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Abstract

Bone never forms without vascular interactions. This simple statement of fact does not adequately
reflect the physiological and pharmacological implications of the relationship. The vasculature is
the conduit for nutrient exchange between bone and the rest of the body. The vasculature provides
the sustentacular niche for development of osteoblast progenitors, and is the conduit for egress of
bone marrow cell products arising, in turn, from the osteoblast-dependent hematopoietic niche.
Importantly, the second most calcified structure in humans after the skeleton is the vasculature.
Once considered a passive process of dead and dying cells, vascular calcification has emerged as
an actively regulated form of tissue biomineralization. Skeletal morphogens and
osteochondrogenic transcription factors are elaborated by cells within the vessel wall, regulating
the deposition of vascular calcium. Osteotropic hormones including parathyroid hormone regulate
both vascular and skeletal mineralization. Cellular, endocrine, and metabolic signals flow
bidirectionally between the vasculature and bone that are necessary for both bone health and
vascular health. Dysmetabolic states including diabetes, uremia, and hyperlipidemia perturb the
bone-vascular axis, giving rise to devastating vascular and skeletal disease. A detailed
understanding of bone-vascular interactions is needed to address the unmet clinical needs of our
increasingly aged and dysmetabolic population.

I. INTRODUCTION

Bone never forms without vascular interactions1, 2. This obvious and simple statement of
fact does not adequately reflect the physiological and pharmacological implications of the
relationship. The vasculature is the conduit for nutrient exchange between bone and the rest
of the body; this is relevant not only to the rapid access to the skeletal calcium “bank”
needed with urgent physiological demands3 –- be it for deposits or withdrawals -- but also
the delivery of metabolic substrate to the basic multicellular unit (BMU) for bone–forming
osteoblast functions4. The vasculature also provides the sustentacular niche for development
of osteoblast progenitors5. Moreover, it is the conduit for egress of bone marrow cell
products arising, in turn, from the osteoblast-dependent hematopoietic niche6. A detailed
understanding of bone-vascular interactions during development and disease will be needed
to address the unmet clinical needs of our increasingly aged and dysmetabolic population7.

Remarkably, the inextricable interdependence of vascular physiology, skeletogenesis, bone
remodeling, and mineral metabolism has in general escaped widespread appreciation.
Arteriosclerosis – the stiffening of conduit arteries from any cause -- including medial
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calcification and fibrosis in addition to atherosclerosis -- contributes to morbidity and
mortality including musculoskeletal disease. The lower extremities bear the brunt of this
disease burden, best manifested in hip fracture8, limb ischemia9, 10, and amputation
risk9, 11, 12. In a preclinical model of critical limb ischemia, Ignarro et al have begun to
capitalize upon this physiology, coupling parathyroid hormone (PTH) - mediated bone
anabolism with granulocyte colony stimulating factor (G-CSF) treatment as a strategy to
mobilize endothelial progenitor cells (ePCs) and improve limb recovery13. In humans,
Khosla, Pignolo, and colleagues have demonstrated that marrow-derived progenitors with
“osteogenic signatures” portend and participate in arterial function14, 15, valve
calcification16, and fracture repair17. Anabolic cross-talk between osteoblasts and
endothelial cells has been manipulated by Clemens and colleagues as a successful strategy to
enhance bone regeneration following injury18, 19. Thus, a bone-vascular axis has emerged in
which the vasculature supports musculoskeletal functions -- and bone-derived cell types and
endocrine/paracrine cues impact vascular health.

In this brief manuscript, we provide an overview of the intricacies of the bone-vascular axis,
emphasizing interactions during disease rather than during development (the reader is
referred to two outstanding reviews that detail these interactions during skeletal
morphogenesis2, 20). We emphasize dysmetabolic states such as diabetes, dyslipidemia, and
uremia that compromise vascular health and thus skeletal health via heterogeneous
arteriosclerotic calcification processes21, 22. We recount new data demonstrating that
calciotropic hormones regulate vascular calcification23–26 – and that the dysmetabolic
milieu impairs calciotropic hormone signals vital to the preservation of normal bone and
vascular mineral homeostasis27–29. We relate the mechanisms whereby cellular, biochemical
and hormonal cues elaborated by the skeleton systemically impact vascular health and vessel
conduit function – and end by pointing to emerging therapeutic opportunities afforded by a
better understanding of the bone-vascular axis.

II. THE CLINICAL SIGNIFICANCE OF ARTERIOSCLEROTIC CALCIFICATION

Vascular calcification has afflicted human beings for at least 5 millennia. Ötzi, the Tyrolean
Ice Mummy who succumbed to homicide ~ 5300 years ago -- 500 years before Stonehenge
was erected -- had significant deposits of arterial calcium in his abdominal aorta30. Most
recently, with the enhanced longevity of modern humans the consequences of arterial
calcification have become increasingly evident. Coronary artery calcium (CAC) scores
identify those at greatest risk for progressive cardiovascular disease (CVD) in those with
otherwise intermediate risk31. Tibial artery calcium (TAC) scores outperform ankle-brachial
indices in portending amputation risk in patients with peripheral arterial disease (PAD)9.
Using plain radiographs to assess patients with type II diabetes, the presence of arterial
medial calcification was deemed to be a greater contributor to amputation risk than
atherosclerotic calcification in this patient population12. The presence and extent of calcific
aortic valve disease (CAVD) is the single best predictor of clinical progression in patients
with asymptomatic, mild or moderate32- to- severe33 calcific aortic stenosis. Using plain
pelvic and femoral radiographs to phenotype vascular calcification in setting of end stage
renal disease (ESRD) requiring renal replacement therapy (RRT), London and colleagues
identified that arterial calcification clearly portended mortality12. While the five-year
Kaplan-Meier survival was under 50% for ESRD patients afflicted with atherosclerotic
calcification or medial calcification, the fortunate 1/3rd lacking significant arterial
calcification enjoyed ~90% survival during this same period34. After adjustment for age,
dialysis vintage, gender, ethnicity, diabetes, non-dialysis CKD status,, hypertension, tobacco
use, prior parathyroid surgery, and body mass index, atherosclerotic calcification and medial
calcification conveyed 5- and 16-fold increases in the relative risk for mortality compared to
those without vascular calcification12. Very recently, using CT-based volumetric scoring of
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carotid artery calcification load, intracranial carotid calcification was linked to the extent of
MRI-detected CNS white matter lesions while extracranial carotid calcification was a
harbinger of overt CNS infarcts35. Clearly, arterial calcific vasculopathy is a harbinger of
cardiovascular disease.

