
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4.1 Experimental Setup

The proposed methods have been benchmarked on three real datasets (Table 1):

– Hepatitis[29] The dataset contains information about 498 patients who have
either Hepatitis B or Hepatitis C. The intervals represent the results of 25
regular tests.

– ASL[28] The dataset contains 873 transcriptions from videos of American
Sign Language expressions provided by Boston University. Each e-sequence
in the dataset is one utterance expressed using American Sign Language.

– Pioneer [23] This dataset was constructed from the Pioneer-1 dataset avail-
able in the UCI repository1. It contains time series sensor readings of the
Pioneer-1 mobile robot. The data is segmented into event-intervals in which
the robot takes action for some period of time.

The proposed methods were evaluated with respect to robustness against two
types of artificial noise, k-NN classification accuracy, and scalability. In addition,
the efficiency of the lower bound was tested by computing its tightness and its
pruning power against 1-NN queries.

Dataset # of # of e-sequence size # of # of
e-sequences intervals min. max. average labels classes

ASL 873 14802 3 40 17 216 9
Hepatitis 498 53921 15 592 108 63 2
Pioneer 160 8949 36 89 56 92 3

Table 1: Dataset Statistics.

Robustness. The robustness of the proposed methods was tested on two types
of artificial noise: shifts and swaps. In the first case, each interval within an e-
sequence is shifted, with a certain shift probability value p, by an offset back or
forth in time. Given a distortion level d as a percentage of the length of the whole
sequence, a random value under the uniform distribution is chosen in that integer
interval to determine the offset. An event-interval has equal probability to be
shifted either back or forth in time, while interval durations remain unaffected.
This type of artificial noise attempts to simulate noisy sources or recording
devices. Real-world cases for this could include humans who learn sign language
or who rehabilitate from brain injuries. Both p and d were set between 0.2 and
1, with step 0.2.

One drawback of employing such artificial noise is that shifting intervals could
result to semantic invalidity, e.g., “robot walks forward” overlaps with “robot
walks backwards”. To avoid such cases, we further experimented with artificial
noise which is based on swaps of event-interval labels, while the durations and

1 http://archive.ics.uci.edu/ml/
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relations of the event-intervals remain unaffected. Given an event-interval, the
swap probability parameter determines if its label is swapped with the label of
another event-interval which is chosen uniformly at random from the whole e-
sequence. The swap probability parameter values ranged between 0.2 and 1 with
step 0.2. Note that, noise is added off-line and that both methods were tested
on exactly the same distorted sequences; to rule out score differences caused by
the randomness factor.

Using the above two techniques, noise is inserted into e-sequences which
then serve as the queries for 1-NN search. Given a database of e-sequences, a
copy of an e-sequence is distorted, based on the parameter values, and then its
nearest neighbor is found by scanning the database. This is performed for each
e-sequence in the database. Ideally, we would like each noisy e-sequence (query)
to be matched to the e-sequence from which it originated. We compared the
DTW vector-based measure and Artemis in terms of: retrieval accuracy (the
fraction of noisy queries for which the originating e-sequence is retrieved) and
rank of nearest neighbor (for each query, the number of database e-sequences
with distance less than or equal to that of the originating counterpart).

Classification. For the k-NN classification experiments, we studied the effi-
ciency of the proposed methods under 1-NN and 3-NN classifiers. Due to the
fact that the e-sequences in the ASL dataset can belong to up to 5 classes (wh-
question, etc) simultaneously, and some elements do not have any label (simple
affirmative phrases), we had to modify the algorithm. We considered two cases,
one that classifies the whole dataset and another that focuses on the classifica-
tion of elements that have non-empty label sets. For both, the classifier returns
a score in [0, 1] denoting the average ratio of common class-labels with its k
nearest neighbors. For example, a phrase with labels {a} and neighbors with
label sets {a}, {a, b}, and ∅ respectively, would yield (1 + 0.5 + 0)/3. For the
ASL dataset, the result is the average sum.

We designed an additional experiment specifically for the ASL dataset. There
exist in total 288 interval sequences in the dataset which portray exactly the same
phrase in English with one or more other sequences. We studied what ratio of
the 288 equivalent sequences was retrieved by examining the k nearest neighbors
of every sample, for all possible values of k. Two values were monitored: the first
corresponds to the ratio of the 288 sequences for which an identical phrase can
be detected within their k nearest neighbors; the second is the ratio of the total
sum of identical phrases detected within the k-nearest neighbors over the total
number of pairs of identical labels. The two values would be the same if any
phrase in English were to be represented only by at most two e-sequences in
the dataset. This experiment was designed to investigate the suitability of the
methods in the field of sign language and relevant application domains.

