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Abstract

Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral 

human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show 

tremendous individual variation in their capacity to transmit disease. A key factor in this capacity 

is the group of genetically encoded immune factors that counteract infection by the pathogen. 

Arthropod-specific pattern recognition receptors and protease cascades detect and respond to 

infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and 

transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. 

Effector responses are initiated by damage signals such as reactive oxygen species signaling from 

epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is 

primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial 

peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked 

to related traits of longevity and fertility, and arthropods have the capacity for innate 

immunological memory. Advances in understanding vector immunity can be leveraged to develop 

novel control strategies for reducing the rate of transmission of both ancient and emerging threats 

to global health.
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The phylum arthropoda—crustaceans, arachnids, and insects—is by far the largest in the 

animal kingdom. Insects play key roles in natural ecosystems, pollinate our crops, make 

honey, and can even be food! Yet blood-feeding, or hematophagous, arthropods—

mosquitoes, sand flies, ticks, etc.—serve as vectors for devastating human diseases, 

including malaria, sleeping sickness and Chagas disease, leishmaniasis, Dengue, and Zika 

virus (Table 1). For vector-borne diseases, transmission represents a vulnerable and 

attractive point of attack.1 Vector control remains the most generally effective measure for 

preventing malaria transmission2 and is essential for the control of Dengue and Zika 

outbreaks in the absence of safe and effective vaccines.

A notable feature of arthropod disease vectors is the tremendous variation observed between 

individuals in their susceptibility to infection by the pathogen (known as vectoral capacity). 

Plasmodium (the causative agent of malaria) infects Anopheles mosquitoes, while Dengue 

virus infects Aedes mosquitoes, but not vice versa. A major part of this variation is due to 

genetically encoded factors such as immunity. In agriculture, beneficial insects such as 

honey bees are threatened by numerous pathogens, including viruses, bacteria, fungi, 

protozoa such as Nosema, and mites such as Varroa. Simultaneously, viruses (e.g., nuclear 

polyhedrosis virus), bacteria (e.g., Bacillus thuringiensis), fungi (e.g., Beauveria bassiana), 

and nematodes (e.g., Heterorhabditis) are used for biological control of agricultural and 

nuisance pests. For all these reasons, a range of researchers have become increasingly 

interested in the immune response of insects.

Arthropods rely solely on innate immunity to protect themsleves from infectious agents. The 

study of innate immunity in insects has led to major advances in human immunology, such 

as the discovery of Toll-like receptors.3 Arthropod physiology is simpler than that of 

vertebrates, with a single internal body cavity (hemocoel) and circulating fluid 

(hemolymph), but the principal components of innate immunity are conserved between the 

two phyla. These include (i) physical and chemical barriers to infection at epithelial 

surfaces, (ii) circulating proteins that detect, bind, or neutralize pathogens (humoral 

responses) by processes such as lysis, agglutination, and melanization, and (iii) circulating 

cells (hemocytes) that combat pathogens by processes of phagocytosis and encapsulation.4

These components communicate in a structured response to infection. First, pattern 

recognition receptors (PRRs) detect pathogen-associated molecular patterns (PAMPs) or 

“danger signals” associated with cell damage or stress.5,6 Second, PRRs activate effector 

proteins in the hemolymph (extracellular pathogen) or cytoplasm (intracellular pathogen) 

and signal transduction in surrounding tissues via the Toll, Imd, JNK, and JAK/STAT 

pathways, resulting in multiple transcriptional responses. Third, pathogen-bound PRRs and 

effector proteins recruit immune cells to phagocytose or encapsulate pathogens, while 

transcriptional responses ramp up secretion of antimicrobial peptides and other effector 

proteins to neutralize extracellular infections, RNAi, and other antiviral pathways to restrict 

viral infection and apoptotic/autophagic pathways to kill intracellular pathogens or the 

infected cell itself. Finally, wound healing and clearance pathways such as melanization 

restore the integrity of physiological barriers.
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Recent structural and functional studies, leveraged by accompanying advances in genomics 

and proteomics, show that despite their similarities a vast font of biochemical diversity exists 

in the immune systems of arthropods compared to that of vertebrates. In the absence of 

adaptive immunity and under conditions of r-selection, a high degree of allelic variation in 

immune genes and repertoires of immune complexes provide robustness and adaptation of a 

population in the face of new pathogens. This review covers the molecular mechanisms of 

innate immunity in arthropods with a specific focus on insect and tick vectors of human 

disease. First, the physiology of insect immunity and routes of pathogen transmission are 

outlined. Second, the structure and function of molecules engaged in the principal 

components of arthropod immunity are presented, and their roles within the different 

components of the immune response and against distinct classes of pathogens. The review 

concludes with the current state of application of this knowledge in the control of arthropod 

populations and an outline of the many unanswered questions in the field.