How can arterial calcification convey such clinically significant risks? Of course,
thromboembolic events and fixed reductions in vessel lumen size induce tissue ischemia,
and the calcified Stary type Vb plaque36, 37 characteristic of atherosclerotic calcification is a
culprit in acute coronary syndromes37, 38. Aortic valve sclerosis distorts and stiffens valve
leaflets, not only causing stenosis with attendant myocardial workload demand but also
precluding the efficient valve leaflet coaptation that prevents regurgitant flow39, 40.
Additionally, conduit vessel stiffening – arising from either atherosclerotic or medial
mineralization41 – impairs Windkessel physiology42, which depends upon the rubbery
elasticity of conduit vessels necessary for smooth distal tissue perfusion43 (Figure 1). With
each cardiac cycle, a portion of the kinetic energy elaborated during ventricular contraction
of systole is stored as potential energy throughout the vascular tree42; this energy is released
during diastole and helps maintain uniformity of flow in distal capillary beds during the
cardiac cycle43. Moreover, with arterial stiffening the attendant increase in pulse wave
velocity interacts with impedance mismatch along the vascular tree to elevate systolic blood
pressure, increasing myocardial workload as well as end-organ barotrauma43, 44 (Figure 1).
Thus, the presence, extent and histoanatomic type of arterial calcification carries ominous
predictions with respect to cardiovascular and CNS disease, mortality, and amputation
risk22.

At this point, it is useful to highlight the differences denoted when using the terms
arteriosclerosis and atherosclerosis. Arteriosclerosis refers to arterial mechanical stiffening
from any cause, be it from: (a) concentric medial and adventitial fibrosis with medial
calcification, elastinolysis and mural thickening as occurs in type II diabetes; (b) eccentric
intimal-medial atherosclerotic plaques with calcification, fibrosis, and cholesterol –laden
lipoprotein deposition; or (c) neointima formation and mural fibrosis as occurs in chronic
allograft vasculopathy in transplanted organs. Atherosclerosis specifically refers to the
intimally oriented, eccentric, lumen-deforming processes initiating from subendothelial
lipoprotein deposits with cholesterol-laden foam cell formation and subsequent matrix
remodeling events that increase risk for atherothrombosis. While atherosclerosis decreases
arterial compliance – i.e. causes arteriosclerosis – not all arteriosclerosis arises from
atherosclerotic processes.

III. PATHOBIOLOGY OF VASCULAR CALCIFICATION

Vascular calcification was once considered only a passive process of dead and dying cells;
however, data from a multitude of laboratories worldwide have clearly demonstrated that
vascular calcification is an actively regulated form of extracellular matrix
biomineralization21. Virchow’s initial pathological description of “atherosclerosis”
presciently identified the contributions of perturbed lipid metabolism, inflammation, and
osteo-fibrogenic differentiation to the biology of vascular calcium accrual45, 46. Of note,
vascular ossification – true ectopic bone replete with marrow elements – can be seen in up to
15% of calcified arterial lesions47. At the molecular level, however, the signature of active
osteogenic processes are found in virtually all calcified arterial segments48. Studies by Linda
Demer, H. Clarke Anderson, and colleagues were the first to identify osteogenic
“fingerprints” in calcifying atherosclerotic and medial lesions48. Bone alkaline phosphatase
– a highly characteristic and important ectoenzyme required for bone mineralization49 – was
localized to mineralizing arterial segments50, 51. Moreover, the powerful bone morphogen
BMP2 was shown to be expressed in calcifying atherosclerotic plaques of human vessels52.
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Oxylipids derived from oxidized LDL (oxLDL) were subsequently identified as potent
inducers of endothelial BMP253, 54, TNF55, and other macrophage-derived signals that drive
mineralization of calcifying vascular cells (CVCs) in vitro and in vivo55 (vide infra).
However, in atherosclerotic mice, inhibition of arterial BMP2 signaling with matrix Gla
protein (MGP) reduces vascular calcium and lesion size56.

By histoanatomic and clinical criteria, at least 5 types of arterial calcification can be
identified (Table I): atherosclerotic calcification, medial artery calcification, calcific aortic
valve disease (a.k.a. calcific aortic stenosis), calcific uremic arteriolopathy (a.k.a.
calciphylaxis) and the vascular calcification of ESRD (a.k.a. CKD-MBD; chronic kidney
disease mineral and bone disorder). The reader is referred to recent review series for in-
depth consideration22, 57. For the purposes of this review, only atherosclerotic calcification,
medial calcification, and vascular calcification of CKD-MBD will be briefly discussed
because of the immediate relevance to skeletal physiology and bone-vascular interactions.

III. A. Atherosclerotic calcification

Atherosclerotic calcification represents the prototypic lesion described by Virchow45, 46. In
the lexicon of cardiovascular pathology this is the type Vb plaque58 -- characterized by an
eccentric, lumen deforming, outward remodeling lesion possessing a fibrous cap,
cholesterol-laden macrophages and lipoprotein deposits, intensive focal inflammatory cell
infiltration and localized elastinolysis37, 38 (Figure 2). Juxtaposed mineralizing apoptotic
bodies and mineralizing matrix vesicles are elaborated by neighboring vascular smooth
muscle cells (VSMCs) and CVCs undergoing chondroid metaplasia 37, 38. Stippled fibrous
cap calcification is also noted, and such lesions appear to be precursors to the ruptured
plaques of acute coronary syndromes37, 38. In bone, biomineralization occurs via either
endochondral ossification or membranous ossification processes programmed by
chondrocytes and osteoblasts59–61. Endochondral ossification is characterized by the
mineralization of a chondrocyte-derived skeletal template, following chondrocyte
hypertrophy, apoptosis, vascular invasion and concomitant osteoprogenitor recruitment with
subsequent osteoblast-mediated bone formation. Of note, Runx2/Cbfa1 -- a master
transcriptional regulator absolutely essential for both endochondral or membranous
ossification processes62 –is upregulated in the vessel walls of apoE−/− mice undergoing
atherosclerotic calcification63. Elegant studies by Giachelli and colleagues have recently
demonstrated the “trans-differentiation” of arterial VSMCs to cells of the chondrocyte and
osteoblast lineage during atherosclerotic calcification64–66 (Figure 3). Implementing SM22-
Cre; Rosa26-LacZreporter; apoE−/− mice, they showed that cells originally derived from the
VSMC lineage – “tagged” as blue with the Rosa locus LacZ reporter via VSMC-specific Cre
activation – ended up as vascular chondrocytes and osteoblasts in the mineralizing segments
of atherosclerotic plaques65. VSMC transdifferentiation in atherosclerotic apoE−/− mice
occurred in the absence of augmented Msx2, Wnt, or Sp7/0sx signaling65.