Scalability. In the attempt to evaluate the scalability of the proposed algo-
rithms, we embedded time-monitoring functions in our implementations. For
each e-sequence, we counted the time needed to map the e-sequence to the ap-
propriate representation (set of event vectors for DTW and event-interval rela-
tion set for Artemis) and then to compare it against the whole database. The
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dataset, serving as the database, had already been transformed to the appropri-
ate form. For the case of Artemis, we did not implement the use of hash-tables,
thus the complexity is O(n4) w.r.t. the size of the e-sequences. Our experiments
were implemented in Java and were performed on a PC running Ubuntu Linux,
equipped with Intel Core 2 Duo 2GHz CPU and 4GB RAM.

Lower bounding. To assess the quality of the lower bound, we computed its
pruning power for 1-NN queries in the database and its tightness. The prun-
ing power is defined as the ratio of the number of pruned e-sequences, using
ArtemisLB , over the total number of comparisons that would have been re-
quired if the database were to be scanned sequentially. The tightness is defined
as the average ratio of the lower bound distance over the distance given by
Artemis.

4.2 Results

In Table 2 we see the results of the k-NN classification experiment. For the
Hepatitis and ASL, the DTW vector-based approach performs marginally better,
while for Pioneer Artemis is superior.

Dataset Artemis 1-NN Artemis 3-NN DTW 1-NN DTW 3-NN

HepData 0.7209 0.7811 0.7403 0.8072
Pioneer 0.9750 0.9750 0.9375 0.9375

ASL 0.4307 0.4013 0.4358 0.4188
Table 2: k-NN classification results, for k = 1, 3.

Testing the two measures for robustness against noise, Artemis was a clear
winner for both types of noise insertion. The DTW vector-based approach dis-
played a significant decline in performance with the increase in the value of the
probability and distortion level parameters. Artemis was able to maintain a very
high rate of finding the noisy queries’ originating counterparts. For almost all
the datasets and experiments its success rate was over 98%. These observations
are shown in Figure 5, for the case of shifts, and in Figure 6, for the case of
swaps. Artemis displayed a decline in performance only for Pioneer and the
case of swaps. Note that in Figure 5 we do not show the performance of Artemis
for Pioneer with respect to retrieval accuracy vs. the noise parameters since it
always gave a retrieval accuracy of 100%.

Figure 7 depicts the results of the experiment conducted on ASL, in which
the k nearest neighbors of each e-sequence are scanned to determine if they
correspond to the same phrase in English. Figure 7a shows the ratio (of the e-
sequences which do have equivalents) for which at least one identical phrase can
be found within the k nearest neighbors. Figure 7b shows the ratio of the total
sum of existing identical phrases that have been found. For both cases, Artemis
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Fig. 5: Robustness experiment when noise is added with shifts.

gives a better grouping of semantically related e-sequences. Furthermore, empir-
ical results show that the groupings provided by Artemis are more meaningful
for humans. Thus, Artemis proves more suitable for applications related to sign
language.

Table 3 summarizes the assessment of ArtemisLB . The second column shows
the tightness of the lower bound while the third shows the pruning power. The
higher values are observed on ASL, contrary to Pioneer which yields the lowest
scores. The latter consists of unequally represented classes; one of the three
classes contains 102 out of 160 samples in total. Thus, its e-sequences are highly
homogeneous and thereby render the lower bound technique unable to prune
many of them.

The results of the scalability experiment can be seen in Figure 8. For Pioneer
we observe that Artemis is slower than the DTW vector-based approach, as
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(b) Hepatitis: retrieval ac-
curacy for p = 1.0
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(c) Pioneer : retrieval ac-
curacy for p = 1.0
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(d) ASL: ranks of NN for
swap probability 1.0
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(e) Hepatitis: ranks of NN
for swap probability 1.0
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(f) Pioneer : ranks of NN
for swap probability 1.0

Fig. 6: Robustness experiment when noise is added with swaps.
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Fig. 7: Identical phrase experiment: ASL.

the complexity analysis of Section 3 would suggest. The runtime of Artemis

blows up in the case of Hepatitis. For e-sequences of large size, Artemis’ O(n4)
complexity (without the use of hash-tables) significantly affects its performance.
On the other hand, we observe that for ASL Artemis is faster than DTW. The
reason for that is the large alphabet size, |σ|. A way to overcome this would be
to prune the alphabet during the comparisons and keep only the union of the
labels present in the compared e-sequences S, T . That would yield a complexity
of O(|VS ||VT | · (|VS |+ |VT |)).
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Dataset Tightness 1-NN pruning power

ASL 0.8837 0.7931
Hepatitis 0.7166 0.7012
Pioneer 0.6189 0.4855

Table 3: Tightness and pruning power of ArtemisLB for the 1-NN classification
experiment and for the three datasets.
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(b) Hepatitis
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Fig. 8: Histograms of the time (in milliseconds) required to compare each element
against the whole dataset.