PHYSIOLOGY, IMMUNITY, AND VECTOR-BORNE PATHOGENS

An overview of arthropod physiology and the life cycles of vector-borne pathogens is shown 

in Figure 1. An insect’s first line of defense is an exoskeleton formed of chitin, a polymer of 

β-1,4-N-acetylglucosamine.7 Linear polymers form antiparallel crystalline fibers of α-chitin. 

These nanofibers are embedded in a protein/lipoprotein matrix cross-linked by two related 

processes. Sclerotization is the modification and cross-linking of peptides by a range of o-

diphenols derived from N-acetyl dopamine (NADA) and N-β-alanyl dopamine (NBAD), 

while melanization is the formation of phenolic polymers from tyrosine via the intermediate 

dopachrome.8 Both processes are catalyzed by phenol oxidase (PO), a type 3 dicopper 

enzyme homologous to catechol oxidase and tyrosinase.9,10 The cuticle is formed by hard, 

impermeable lamellae composites of sclerotized chitin. A porous, nonlamellae chitinous 

membrane, the peritrophic matrix (PM), is secreted from the epithelium of the gut to 

physically separate the contents of the lumen,11 and chitin microfibrils run as spirals along 

the inside of the trachea.

Beneath these barriers lie epithelial cells. Midgut epithelial cells secrete proteins and glycans 

from their apical surface to form a mucosal extracellular matrix and a layer of carbohydrate 

known as a glycocalyx to insulate the plasma membrane from the lumen. Epithelial cells 

form tight junctions, known as septate junctions (SJ), to create an impermeable barrier 

between the exterior and the hemocoel and secrete immune sensing/effector proteins into the 

lumen and the hemocoel. Beneath the epithelium, a second physical barrier, the basal 

lamina, composed of collagen, laminin, and proteoglycans separates the epithelium from the 

circulatory fluid, or hemolymph.

The insect hemolymph volume and cell density vary greatly among insects (0.3–0.4 μL, 

103–104 cells in Drosophila, Anopheles, and Aedes).12 Hemolymph contains several types 

of cells, or hemocytes: (i) plasmatocytes and granulocytes, (ii) lamellocytes, and (iii) 

oenocytoids or crystal cells.13 Phagocytosis, the engulfment of bacteria and other small 

particles, is performed by plasmatocytes (Drosophila melanogaster) or granulocytes 

(Anopheles gambiae). Some granulocytes facilitate agglutination, clumping pathogens and 

hemocytes together, or coagulation of hemolymph in response to wounding. Lamellocytes 
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encapsulate particles too large to be phagocytosed, forming an impervious barrier several 

cells thick. Oenocytoids release prophenol oxidase (PPO) that is converted to PO, catalyzing 

melanization of agglutinated/encapsulated particles and wound healing. Hemocytes secrete 

immune factors into the hemolymph to both sense and engage pathogens. Additional 

immune factors are secreted from the fat body, a mesodermal tissue distributed throughout 

the hemocoel.

Insects face constant assaults by pathogens through ingestion or inhalation. Pathogens 

follow a variety of life cycles within their insect vector. Baculoviruses, bacteria, fungi, and 

Plasmodium parasites secrete chitinases to penetrate chitinous barriers. A number of 

pathogens complete their life cycle within the digestive tract. Kinetoplastids escape from the 

posterior end of the PM, from which they migrate to the mouth (T. brucei and Leishmania 
major) or anus (T. cruzi) to exit the insect vector upon the next blood meal.14,15 Y. pestis 
(plague) forms biofilms in fleas’ mouth parts (proventriculus) that result in transmission to a 

host upon subsequent blood meals, while flea and louse-borne Rickettsia (typhus) are 

excreted in feces.16

Pathogens, including arboviruses such as Dengue and Zika, bacteria such as Borrelia and 

Rickettsia, and Plasmodium parasites, can also traverse the hemocoel to reach the mouth 

parts (horizontal transmission) or ovaries (vertical transmission). Viruses are intracellular 

pathogens, initially infecting the midgut epithelium, then secondary tissues such as 

hemocytes and the fat body, and eventually salivary glands and ovaries. The rickettsiae are 

intracellular pathogens that invade the hemocoel; some species are pathogenic to the insect 

vector. The rickettsiae, like arboviruses, are capable of transovarial transmission.

The extracellular bacterium Borrelia migrates from the midgut of a feeding tick to the 

salivary gland to infect a vertebrate host and is then reingested and infects the vector.17 

Plasmodium parasites are extracellular pathogens, traversing the midgut epithelium to form 

cysts between the basal labyrinth and the basal lamina. Over a period of 10–21 days, 

hundreds of parasites develop within cysts, which eventually rupture, releasing parasites into 

the hemocoel where they traffic to the salivary glands. Helminths invade the hemocoel and 

migrate to the head but not the salivary glands. Rather, worms break out of the proboscis 

during feeding and infect the vertebrate host from the skin.