What then triggers osteochondrogenic “transdifferentiation” of VSMCs? Oxidative stress
signaling, oxylipids, and phosphate (see CKD-MBD below) play important
pathophysiological roles67 (Figure 3). Oxysterols derived from oxidized LDL cholesterol
(oxLDL) and hydrogen peroxide upregulate Runx2/Cbfa1 expression68 and osteo/
chondrogenic trans-differentiation of VSMCs69. Activation of bone alkaline phosphatase in
these VSMCs is critical to matrix mineralization responses elicited by oxLDL and peroxide,
and inhibitors of bone alkaline phosphatase limit atherosclerotic calcification by VSMCs70.
Intriguingly, as Demer and colleagues first demonstrated, hypercholesterolemia and
oxylipids derived from oxLDL also suppress bone formation71, 72 and bone anabolic
responses to PTH29, 73. Moreover, PTH responses were restored by administration of HDL-
mimetics29, 73. These data implicate a metabolic milieu that can simultaneously engender
atherosclerosis and osteoporosis. Thus, inflammatory oxylipids and oxLDL accumulating at
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sub-intimal venues drive atherosclerotic intimal calcification by activating osteogenic BMP2
and Runx2/Cbfa1 trans-differentiation of VSMCs67, 74. Recruitment of calcifying vascular
cells (CVCs)75 – a mural multipotent mesenchymal cell related to the microvascular
pericyte76 – provides an additional source of osteoprogenitors52.

III. B. Arterial medial calcification

Arterial medial calcification –sometimes called Monckebergs medial calcific sclerosis– is
particularly common in the arteriosclerosis of type II diabetes10–12, 77. Medial calcification
is a concentric process of the tunica media, associated with biomineralization initiating
along mural elastin fibers78, 79 (Figure 2). Traditional thought was that medial calcification
was clinically inconsequential -- succinctly articulated in the 3rd (1984) edition of the
pathology text of Robbins et al on page 518 as follows80: “ This disorder is of relatively
little clinical significance. It accounts for roentgenographic densities in the vessels of the
extremities of aged individuals, but it is to be remembered that the lesions do not produce
narrowing or occlusion of the vascular lumen80.” Yet, as subsequently highlighted, medial
artery calcification impairs vessel mechanics and Windkessel physiology necessary for
smooth distal tissue perfusion81 (Figure 1) – and best conveys risk for lower extremity
amputation in patients with type II diabetes12.

Similar to the membranous ossification of craniofacial bone – where osteoblast-mediated
biomineralization occurs in a type I collagen –based matrix without a preceding cartilage
template61 – medial artery calcification does not involve overt chondrogenesis during
disease initiation82 (chondrogenesis is sometimes seen in advanced disease with true ectopic
ossification83). Electron microscopy first identified bone alkaline phosphatase-positive
matrix vesicles associated with fragmented elastin in human arteries afflicted with medial
artery calcification50. Additional insights into the pathobiology of disease initiation and
progression have been forthcoming from detailed study of preclinical disease models22.
When fed high fat diets (HFD) characteristic of westernized societies, male LDLR−/−
develop obesity, type II diabetes, and dyslipidemia22 – with progressively severe medial
artery calcification and subsequent atherosclerotic calcification as plaques begin to
accumulate82. At the earliest phases of disease, arterial Msx2 and Msx1 – osteoblast
homeodomain transcription factors absolutely necessary for membranous bone formation in
the skull84 – are upregulated in the aortas of these animals85. Immunohistochemistry and in
situ hybridization demonstrates the expression of Msx2 in aortic valve interstitial
myofibroblasts, arterial adventitial myofibroblasts, and a subset of cells within the tunica
media25, 48, 85. Data from our laboratory and others have characterized adventitial
myofibroblasts as pericyte-like calcifying vascular cells (CVCs) with multi-lineage
mesenchymal cell potential86 (Figure 3). As in atherosclerotic calcification, inflammation is
again key22; diabetes with or without dyslipidemia upregulates adventitial TNF87 production
by monocytes and macrophages 55 – -- which in turn induces pro-calcific Msx2 activity and
paracrine Wnt signaling cascades that promote mural calcification and fibrosis82 (Figure 3).
Along with BMP2, a powerful bone morphogen secreted by inflamed endothelial cells88,
Msx-regulated Wnt family members elaborated by myofibroblasts support the osteogenic
differentiation and collagenous matrix mineralization by mesenchymal progenitors89–91 – be
it in bone 92 or within the arterial wall 25, 91. Thus, the paracrine polypeptide milieu of
osteogenic morphogens activate osteoblast gene regulatory programs in multipotent mural
mesenchymal cells such as CVCs and adventitial myofibroblasts93. Adventitial-to-medial
biological signals drive concentric involvement of arterial vessels in diabetic medial
calcification – quite distinct from the eccentric atherosclerotic calcification processes
organized by subintimal oxylipid deposits (Figure 2). In diabetic arteriosclerosis,
neoangiogenesis arising from the vasa vasorum in the inflamed adventitial-medial junction
circumferentially upregulates mural BMP-Wnt signaling, and spawns additional adventitial
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myofibroblasts that can be allocated / programmed to elaborate osteogenic and fibrogenic
phenotypes 94, 95 (Figure 3). Not surprisingly then, surgical stripping of arterial adventitia
reduces medial calcification in preclinical disease models96.

Of note, recent data from Rajamannan, Miller, Heistad, and colleagues have demonstrated
that similar processes contribute to aortic valve calcification directed by valve interstitial
cells (VICs)97. Activation of Msx and Wnt signaling cascades is observed in calcifying
human aortic valves98, and apoE−/− mice lacking the Wnt receptor LRP5 are protected from
valve calcium accrual99. The behavior and molecular phenotype of the three calcifying
vascular mesenchymal cell populations – CVCs, adventitial myofibroblasts, and VICs --
closely resembles that of the pericyte, the proliferative microvascular smooth muscle cell
that maintains capillary integrity during neoangiogenesis100. Thus, as occurs in
atherosclerotic calcification, medial calcification and valve calcium accrual is driven in great
part by osteogenic cells derived from vascular residents21 (Figure 3). However, exciting new
data from Pignolo et al has identified a circulating CD45+ osteocalcin+ osteoprogenitor
(COP) cell that elaborates BMP family members and “homes” to sites of vascular injury16.
As initially formulated by Khosla and colleagues in their elegant studies of human bone
growth and fracture repair17, circulating osteoprogenitors may also participate in vascular
mineralization processes in type II diabetes 101 as well as in true ectopic vascular
ossification102. Therefore, strategies that inhibit vascular BMP-Wnt signaling or reduce
COP cell populations may help alleviate the burden of arteriosclerotic disease in type II
diabetes.