4.3 Lessons Learned

There was no clear winner, between the two proposed methods, in our k-NN
classification experiments. The insight we acquired suggests that the choice
must be application dependant. The additional experiment on ASL supports
the thesis that, if semantic information resides in the relations between inter-
vals, Artemis has an advantage over the DTW approach. This is further sup-
ported by the results of the noise robustness experiments. In particular, the
DTW vector-based approach displayed a deterioration in performance in ac-
cordance with the increase of noise. Artemis proved highly robust against the
types of noise that we experimented with. The advantage of Artemis is that
a correspondence amongst event-intervals is determined based on the relations
of the event-intervals within the e-sequences; contrary to the DTW approach
which examines the e-sequences point-by-point and out of their context. The
correspondence among event-intervals allows Artemis to easily identify the orig-
inating counterpart of noisy e-sequences; e-sequences with the same count of
each event label yield overall lower distance scores than others with different
event labels and size.

The scalability experiments showed that DTW outperforms Artemis, which
suffers from a computational blow up for large e-sequences. On the other hand,
DTW becomes slower when the alphabet size is significantly larger than the
size of the e-sequences. To speed up search using Artemis, our lower bound
technique proved significantly tight; the average tightness was measured at 61.8%
for Pioneer, and up to 88% for ASL. This translates to a pruning power of 48.5%
to 79.3% over the brute force sequential scan of the database.
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5 Related Work

Existing work on interval-based sequences has so far been focusing merely on
frequent pattern and association rule mining.

Several approaches [18, 31] consider discovering frequent intervals in databases,
where intervals appear sequentially and are not labelled, while others [7] con-
sider temporally annotated sequential patterns where transitions from one event
to another have a time duration. A graph-based approach [10] represents each
temporal pattern by a graph considering only two types of relations between
events (follow and overlap). An approach for mining sequences of interval-based
events in a database is discussed in Fu et al. [11], however it is limited to certain
forms of patterns.

A generalized interval-based framework [16] improves support counting tech-
niques for mining interval-based episodes; nonetheless, no temporal relations
are considered between events. Apriori-based techniques [8, 9, 20, 6, 1] for finding
temporal patterns and association rules on interval-based event sequences have
been proposed, some [9] also applying interestingness measures to evaluate the
significance of the findings.

BFS-based and DFS-based approaches [33, 27, 26, 28] apply efficient pruning
techniques, thus reducing the inherent exponential complexity of the mining
problem, while a non-ambiguous event-interval representation is defined [34] that
considers start and end points of e-sequences and converts them to a sequential
representation. Finally, there has been some recent work on mining semi-partial
orders of time intervals [23].

Moreover, in Ale et. al [2], the lifetime of an item is defined as the time be-
tween the first and the last occurrence and the temporal support is calculated
with respect to this interval. Finally, Lu et. al [19] study inter-transaction as-
sociation rules by merging all itemsets within a sliding time window inside a
transaction.

Recent work on margin-closed patterns [22, 23], focuses on significantly reduc-
ing the number of reported patterns by favouring longer patterns and suppressing
shorter patterns with similar frequencies. The extracted set of margin-closed pat-
terns may include a significantly smaller set of patterns compared to the set of
closed patterns while retaining the most important information about the data.
A unifying view of temporal concepts and data models has been formulated [21]
to enable categorization of existing approaches for unsupervised pattern min-
ing from symbolic temporal data; Time point-based methods and interval-based
methods as well as univariate and multivariate methods are considered.

6 Summary and Conclusions

We have defined the problem of comparing sequences of interval-based events
and presented two polynomial-time algorithms. The first reduces the problem
to matching vectors, while the second, Artemis, is based on determining corre-
spondence among intervals and maps the problem to the assignment problem.
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The two measures were tested for their robustness against two types of artifi-
cial noise, their k-NN classification power, and, finally, their scalability. Artemis
demonstrates a remarkable robustness against noise, while there exist cases for
both measures in which they perform faster than the other. Additionally, we
developed a linear-time lower-bounding technique for Artemis, which we tested
in terms of tightness and pruning power.

Directions for future work include studying the applicability of the proposed
methods to other application domains and real-world scenarios. Furthermore,
we plan on investigating alternative problems to assess the similarity of event-
interval sequences, such as the Maximum Common Subsequence and the Maxi-
mum Contiguous Subsequence. Devising algorithms for these problems would al-
low the direct application of event-interval sequences to domains such as anomaly
detection, profiling of executable files, network monitoring, and many others.
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