PATTERN RECOGNITION RECEPTORS AND PROTEASE CASCADES

PGRPs and GNBPs for Detecting Infection

Peptidoglycan recognition proteins (PGRPs) and Gram-negative binding proteins (GNBPs) 

are PRRs that detect Gram-positive (Gram +) and Gram-negative (Gram−) bacteria and 

fungi, leading to intracellular signal transduction (Figure 2).18–20 Peptidoglycan (PGN) is an 

essential component of bacterial cell walls consisting of β-(1–4)-linked N-

acetylglucosamine and N-acetylmuramic acid polymers cross-linked by short peptides. L-

Lysine is found at the third position of the peptide chain in most Gram+ bacteria, whereas 

Gram− bacteria and Bacilli have meso-diaminopimelic acid (DAP) at this position. The 

PGRP PGN binding domain (∼165 amino acids) is homologous to bacteriophage T7 

lysozyme, a Zn2+-dependent amidase that hydrolyzes the amide bond between N-
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acetylmuramic acid and L-alanine of PGN, but most PGRPs lack amidase activity because 

of the absence of a key cysteine for Zn coordination.

Sensing of Gram+ bacteria in the hemolymph is mediated by a complex of PGRP-SA and 

GNBP1. GNBP1 hydrolyzes Lys-type PG to fragments recognized by PGRP-SA. Fungal 

pathogens are separately detected by GNBP3. Both PGRP-SA/GNBP1 (Gram+) and GNBP3 

(fungi) activate a protease cascade culminating in cleavage of the cysteine knot protein 

Spätzle (SPZ).21 Cleaved Späztle binds to the cell surface receptor Toll, inducing receptor 

dimerization and signaling.

A separate system of PGRPs activates the Imd pathway in response to Gram− bacteria. 

DAP-type PG and 1.6-anhydro MurNac are recognized by PGRP-LC, a transmembrane 

receptor. PGRP-LC has three splice isoforms (LCa, LCx, and LCy) that heterodimerize upon 

binding tracheal cytotoxin (TCT) to induce signaling. The structures of the PG domain of 

PGRP-LE and PGRP-LCx in complex with TCT reveal that the discrimination between 

DAP-type and Lys-type PGN is achieved by an arginine residue found in both proteins. 

PGRP-SD, initially reported to detect certain Gram+ bacteria, also binds DAP-PGN was 

recently shown to enhance activation of the Imd pathway.22

PGRP-LC signaling is enhanced by PGRP-LE. Full-length PGRP-LE is localized 

cytoplasmically where it senses intracellular pathogens, while a truncated form of PGRP-LC 

is localized extracellularly where it binds and recruits TCT to PGRP-LC. Other PGRPs 

inhibit the Imd pathway, such as the transmembrane receptor PGRP-LF that inhibits 

signaling by interacting with PGRP-LC. Finally, catalytic PGRPs such as PGRP-LB act as 

scavengers by hydrolyzing PGN to suppress immune responses.

CLIP Proteases in Sensing and Effector Pathways

Proteolytic cascades in vertebrates regulate complement activation and blood clotting. A 

similar role is played by the arthropod-specific family of CLIP serine proteases (SP).23,24 

CLIPs comprise an N-terminal disulfide-rich “clip” domain (resembling a paper clip),25,26 a 

linker of variable length, and a C-terminal chymotrypsin-like protease domain.27–29 The clip 

and SP domains may be tightly or weakly associated. Phylogenetic analysis has identified 

four clades in arthropod CLIPs, CLIPA–D.30 CLIPAs are serine protease homologues 

(SPHs) in which the catalytic serine is mutated. CLIPB–D SPs are principally distinguished 

by homology within the clip domain. CLIPs are secreted as inactive zymogens and activated 

by proteolysis in a conserved loop near the N-terminus of the SP domain.

A CLIP SP cascade regulating Toll signaling in response to Gram+ bacteria and fungi has 

been identified in D. melanogaster, the mealworm beetle Tenebrio molitor, and the tobacco 

hornworm Manduca sexta. The nonclip protease ModSP is activated by PGRP-SA/GNBP131 

and in turn activates CLIPB SP Grass (D. melanogaster),32 SAE (Te. molitor),33 or HP6 (M. 
sexta).34 Grass cleaves the CLIPC SP Spirit,35 though spirit mutants retain Toll activity (B. 

Lemaitre, personal communication). The proteolytic cascade terminates with CLIPB SP 

Spätzle-processing enzyme (SPE) (Drosophila and Te. molitor)36,37 or HP8 (M. sexta), 

which cleaves the Toll ligand Spätzle. SPE can be independently activated by the CLIP SP 
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Persephone in response to fungal infection.38,39 Persephone is activated by “danger signals” 

such as proteases secreted by pathogens or indicators of cell stress.32,40

Another CLIP cascade regulates the melanization response to infection and injury, 

culminating in the conversion of PPO to PO. D. melanogaster PPO2 is activated by the 

CLIPB SPs Sp7/MP2 and MP1,41–43 or a CLIPC SP, Hayan, specifically in response to 

wounding.44 Orthologous PPO-activating CLIPB SPs are SPE (Te. molitor),37 PAP1–3 (M. 
sexta),45,46 CLIPB9 (A. gambiae),47 IMP-1 (Aedes aegypti),48 and PPAF-I (Holotrichia 
diomphalia).27,28 Some additional upstream CLIPs in the melanization cascade are known. 