III. C. Vascular calcification of CKD / CKD-MBD: The “perfect storm”

In 2005, KGIDO (international group on Kidney Disease: Improving Global Outcomes)
codified the clinical entity CKD-MBD, the mineral and bone disorder of chronic kidney
disease that encompasses the vascular calcification of CKD103, 104. In CKD-MBD, the
clinical link between bone disease and vascular disease arising from primary perturbations
in calcium phosphate homeostasis is now formally recognized. Diabetes and hypertension –
two diseases that independently promote arteriosclerotic calcification – are responsible for
approximately 60% of ESRD patients requiring RRT (renal replacement therapy)105;
however, the vast majority of patients with CKD from any cause experience increased
cardiovascular mortality and calcific vasculopathy34, 106. While antecedent diabetes,
hypertension, dyslipidemia, and metabolic syndrome continue to contribute to
arteriosclerosis107, hyperphosphatemia, reduced Klotho expression, and impaired soft tissue
calcification defenses are key pathophysiological components of CKD-MBD108, 109. Indeed,
even in the setting of normal renal function, serum phosphate levels track severity and extent
of coronary artery calcium110, 111. Hyperphosphatemia and hypercalcemia increase the
elaboration of VMSC matrix vesicles -- ~100 nm diameter phosphatidylserine- and annexin-
rich, bilaminate spheroids resembling the mineralizing vesicles of chondroyctes112.
Shanahan and colleagues demonstrated that VSMCs elaborate these matrix vesicles as one
mechanism to clear extracellular matrix calciprotein complexes112, 113 (Figure 3). However,
these same matrix vesicles can serve to nucleate and propagate extracellular matrix
mineralization in the absence of cell-mediated pinocytotic uptake113. Matrix vesicle uptake
by VSMCs requires serum fetuin113, a hepatocyte-derived calcium binding protein that
maintains calcium solubility in the supersaturated serum and interstitial fluid
compartments114. Dialysis reduces serum fetuin levels as does inflammation115. In addition
to increasing matrix vesicle release, phosphate also increases BMP2 elaboration by VSMCs
and upregulates VSMC Runx2/Cbfa1 and Msx2 via SLC20A1 signaling65, 116. BMP2 in
turn further enhances phosphate uptake and osteogenic programming of VSMCs in a feed-
forward vicious cycle117. Thus, like oxLDL and peroxide, elevated serum phosphate can
reprogram the VMSC phenotype to support osteogenic mineral deposition66. Furthermore,
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sustained hyperphosphatemia simultaneously induces VSMC apoptosis, removing the first-
line cell-mediated mechanism for clearing vascular calciprotein complexes118. The ensuing
vascular mineral deposition is an exuberant medial calcification that is almost always
superimposed on antecedent atherosclerotic and medial calcification arising from diabetes,
dyslipidemia, and other causes. Finally, with the massive increase in mural extracellular
matrix calcium, the second-line defenses for handling vascular extracellular matrix calcium
– viz., cells of the monocyte/macrophage lineage – are recruited119. Vascular calcium
phosphate deposition elicits innate immune responses by monocyte/macrophage cells120,
increasing the production of TNF121 and down-stream activation of osteogenic BMP-Msx -
Wnt and Runx2/Cbfa1 signaling116, 121 – yet another, feed-forward vicious cycle in vascular
mineralization. Thus, patients with CKD suffer the “perfect storm” of vascular calcification.

Perhaps not surprisingly, then, statin-based strategies focused upon LDL cholesterol
reduction have generally failed to reduce cardiovascular morbidity and mortality in end
stage renal disease (ESRD)122. This past year, a combined approach using implementing a
statin with the cholesterol absorption inhibitor ezetimibe reduced overall major
atherosclerotic disease endpoints including non-hemorrhagic stroke by ca. 20% -- but failed
to significantly reduce myocardial infarction or associated death123. Strategies that
emphasize phosphate binders as a primary approach to control hyperphosphatemia have met
with early successes – as long as the binding is not calcium based124–126. As highlighted by
Raggi et al, the use of calcium based phosphate binders significantly contribute to vascular
calcium load in ESRD127. This may be directly related the impaired capacity of the uremic
skeleton to rapidly handle serum calcium transients. Indeed, London demonstrated that
patients with the most extensive vascular calcification exhibited the lowest levels of bone
formation on histomorphometric evaluation, reflected in inappropriately normal or low PTH
values128. As compared to sevelamer – the first phosphate binder that does not contain
calcium or aluminum -- calcium based phosphate binders suppress PTH, reduce bone mass,
and increase vascular calcium load in ESRD127. Because of the biphasic relationships
between PTH, vitamin D, and vascular health in ESRD, a rigorous focus upon the role and
endocrine physiology of calciotropic hormones and calcium phosphate homeostasis should
provide new hope to patients afflicted with CKD129.

IV. REGULATION OF VASCULAR CALCIFICATION BY CALCIOTROPIC

HORMONES

While vascular calcification is clearly an actively regulated form of extracellular calcified
matrix metabolism, remarkably few studies have been undertaken with respect to control by
calciotropic hormones130. The prototypic calciotropic hormones are parathyroid hormone
(PTH), vitamin D and its metabolites, parathyroid hormone related polypeptide (PTHrP),
calcitonin, and estrogens including estradiol. Estrogen signaling via non-genotropic
signaling mechanisms acutely activates endothelial nitric oxide synthase in caveolae – an
acute vasodilatory response that is theoretically protective131. Estrogen exposure in women
was shown to reduce the incidence of arterial calcification as revealed from
mammography132. In the Rancho Bernardo Study, estrogen use in post-menopausal women
was associated with reduced coronary artery calcification133; however, estrogen replacement
therapy worsened cardiovascular endpoints in older women in the Womens Health
Initiative134 – and estrogens including low-dose oral contraceptives are associated with
PAD135. No published studies have examined the actions of calcitonin on arteriosclerosis,
but the calcitonin gene - related polypeptide, encoded by the calcitonin gene, is a
vasodilator136.

Vitamin D insufficiency is associated with PAD137 as well as other cardiovascular diseases
including congestive heart failure138. Additionally, vitamin D inhibits foam cell formation
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and macrophage activation in patients with diabetes139. However, vitamin D replacement
has not been shown to improve any primary cardiac endpoint – although the largest studies
have not used uniform preparations of vitamin D140. In ESRD, a biphasic U-shaped bimodal
response to calcitriol levels has clearly emerged with respect to vascular disease141 (Figure
4a). While vitamin D insufficiency and reduced 1,25(OH2)D levels in ESRD engenders
more severe secondary hyperparathyroidism, excessive 1,25(OH2)D dosing can induce low-
turnover bone disease, hypoparathyroidism, and increase vascular calcium deposition. As
London first established, ESRD patients with the most extensive and severe arterial
calcification exhibited the lowest bone formation rates and PTH levels128. Vitamin D
intoxication induces widespread vascular calcification and nephrocalcinosis – and is a
commonly used rodent model of vascular calcification potentially relevant to the bimodal
relationship in ESRD142, 143. The calcium sensing receptor is expressed in VSMCs as well
as in parathyroid glands144, and signaling with this agonist to control secondary
hyperparathyroidism (sHPT) in uremic rat models results in reduced vascular calcium
accrual145. Of note, in cultured VSMCs calcitriol induces calcification in part by
suppressing PTHrP production and inducing alkaline phosphatase146. Via paracrine actions,
PTHrP relaxes smooth muscle cells, inhibits fibroproliferative responses, prevents alkaline
phosphatase induction and inhibits calcium deposition by signaling via the PTH/PTHrP
receptor (PTH1R)146. Indeed, adenoviral delivery of the obligatory paracrine form of PTHrP
inhibits neointima formation in a porcine model of stent-induced coronary restenosis147, 148.
The role of VSMC PTHrP-PTH1R signals in cardiovascular arteriosclerosis has not been
exhaustively studied to date in part because PTH1R-null mice die in utero due to massive
cardiomyocyte apoptosis149. Nevertheless, the post-natal vasculopathy arising from vitamin
D intoxication may involve lesioning of protective paracrine PTHrP-PTH1R signals in
VSMCs in addition to hyperphosphatemia and hypercalcemia145, 146.

This past decade, we examined the impact of PTH/PTHrP receptor signaling on
arteriosclerotic calcification in the LDLR−/− model23–25. Bone anabolic responses that
increased skeletal calcium accrual were accompanied by reductions in aortic calcium
accrual23, 24. Additionally, arterial expression of osteogenic genes were down-regulated
while skeletal expression of these same genes were increased24, 25. The PTH1R is highly
expressed in VSMCs --- and is very susceptible to homologous desensitization upon tonic
exposure to PTH or PTHrP150. Sustained pharmacologic vascular exposure to either PTHrP
or PTH – mimicking the setting of hyperparathyroidism – induces arterial tachyphylaxis to
acute PTH/PTHrP agonist administration150. In order to address the potential role for
VSMC-autonomous role for PTH1R signaling in arteriosclerotic vascular responses, we
generated and evaluated SM22-PTH1R(H223R); LDLR−/− transgenic mice23. In these
animals, a ligand-independent constitutively active form of the PTH1R, PTH1R(H223R)151,
is expressed in VSMC from a VSMC-specific promoter23. As compared to non-transgenic
male siblings, male SM22-PTH1R(H223R);LDLR−/− exhibited reduced aortic calcification,
aortic fibrosis, and aortic oxidative stress23. Arteriosclerotic Wnt/beta-catenin signaling and
type I collagen gene expression was concomitantly reduced23. Aortic wall thickness was
also decreased, and ex vivo vessel mechanical compliance (distensibility) was increased.
Importantly, Friedman and colleagues independently demonstrated that pulsatile
administration of PTH(1–34) reduces arterial mineralization in a rat model of uremia,
although fibrosis and vessel mechanics were not evaluated26.

Our in vivo data with the SM22-PTH1R(H223R) transgene demonstrate that sustained
VSMC PTH1R activation actually reduces vascular oxidative stress and pro-calcific and
pro-fibrotic signals that drive arteriosclerotic disease23. Recall that dysmetabolic states
associated with macrovascular disease -- such as diabetes, dyslipidemia, and uremia --
induce tissue resistance to PTH1R activation27, 29, 152. These findings converge to prompt a
major shift in our thinking as concerns the pathobiology of arteriosclerosis in type II
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diabetes and other dysmetabolic states, including primary and secondary
hyperparathyroidism (pHPT and sHPT, respectively). How so? The negative impact of
dysmetabolic states (dyslipidemia, diabetes, uremia) on PTH1R signaling may become to be
viewed in part as acquired insufficiencies of endocrine paracrine PTHrP actions that help
preserve vascular health. The increase in carotid IMT associated with pHPT153 might be
viewed in part as being the consequence of homologous vascular desensitization150, 154

occurring in response to (a) tonically elevated PTH levels; and (b) impaired capacity of
paracrine VSMC PTHrP production to restrain proliferative155 and calcific146

arteriosclerotic responses (Figure 4b). However, via its bone anabolic actions PTH signaling
upregulates circulating intact OPN24 – an inhibitor of vascular mineralization – and supports
the hematopoietic niche including cellular elements such as ePCs that program vascular
healing responses. Furthermore, PTH upregulates the expression of matrix Gla protein
(MGP)156, 157, an important negative regulator of matrix mineralization and BMP2/4
signaling in the vasculature56. Whether MGP participates in PTH inhibition of vascular
myofibroblast BMP2 signaling25 remains to be evaluated. The relative contributions of
direct vs. indirect actions of PTH1R on vascular health are undergoing additional scrutiny
and evaluation.

V. THE IMPACT OF ARTERIOSCLEROSIS ON SKELETAL HEALTH AND

FUNCTION

Atherosclerosis, calcification, mural hypertrophy and fibrosis, and elastin matrix senescence
cause arteriosclerosis, the age-associated vascular stiffening that impairs Windkessel
physiology necessary for smooth distal tissue perfusion. With aging, vascular remodeling
processes can increase wall thickness and regionally reduce conduit artery lumen patency,
thus worsening arterial compliance and its clinical impact43. In the musculoskeletal system,
lower extremities experience the brunt of arteriosclerotic disease. Claudication and
amputation are the most salient manifestations that reduce mobility and increase morbidity,
but hip fracture is also increased with peripheral arterial disease (PAD) 8. Multiple studies
have now established that the presence and extent of arteriosclerotic calcification conveys
lower extremity amputation risk. Medial arterial calcification of type II diabetes conveys a
3-fold increased risk for amputation12. Recently, implementing CT scanning and the
Agatston method to quantify tibial artery calcification (TAC), Guzman established that TAC
scoring outperforms ankle-brachial indices (ABI) in predicting lower extremity amputation
risk9. Applying the conventional ABI method to characterize peripheral artery disease
(PAD), Cummings and colleagues showed that PAD increased the rate of femoral neck bone
loss and increased the risk for hip fracture in men9. They concluded that “Further research
should examine the biological mechanisms underlying the association between reduced limb
blood flow and fractures.” 9 The increasing prevalence of type II diabetes and associated
PAD will contribute to the future arteriosclerotic disease burden in our society.