A. gambiae CLIPB8 participates in the melanization cascade but cleaves neither CLIPB9 nor 

PPO directly.49 M. sexta HP6 cleaves PAP1,34 and HP21 cleaves PAP2 and −3.50 H. 

diomphalia PPAF-III acts upstream of PPAF-I.51

CLIPA SPHs also play key roles in CLIP cascades despite not being active proteases. 

Cleavage of H. diomphalia CLIPA SPH PPAF-II by PPAF-III or Te. molitor SPH1 by SAE 

results in the formation of an oligomeric complex with PPO.27,37 PPAF-II is cleaved in the 

penultimate loop of the CLIP domain. Disulfide bonds prevent dissociation of the PPAF-II 

clip domain,27,51 unlike the CLIP domain of PPAF-I. In M. sexta, SPHs are required for 

efficient cleavage of PPO by PAP-1.52 Thus, CLIPA SPHs act as proteolysis-inducible 

binding partners to regulate CLIP proteolytic cascades.

Anopheles genomes have 53–95 CLIPs53 that are involved in lysis and melanization of 

Gram− bacteria, Plasmodium parasites, and entomopathogenic fungi.54,55 Three CLIPA 

SPHs–CLIPA2, CLIPA5, and CLIPA7–are inhibitors of melanization, while CLIPB3, 

CLIPB4, CLIPB8, CLIPB17, and SPH CLIPA8 are required for robust melanization. 

Nevertheless, the majority of CLIPs, of which a typical insect has dozens, remain 

uncharacterized.

MOLECULAR EFFECTORS OF IMMUNITY

Insects have several signaling pathways for detecting infection. The successful detection of 

infection initiates the Toll, Imd, JNK, and JAK/STAT signal transduction cascades. This 

results in multiple systemic responses to counter infection.

Antimicrobial Peptides (AMPs)

The most well-studied systemic response is secretion of antimicrobial peptides (AMPs). 

Dozens of AMP genes in four structural classes have been identified in insect genomes 

targeting Gram+ bacteria, Gram− bacteria, and fungi.56 While AMP gene families show 

high rates of gene duplication and deletion, they do not typically exhibit rapid evolution 

compared to that of other immune genes, suggesting they are subject to balancing selection 

whereby pathogens adapt to the most common genotypes within a population.57 AMPs are 

generally small (<10 kDa), cationic, amphipathic peptides that bind to and disrupt microbial 

cell membranes. Multiple mechanisms of action have been identified, including pore 

formation/membrane depolarization,58 binding lipid II,59,60 and inhibition or delocalization 

of membrane proteins.61
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Insect Thioester-Containing Proteins (iTEPs)

Thioester-containing proteins (TEPs) make up a superfamily of 150–200 kDa secreted 

proteins, containing an intramolecular β-cysteinyl–γ-glutamyl thioester bond, that function 

as effector arms of innate immunity (Figure 3).62 Arthropod TEPs have two well-studied 

vertebrate counterparts, complement factors and α2-macroglobulins (A2Ms).63,64 

Complement factors are deposited on pathogen surfaces where they enhance phagocytosis 

(opsonization), recruit immune cells (chemotaxis), and direct the lysis of pathogens. A2Ms 

are pan-protease suicide inhibitors that sequester proteases, inhibiting their activity toward 

macromolecular substrates. The thioester mediates covalent attachment of a TEP to its 

substrate, though in some TEPs the actual thioester motif is mutated. Complement factors 

and A2Ms are found in crustaceans and arachnids but not insects, while arthropods have two 

distinct TEP families: insect TEPs (iTEPs) and macroglobulin/complement-related (MCR).

The structure of iTEPs comprises eight macroglobulin domains (MG1–8), with nested 

insertions of a β-sheet domain (CUB), and the α-helical thioester domain (TED) between 

MG7 and MG8. The thioester bond is sequestered from the solvent by a protein–protein 

interface between TED and MG8. A large conformational change triggered by cleavage in a 

protease-sensitive region within the MG6 domain exposes the thioester in the direct 

proximity of a substrate. The best-studied iTEP is TEP1 from the malaria vector A. gambiae 
(TEP1),65 a structural homologue of complement factor C3.66 TEP1 opsonizes Gram− 

bacteria and targets Plasmodium parasites for lysis. Distinct TEP1 alleles are found in A. 
gambiae strains that are susceptible (S) or refractory (R) to Plasmodium infection.67,68

A major difference between complement factors and iTEPs is the anaphylatoxin domain 