Atherosclerotic deposits can and do impact bone marrow arteries. However, the
physiological responses of bone to arteriosclerosis are multifactorial. In 1985, Brenneise and
Squier examined the relationships between atherosclerotic disease and blood flow in rhesus
monkeys maintained on high fat atherogenic diets158. These diets induced extensive
calcified atherosclerotic carotid plaques and as well as atherosclerotic changes in arteries
perfusing skeletal muscle. However, atherogenic diets failed to induce significant
atherosclerotic changes in the principal nutrient arteries of maxillary and mandibular bone
--- and did not alter osseous lumen area, intraosseous vessel wall thickness, or vessel lumen
area / tissue area158. Nevertheless, atherosclerosis reduced osseous blood flow by 80% in the
anterior mandible, posterior mandible, and maxilla158. How can this occur? These seminal
findings indicated that macrovascular Windkessel function and endothelial function
necessary for regulating bone tissue perfusion are severely impaired with atherosclerosis and
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arteriosclerosis81. Recently, we described and characterized a novel murine model of
arteriosclerotic vascular stiffening -- the osteopontin (OPN)-null mouse on the LDLR-
deficient background. Even in the absence of atherogenic diets, male OPN−/−;LDLR−/−
mice exhibit aortic adventitial fibrosis and vascular stiffening. Using fluorescence
microsphere perfusion assays, we demonstrated significantly reduced lower extremity bone
(femur) blood flow in arteriosclerotic OPN−/−;LDLR−/− animals159. By contrast, blood
flow to the kidneys was not significantly altered as assessed in this assay. Thus,
arteriosclerosis and atherosclerosis impair skeletal blood flow158, 159.

At this point it should be noted that in healthy young long bone, diaphyseal blood flow is
primarily centrifugal, with flow originating from marrow compartment (supplied via nutrient
artery) to trabeculae and bone cortex160 (Figure 5). However, with aging flow becomes
increasingly centripetal, with the greatest extent of diaphyseal cortex being perfused by
periosteal arteries161. This age-dependent change in the “vector” of blood flow may become
more exaggerated due to the enhanced sensitivity of nutrient artery to vasoconstrictors as
compared to vasodilators162. With aging the vasodilator response in bone nutrient arteries
becomes increasingly reduced163. Blood flow is a critical determinant of the bone formation
rate at the BMU within the adult skeleton4. The interactions between age-dependent changes
in this cortical bone flow vector and arteriosclerotic conduit vessel stiffening have not been
systematically examined. Since osteoblast-mediated bone formation is directly related to
perfusion4, these age-dependent changes are predicted to contribute to reduced skeletal
anabolism in the absence of intervention.

To be sure, perfusion- and diffusion – dependent nutrient supplies must be rate-limiting
contributors to the impairment of bone physiology with arteriosclerotic disease. Indeed,
Prisby et al highlighted that it is that the proximity of the bone-forming multicellular unit
(BMU) to the microvasculature – not the mass of the skeletal microvasculature – that is
critical in maintaining bone anabolism164. Vascular endothelial growth factor (VEGF), a
prototypic angiogenic factor produced by osteoblasts, was shown to be critically
important164. Moreover, the sub-intimal vascular accumulation of oxidized LDL in bone
impairs anabolic responses to PTH27. However, it has become increasingly evident that the
vasculature itself provides paracrine and juxtacrine cues that regulate osteoblast function
functions165. Ephrin B2, BMP2, RANKL, and nitric oxide are but a few of the potent
osteotropic signals elaborated by endothelial cells165–171. Furthermore, the vasculature also
provides the sustentacular niche for osteoblast progenitors172 --- and is the conduit for
egress of bone marrow – derived formed elements from the osteoblast-regulated
hematopoietic niche173. By coupling enhanced PTH-mediated bone anabolism with
granulocyte colony stimulating factor (G-CSF) treatment as a strategy to mobilize
endothelial progenitor cells (ePCs), Ignarro has demonstrated the capacity to implement
endocrine pharmacotherapy to enhance ischemic limb recovery in mice13. Thus, multiple
bone-vascular interactions may contribute to impaired skeletal anabolism with
arteriosclerosis. The important preclinical “proof of principle” provided by Ignarro et al13

supplies compelling pharmacologic and physiological evidence for an emerging bone-
vascular axis that regulates cardiovascular and skeletal health.

VI. SKELETAL FUNCTION AND VASCULAR HEALTH: THE BONE-

VASCULAR AXIS

In the preceding sections, we’ve emphasized the impact of vascular disease on skeletal
function. However, in the past decade it has became clear that bone is in fact an endocrine
organ174, capable of elaborating phosphaturic hormones such as DMP1 and FGF23 as
relevant to the pathobiology of vascular disease175. FGF23 (fibroblast growth factor 23) is
an osteocyte-derived hormone that enhances phosphate excretion by the kidney via down-
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regulation of proximal tubule sodium phosphate symporters Slc34A1/NaPi-2a and Slc34A3/
NaPi-2c.176 Hyperphosphatemia and vascular calcification were observed in FGF23 null
mice -- mitigated by simultaneous reductions in the vitamin D 1-alpha-hydroxylase
CYP27B1177. Of note, FGF23 directly suppresses CYP27B1178. Thus, the vascular toxicity
arising from deficiency in this osteoblast- and osteocyte- derived hormone arises from
endogenous calcitriol intoxication with hyperphosphatemia179. With declining renal
function, post-prandial elevations in FGF23 are amongst the earliest changes observed180,
and likely serve as a bone-derived defense mechanism for limiting the toxicities of
hyperphosphatemia in conjunction with PTH175. With progressive uremia, end-organ
responses to FGF23 are diminished due to reduced Klotho co-factor expression by the
kidney and parathyroid glands 181–185. Of note, both FGF23/Klotho185, 186 and DMP1187

signaling have been demonstrated to exert direct, beneficial vascular actions. Thus, the
kidney emerges as a particularly important intermediary in the bone-vascular axis via
hormonally regulated phosphate excretion and Klotho production (Figure 6). Osteopontin
(OPN), a very potent inhibitor of matrix mineralization in its phosphorylated form188, is
secreted into the circulation by skeletal osteoblasts and increases in response to bone
anabolic stimuli such as PTH24. Since the osteoblast-derived OPN is highly
phosphorylated189 and stable to proteolysis190, this circulating pool of OPN may serve as an
important defense as well to vascular mineral accrual as first posited by Giachelli188. Studies
by Ducy and Karsenty have highlighted the important role of bone-derived osteocalcin
(OCN) as a Gla-dependent hormone controlling beta-cell longevity191. With respect to
arteriosclerosis, the capacity of OCN to support adiponectin production by adipocytes may
be of particular importance191. Adiponectin suppresses the inflammatory responses elicited
by TNF192, 193 – an important stimulus for vascular calcification as highlighted above82.
Moreover, adiponectin – null mice develop arterial calcification that is mitigated by
adenoviral – mediated vascular restoration194. Recently, Monsonego-Ornan have provided
new evidence that OCN may in also directly enhance osteochondrogenic mineralization of
VSMCs143; this has yet to be confirmed in atherosclerotic disease models. Nevertheless,
given that bone marrow-derived cell types can either promote or limit vascular calcium
accrual, two arms of the bone-vascular axis clearly emerge -- one being cell-mediated via
the paracrine actions of osteoblasts on hematopoietic niche and cell egress, and the other
being humoral via osteoblast- and osteocyte-derived endocrine signals that regulate renal
phosphate excretion, PTH production, and vascular proximity to the BMU (Figure 6).

Thus, with respect to diseases of the bone-vascular axis, three relationships can now be
envisioned (Figure 7). Most certainly, metabolic milieu and genetics can independently
cause arteriosclerotic disease and bone disease. Additionally, primary changes in
arteriosclerotic vessel functions arising from milieu and genetics can cause bone disease via
alterations in perfusion. However, given emerging nature of the bone-vascular axis, primary
disease changes in bone and bone marrow function arising from milieu and genetics may
cause vascular disease. Under this latter and more novel view, a healthy skeleton and
marrow is a good thing for maintenance of vascular health. The relative contributions of
bone-derived cellular vs. endocrine signals to changes in vascular physiology may be
particularly important with uremia, aging, and diabetes195. A better understanding of how
bone-derived endocrine cues and marrow-derived cell types interact to regulated vascular
health is clearly necessary.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

Preclinical and clinical studies performed over the past two decades have converged to
highlight the presence of and critical role for a bone –vascular regulatory axis in human
health. Not unlike the famous legend of the three blind men describing the elephant, the
perspectives of experts in endocrinology, cardiology, developmental biology, orthopedics,
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biochemistry, genetics, pathology, engineering and hematology often emphasize different
features of the bone-vascular axis. Fortunately, the picture emerging from the assembly of
these multiple viewpoints is providing an increasingly sharper image. Calciotropic hormones
have direct and indirect vasculotropic actions deserving consideration; both excesses196 and
insufficiencies128 in calciotropic hormones such as PTH engender vascular disease. The
inability to tightly regulate calcium phosphate homeostasis results in vascular toxicity.
Cellular and endocrine signals arising from bone and marrow impact vascular physiology
and function – and are maintained in part by PTH-dependent signals13, 182, 197. Age- and
disease-dependent changes in vascular physiology impact bone health and fracture risk.
Inflammation and oxidative stress / oxylipid signals reciprocally regulate bone and vascular
mineralization – and impair PTH/PTHrP receptor signaling important to bone and vascular
health29, 67, 198. The kidney is an important intermediary in the bone-vascular axis via
hormonally regulated phosphate expression and Klotho expression182, 199. Declining renal
function and tissue resistance to PTH/PTHrP receptor signaling represent key features in the
perturbation of the bone-vascular axis with disease (Figure 6). Endocrine regulation of the
bone-vascular axis is feasible; for example, strategies that modulate PTH/PTHrP receptor
signaling, end organ responsiveness, and calcium phosphate homeostasis offer opportunities
to improve bone health and preserve vascular health in patients with diabetes, dyslipidemia,
and uremia PAD13, 23, 29, 127, 200, 201.