(ANA). ANAs are cytokines that act as molecular wedges in the inactive conformation of the 

complement, stabilizing the TED–MG8 interface. Activation by a specific protease complex, 

known as a convertase, releases ANA and induces a massive conformational change that 

exposes the thioester bond. In place of ANA, TEP1 is regulated by the leucine-rich-repeat 

(LRR) proteins LRIM1 and APL1C,69,70 members of the mosquito-specific LRIM family.71 

LRIM1 and APL1C form a heterodimeric complex via C-terminal coiled-coil domains with 

an interposed helix–loop–helix motif.72 Cleavage of TEP1 in the protease-sensitive region 

produces TEP1cut, which requires the LRIM1/APL1C heterodimer for stability both in vitro 
and in vivo.73,74

The TEP1cut/LRIM1/APL1C complex is proposed to be recruited to surfaces where TEP1cut 

is activated and attaches to the substrate, initiating a positive feedback of TEP1 deposition 

and effector immune responses. The CLIP SPH SPCLIP1 is required for accumulation of 

TEP1 on microbial surfaces.75 In contrast, CLIPA2 is recruited to microbial surfaces but 

inhibits accumulation of additional TEP1.76 SPCLIP1 and CLIPA2 are proposed to interact 

with a TEP1 “convertase”, a pivot point between immune recognition and effector 

responses.

Far less is known about the role of iTEPs in other insects. Ae. aegypti TEP2 limits infection 

with Dengue virus (DENV), an emerging infectious disease of major global significance.77 

D. melanogaster contains four iTEPs (Tep1–4) with a canonical thioester motif.78 Tep1–4 
are upregulated in the fat body following immune stimulation. The TEPs appear to be 
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differentially involved in directed immune responses to a wide variety of pathogens. Tep2 
knockdown (kd) in Drosophila S2 cells reduces the phagocytosis of Escherichia coli, while 

Tep3 kd reduces the phagocytosis of C. albicans;79 Tep2–Tep4 ko in flies did not result in 

reduced phagocytosis or survival for a number of pathogens, suggesting iTEP function is 

dependent on the infection model.80 For instance, Tep2 and Tep4 ko flies show impaired 

survival relative to that of wild-type flies when challenged with Porphyromonas gingivalis,81 

and Tep3 reduces mortality from infection by the entomopathogenic nematode (EPN) 

Heterorhabditis bacteriophora.82

Transglutaminases

Transglutaminases (TGs) catalyze the deamidation and transamidation of glutamine, cross-

linking of proteins by formation of ε-(γ-glutamyl)lysine isopeptide bonds, and play vital 

roles in blood clotting, regulating cellular responses to stress, and formation of the 

epithelium.83 Most insects, including Drosophila and Aedes, have a single TG that promotes 

hemolymph coagulation upon injury, trapping pathogens entering through the cuticle.84 TGs 

are also involved in cuticle morphogenesis; D. melanogaster kd has an abnormal 

morphology and a pupal semilethal phenotype.85

D. melanogaster TG kd also leads to a significant reduction in life span in adults reared 

under normal, but not germ-free, conditions.86 Interestingly, the latter effect is proposed to 

result from a lack of immune tolerance to commensal bacteria rather than suppression of 

immune responses to infection. Culex and Anopheles share a second TG. The role of the 

second TG in Culex and Anopheles is still ambiguous. However, A. gambiae TG2 was 

recently shown to be upregulated by wounding and involved in injury-induced immune 

responses that are cross-reactive against human malaria,87 suggesting its role is similar to 

that of A. gambiae TG1.

EPITHELIAL AND CELL-MEDIATED IMMUNE RESPONSES

Reactive Oxygen Species (ROS) Signaling

Pathogenic invasion or injury of barrier epithelia leads to the generation of reactive oxygen 

species (ROS) by the Nox/Duox family of oxidases. Drosophila Duox is responsible for 

limiting microbial proliferation in the gut,88 stimulates epithelial renewal,89 and promotes 

cuticle formation by catalyzing the cross-linking of tyrosine.90 Duox expression and activity 

are “fine-tuned” to induce ROS in the case of infection yet limit oxidative damage under 

physiological conditions.91 In the malaria vector A. gambiae, Duox and the peroxidase 

HPX15/IMPer act as negative regulators of the immune response; RNAi kd of Duox and 

IMPer results in a significant reduction in the extent of Plasmodium infection.92

Invasion of Plasmodium parasites damages epithelial cells, resulting in nitric oxide synthase 

(NOS) and peroxidase, NO production, and ultimately apoptosis.93,94 NOS has been 

proposed to act as a chemical “time bomb” for the host cell that is toxic to the invading 

parasite,95 but evidence suggests most parasites are killed in the extracellular space between 

the epithelium and the basal lamina.96 However, epithelial nitration modifies Plasmodium 
surface proteins on parasites that are subsequently targeted for lysis by TEP1.97 RNAi 
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silencing of the peroxidase HPX2 or NADPH oxidase NOX5 eliminates subsequent lysis of 

parasites. Furthermore, African Plasmodium falciparum parasites evade destruction by 

expressing a surface protein Pfs47,98 which acts to suppress JNK signaling that regulates 

HPX2/NOX5-mediated nitration.99

Phagocytosis and Opsonization

ROS signaling arising from epithelial wounding also attracts hemocytes that rapidly 

commence phagocytosis of invading bacteria.100 While plasmatocytes or granulocytes are 

generally phagocytic, a wide range of immune effectors influence phagocytosis.101,102 

Opsonins bind directly to pathogens to enhance phagocytosis; known arthropod opsonins 

include iTEPs,103 lectins,104 fibrinogen-related proteins (FREPs),105 and the hypervariable 

IgG domain protein Dscam.106,107

Opsonins are detected by cell surface receptors on hemocytes, some of which are orthologs 

of vertebrate macrophage receptors. The putative receptor for TEP1 is an ortholog of 

mammalian A2M receptor LRP1,103 while another family, scavenger receptor class B, 

consists of orthologs of mammalian CD36.108 Arthropod-specific receptors include 

scavenger receptor class C (Sr-C) and the EGF-repeat receptors Eater and Nimrod.109,110 

Hemocytes may also phagocytose fragments of self-tissues, termed autophagy, stimulated by 

the distinct EGF-repeat receptor Draper,111,112 an ortholog of Caenorhabditis elegans 
CED-1 and mammalian MEGF10.

Macroglobulin Complement-Related (MCR)

The arthropod TEP MCR is highly conserved with almost exclusively a single gene and 

strict 1:1 orthologs throughout Insecta. Compared to other TEPs, MCR has insertions within 

the N-terminal chain, an LDLa domain in place of the complement ANA, a mutated 

thioester motif, and a C-terminal transmembrane helix in most known sequences. The 

closest vertebrate ortholog is CD109, a GPI-linked TEP localized to the surface of 

thrombocytes, activated T-cells, and endothelial cells that serves as a negative regulator of 

TGF-β signaling.

D. melanogaster Mcr has an essential role in epithelial development, the proper formation of 

septate junctions between cells, without which the epithelium is malformed and 

permeable.113,114 Mcr is also reported to function in hemocytic immune responses. Mcr is 

expressed in plasmatocytes. Mcr kd in S2 cells led to a defect in the phagocytosis of C. 
albicans,79 although no phenotype was observed when dsMcr flies were challenged in 
vivo.80 Notably, hemocytes form septate junctions during the process of encapsulation, 

where layers of cells form an impermeable barrier around a foreign body too large to be 

phagocytosed.115 Thus, it seems likely that MCR, like Toll, plays a dual role in both 

development and immunity.

ANTIVIRAL IMMUNITY

Arboviruses, viruses transmitted to humans via arthropod vectors, are of great historic and 

topical significance, including yellow fever (YFV), Dengue (DENV), Japanese encephalitis 

(JEV), Rift Valley fever (RFV), West Nile virus (WNV), O’nyong’nyong (ONNV), 
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Chikungunya (CHIKV), and most recently Zika (ZIKV). Most arboviruses are (+)ssRNA 

viruses of the genera Flavivirus (YFV, JEV, DENV, WNV, and ZIKV) and Alphavirus 
(ONNV and CHIKV). The dominant arbovirus vectors are mosquitoes of the genus Aedes 
(primarily Ae. aegypti and Aedes albopictus) and Culex, while anopheline mosquitoes are 

primary vectors only for ONNV. Ticks are vectors for several arboviruses, mainly tick-borne 

encephalitis (TBE).

The main immune response of insects to arbovirus infection is from small interfering RNA 

(siRNA).116 Small viral RNAs are found in infected Ae. aegypti,117 and silencing of siRNA 

components—Dcr2, Ago2, TSN, and r2d2—increases viral titers in Ae. aegypti and A. 
gambiae.118,119 Infecting Ae. aegypti with recombinant Sindbis containing DENV RNA 

protected them from subsequent DENV infection. A second, Dicer-independent, form of 

RNAi is Piwi-interacting RNA (piRNA), 24–30-nucleotide small RNAs with a bias for 5′U 

on antisense and 10A on sense strands that restricts transposon activity. The Piwi gene 

family is greatly expanded in arbovirus vectors Aedes and Culex compared to Drosophila. 

piRNAs are detected in virus-infected Ae. aegypti cell lines and mosquitoes.