On a cautionary note, however, our understanding of the relationships between bone and
vascular mineral homeostasis is rudimentary. As clinicians, we are coming to appreciate the
reciprocal relationships between bone mass / osteoporosis and atherosclerosis as detected by
vascular calcification202–205 – but the endocrine regulation of this relationship may change
with age. For example, aminobisphosphonate therapy for osteoporosis decreases the risk for
aortic valve and thoracic aorta calcification in women > 75 years old – but INCREASES risk
in women under age 55206. Furthermore, although helpful to bone in some contexts, oral
calcium supplementation in those with renal insufficiency127 and advanced age207, 208 may
have down-side impacts on cardiovascular health. As our understanding of the bone-
vascular axis continues to improve, so too will our capacity to meet the clinical needs of our
patients afflicted with musculoskeletal and vascular diseases.
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Figure 1. Consequences of arterial stiffening and impaired Windkessel physiology
During systole, some kinetic energy is stored as potential energy in the elastic conduit
arteries. This permits not only coronary perfusion but also smooth distal capillary perfusion
during diastole (blue tracing). With arteriosclerotic stiffening (red tracing), less potential
energy is stored during systole, giving rise to impaired, pulsatile and erratic flow during
diastole (2/3rds of the cardiac cycle)209. Systolic blood pressure is also increased. See
O’Rourke and Hashimoto81 for an excellent review and additional details.
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Figure 2. Atherosclerotic vs. Medial Arterial Calcification
Both atherosclerotic calcification and medial calcification stiffen arterial conduit vessels,
impairing Windkessel physiology. The eccentric remodeling of atherosclerotic calcification
also reduces lumen diameter, and predisposes to acute thrombosis.
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Figure 3. Vascular osteogenic cell origins, functions and phenotypes in arterial calcification
Vascular mineralization is regulated by processes overlapping yet distinct form those that
control skeletal bone formation. Osteogenic progenitors can arise from “transdifferentiation”
of VSMCs, or osteogenic lineage allocation of multipotent mesenchymal progenitors. Health
VSMCs also play an important role in limiting vascular calcium accrual via fetuin- and
MGP- dependent pinocytotic uptake of matrix vesicles. Metabolic and inflammatory insults
induce vascular changes that impair normal VSMC function/viability and induce osteogenic
differentiation of vascular mesenchymal cells. Not shown are the circulating
osteoprogenitors that may contribute to the “vascular ossification” – true bone formation
replete with marrow elements – that can be seen in ~15% of specimens. Extracellular factors
are lettered in blue, while intracellular transcriptional regulators are colored lavender. See
text for details, adapted from Mizobuchi, Towler, and Slatopolsky108. TGM2, tissue
transglutaminase210, 211.
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Figure 4. The biphasic relationship between cardiovascular disease and calciotropic hormones
As in all key endocrine systems, there also is a “sweet spot” that represents the optimal set
point for calciotropic hormones levels and vascular health. Panel A, both calcitriol excess
and deficiency have been associated with cardiovascular disease141, 212, recently confirmed
in children with CKD213. Panel B, similar cardiovascular problems arise with either both
excesses196 and insufficiencies127, 128 in PTH. See text for details.
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Figure 5. Age-dependent changes in cortical blood flow of long bones
Left panel, healthy cancellous bone has a marrow flow of about 20 cc/min/100 grams via the
nutrient, ascending and descending medullary arteries; this helps maintain a relatively high
intramedullary pressure that drives centrifugal flow through cortical bone (~ 5 cc/min/
gram)160. Right panel, with aging 161 and arteriosclerosis158, 159 perfusion is altered, with
blood supply to the aging cortex provided primarily from periosteal conduit vessels161. Age-
and exercise - related changes in vasodilatation responses of nutrient arteries may impact the
extent of centrifugal vs. centripetal cortical blood flow163, 214 since the nutrient arteries are
more responsive to vasocontrictors162.
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Figure 6. Clinical promises and pitfalls of the emerging bone-vascular axis
A bidirectional endocrine / metabolic relationship exists between bone and the vasculature
that mutually benefits bone and vascular health. The kidney is an important intermediary via
regulation of phosphate excretion182 and the elaboration of Klotho109, 199. Importantly,
PTH/PTHrP receptor signaling (a) maintains bone formation, sustains hematopoietic niche
function215 and ePC mass13; (b) promotes intact osteoblast OPN24 and osteocyte
FGF23197, 199 secretion; (c) supports renal Klotho production199; and (d) suppresses aortic
osteo-fibrogenic Wnt/β-catenin signaling23, 146 and vascular calcium accrual23, 26. PTH/
PTHrP receptor signaling also reduces aortic23 and skeletal216 oxidative stress, and
maintains the proximity of the microvasculature to the BMU during bone formation164.
Declining renal function and tissue resistance to PTH/PTHrP receptor signaling represent
key features in the perturbation of the bone-vascular axis with disease. P1GF, placental
growth factor. RANKL, receptor activator for NF-KappaB Ligand. BMU, basic
multicellular unit. See text for details.
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Figure 7. Metabolic milieu, genetics, arteriosclerosis, and musculoskeletal disease
Oxylipids simultaneously drive arteriosclerotic calcification, suppress bone formation, and
increase osteoclastogenesis; parallel progression arteriosclerosis and musculoskeletal disease
ensues (schema 1). However, via vessel stiffening and reductions in endothelium-dependent
control of bone perfusion, arteriosclerosis can negatively impact bone anabolic responses
necessary for skeletal homeostasis and fracture repair (schema 2). Finally, since osteoblasts,
osteocytes, and a bone marrow elaborate cellular elements and hormonal cues that prevent
arteriosclerotic remodeling and preserve vascular health, primary disease of bone may give
rise to or at least exacerbate arteriosclerotic disease (schema 3).
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TABLE I

COMMON HISTOANATOMIC TYPES OF VASCULAR CALCIFICATION

TYPE CHARACTERISTICS/SETTINGS PATHOBIOLOGY

Calcific aortic valve
disease (CAVD)
a.k.a. senile calcific
aortic stenosis

Calcification of aortic valve leaflets
Advanced age, bicuspid aortic valvfe,
hypercholesterolemia, metabolic syndrome, diabetes,
hypertension,

Fibrofatty expansion of valve fibrosa, splitting of elastic
laminae, oxylipid deposition. Both osteogenic
mineralization and amorphous calcium phosphate
nodules deposited. True ectopic ossification-- woven
bone formation -- in ~13% of specimens, but ectopic
osteogenic interstitial cells (VICs) and circulating osteo-
progenitors contribute to valve osteogenic cell
populations.

Atherosclerotic intimal
calcification (AIC)

Calcification of atherosclerotic plaques; eccentric,
lumen-deforming, oriented by patchy intimal
lipoprotein deposits. Same risk factors as CAVD.

Focal fibrofatty atherosclerotic plaque calcification with
VSMC chondroid metaplasia and endochondral
mineralization observed at base of lesions. Calcifying
vascular cells (CVCs) related to pericytes also contribute.
Driven by oxylipids from oxLDL. Lipid core and fibrous
microcalcifications, focal elastinolysis noted.

Arterial medial
calcification (AMC,
sometimes MAC)
a.k.a. Mönckeberg’s
medial calcific sclerosis

Calcification of the arterial tunica media; concentric,
extensive, almost confluent. Common in type II
diabetes, autonomic neuropathy, end stage renal
disease / CKD5

Circumferential calcification of the tunica media with
lipidaceous matrix vesicles, elastinolysis, and early
expression of membranous mineralization programs
(later endochondral). Inflammation-driven adventitial –
medial BMP-Wnt signaling directs initial osteogenic
programming of vascular multipotent mesenchymal
progenitors (pericytes, CVCs).

Vascular calcification
of chronic kidney
disease
a.k.a. chronic kidney
disease - mineral &
bone disorder (CKD-
MBD)

CKD5 with any of the above. Major perturbations in
calcium phosphate homeostasis, & reductions in
serum fetuin, pyrophosphate.

VSMC apoptosis and osteochondrogenic metaplasia
driven by hyperphosphatemia, worsened by iatrogenic
hypoparathyroidism and low-turnover bone disease.
Occurs most often in settings of antecedent medial and
atherosclerotic disease processes that initiated prior to
uremia

Calcific uremic
arteriolopathy (CUA),
a.k.a. calciphylaxis

CKD4 or CKD5 with dermal arteriolar medial
calcification and dermal fat necrosis, usually of
pannus, buttocks, or lower extremities. Usually on
warfarin.

Arteriolar (generally < 50 micron diameter) medial
calcification with fibroproliferative occlusion leads to
tissue necrosis. Dermal fat, lung, and mesentery most
significantly affected. Warfarin impairs matrix Gla
protein (MGP) gamma carboxylation and functions,
including BMP2/4 inhibition & fetuin-dependent
clearance of mineralizing matrix vesicles.
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