The importance of RNAi-mediated immunity is evidenced by the rapid evolution and 

positive selection of genes in RNAi pathways.120 Arboviruses infect only a fraction of the 

population and so are unlikely to be common drivers of selective pressure, but genetic 

diversity does correlate with lower vector competence in the field.121 Flaviviruses can 

suppress RNAi immune responses in the host through transcription of a small structured 

noncoding RNA, sfRNA.122 Arboviruses can persist in mosquitoes either as a latent 

infection during diapause or by transovarial transmission to future generations. Despite 

lacking reverse transcriptases, it has recently been shown that arboviruses may even persist 

by integration into host genomes through the action of endogenous reverse transcriptases.123

Viral infection also leads to activation of other effector immune responses such as the JAK-

STAT pathway,124 leading to secretion of antiviral effectors such as the interferon-like 

cytokine Vago,125 and AMPs.126 TEPs also play a role in antiviral immunity. Drosophila 
employs transcriptional pausing to regulate a rapid antiviral immune response, including 

rapid transcription of Tep2.127,128 Ae. aegypti TEPs, and specifically Ae. aegypti MCR, 

restrict Dengue infection via an interaction with scavenger receptor class C (SR-C).77,129

FERTILITY, LONGEVITY, AND IMMUNOLOGICAL MEMORY

The arthropod immune system changes with age, an important factor given infectious 

vectors are significantly older than the population average. RNA transcripts upregulated in 

Drosophila at 4 weeks of age versus 1 week of age are enriched with immunity-related 

genes, including PGRPs, the NF-kB homologue Relish, and effector genes such as AMPs 

and Tep4.130 Upregulation of Drosophila immune genes is observed upon mating,131,132 yet 

in general, immunity trades off with reproductive output.133 An age-related decline in 

Anopheles fecundity is correlated with reactive oxygen species, countered by administration 

of antioxidants and catalase activity.134
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This trade-off occurs at the molecular level where proteins play dual roles in development, 

immunity, and/or fertility. A. gambiae TEP1 targets not only pathogens but also damaged 

spermatogonia in the male.135 TEP1 alleles associated with higher fertility are associated 

with increased susceptibility to Plasmodium. This suggests that common danger signals 

arise from damaged spermatogonia and epithelial damage from invasion by malaria parasites 

and moreover that selective pressure to maximize male fertility might have undesired 

consequences on the vectoral capacity of females for malaria.

Activation of innate immunity causes long-lasting changes that can protect insects from 

future infection. This is explained by two related immunological concepts once considered 

exclusive to adaptive immunity. Immune priming is enhancement of the immune response to 

infection by prior immune system activation.136 Immune memory is the ability of the 

immune system to store or use information on a previously encountered pathogen,137 

implying a degree of specificity in the secondary response.138,139 Immune priming by 

bacteria causes hemocyte differentiation in Anopheles mosquitoes that suppresses 

subsequent Plasmodium infection,140 mediated by a soluble factor within the hemolymph 

identified as a lipoxin/lipocalin complex.141 Gut microbiota also activate the immune 

responses of Aedes to arboviruses.142 However, priming comes at a cost for fecundity,143 

again suggesting that selective pressure to reproduce has undesirable consequences for 

vectoral capacity.

Priming is actually required for immune system development. The tsetse fly Glossina 
morsitans harbors the maternally transferred endosymbiont Wigglesworthia and commensal 

Sodalis. Flies raised under aseptic conditions are immunocompromised as evidenced by 

reduced populations of hemocytes, a lack of ROS/iTEP/AMP induction upon infection, and 

increased susceptibility to bacteria and trypanosomes.144,145 Drosophila hemocytes are 

primed by autophagy of cell corpses during larval development, mediated by Ca2+-triggered 

JNK signaling and the cell death receptor Draper.146 The obligate endosymbiont Wolbachia 
is common in numerous insects, and the engineered life-shortening strain wMelPop primes 

Ae. aegypti for refractoriness to Dengue, Chikungunya, and Zika virus, Plasmodium 
gallinaceum, and filarial nematodes.147–149 Natural and deliberate Wolbachia infection 

stimulates immune gene expression in anopheline mosquitoes and reduces vectoral capacity 

for Plasmodium.150–152

Priming does not fully explain the role of Wolbachia infection, however, because in its 

natural host Drosophila wMelPop does not lead to Toll or Imd activation, yet infection still 

induces an antiviral response.153–155 Indeed, the presence of Wolbachia blocks viral genome 

replication without evidence of a transcriptional response in the canonical siRNA 

pathway.156 Other potential mechanisms for the immune enhancement of Wolbachia are 

resource competition, cytoplasmic remodeling, and other intrinsic factors.

CONCLUSION

Several strategies for translating the expanding knowledge of arthropod innate immune 

responses to reduce the rate of transmission of human pathogens are being explored. One 

approach is the use of entomopathogens for biological control. Bacillus thuringiensis 
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israelensis (Bti) is a broad-spectrum and cost-effective mosquito larvicide.157,158 Fungal 

biopesticides are also being investigated for control of mosquitoes, triatomes, and 

ticks.159–162 A second effort is focused on developing transgenic mosquitoes refractory to 

malaria transmission by the expression of anti-Plasmodium factors, blocking invasion of the 

midgut of salivary gland epithelia, or manipulation of the mosquito immune system.163 

Given the known trade-off among immunity, longevity, and fertility, the spread of a 

transgene through wild populations is a significant hurdle; this can be overcome with gene 

drive mechanisms.164

Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector 

molecules, combines the strategies described above using viral, bacterial, and fungal 

pathogens.165–167 Wolbachia in particular, besides its immune effect, contains an intrinsic 

genetic drive mechanism, and life-shortening strains of Wolbachia reduce population life 

span, effectively preventing transmission by eliminating the older, infectious members of the 

population. This approach has proven effective in multiple field trials with negligible 

risk.168,169

Nevertheless, there are numerous questions outstanding. Many humoral immune factors—

PGRPs, GNBPs, CLIPs, etc.—remain uncharacterized. Given the many species-specific 

expansions in these gene sets, it will be a significant task to determine functional redundancy 

and crosstalk in extracellular sensing and effector pathways. Similarly, the function of iTEPs 

is largely undescribed outside A. gambiae; the precise function of LRIMs is not known, nor 

have their orthologs (if any) outside mosquito genomes been identified. The dual roles of 

iTEPs and MCR in development and immunity remain to be elucidated. While biopesticides, 

transgenesis, and paratransgenesis are promising strategies for translating knowledge from 

lab to field, in the future, advances may result in the development of small molecules (e.g., 

lipoxin derivatives) that stimulate arthropod immune systems to block disease transmission. 

If these strategies can be deployed as part of an integrated disease eradication program, we 

may look forward to the day when bug bites are just a nuisance, not a deadly threat.
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Figure 1. 
Physiology of the insect immune system and infection by different disease vectors. 

Kinetoplastids and some bacteria live in the gut lumen; T. brucei and Y. pestis infect a new 

host by regurgitation, while T. cruzi and typhus are excreted onto the new host’s skin. 

Arboviruses infect cells of the gut epithelium and progress to the esophagus and eventually 

the salivary glands. Plasmodium parasites traverse the epithelium and form oocysts, from 

which they emerge and invade the salivary glands from the hemocoel. Borrelia spirochetes 

also invade the salivary glands. Helminths invade the insect head parts, exit the cuticle, and 

infect new hosts by the exterior of the proboscis.
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Figure 2. 
Pattern recognition receptors and protease cascades. Proteins of known structure are shown 

in surface representation and unknown structures in silhouette. (A) Peptidoglycan (Lys-

PGN) from Gram+ bacteria is detected by PGRP-SA/GNBP, stimulating a CLIP protease 

cascade terminating with Spätzle-processing enzyme (SPE). Yeast and fungi independently 

activate SPE via GNBP3 and Persephone (Psh), respectively. SPE cleaves the cysteine knot 

protein Spätzle, which dimerizes and binds the LRR receptor Toll. Peptidoglycan (DAP-

PGN) from Gram− bacteria is detected by the membrane receptors PGRP-LC. The PGRP-

LCa/LCx heterodimer detects the PGN fragment TCT; PGRP-LCx homodimers detect 

polymeric DAP-PGRN. PGRP-LE binds TCT, enhancing signaling, while PGRP-LFz 

inhibits PGRP-LC dimerization. (B) The final elements of the protease cascade terminating 

in CLIPB-dependent activation of PPO are conserved in flies, mosquitoes, beetles, and 

moths. Numerous CLIPAs, CLIPBs, and serpins regulate melanization cascades but are less 

conserved among insects.
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Figure 3. 
Thioester-containing proteins and epithelial/cellular immunity. (A) A. gambiae TEP1 is 

cleaved to TEP1cut in the hemolymph and stabilized by a heterodimeric complex of proteins 

LRIM1 and APL1C. Activation of TEP1cut results in deposition on a pathogen surface. The 

CLIPA SPHs CLIPA2 and SPCLIP1 act to inhibit and promote, respectively, further 

deposition of TEP1 via a putative convertase. CLIPA7 and CLIPA8 inhibit and promote, 

respectively, melanization downstream of TEP1 deposition. Unknown proteases are 

indicated by a question mark. (B) Epithelial injury results in ROS signaling that promotes 

local activation of iTEP immune responses and chemotaxis of hemocytes. Pathogens are 

opsonized by iTEPs, FREPs, and Dscam, recognized by EGF receptors Eater, Nimrod, and 

Draper. Foreign particles that too large to engulf are encapsulated by hemocytes. MCR is 

essential for the formation of septate junctions (SJs) between epithelial cells, is reported to 

effect in vitro phagocytosis of Candida albicans, and is anticipated to be involved in SJ 

formation during encapsulation.
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Table 1

Common Vector-Borne Diseases and Their Vectors

pathogen vector genus or species

flaviruses

 yellow fever, Japanese encephalitis, West Nile virus Dengue, Zika mosquitoes Aedes, Culex

 O’nyong’nyong, Chikungunya Anopheles, Aedes

bacteria

 Yersinia pestis (plague) fleas Xenopsylla

 Rickettsia prowazekii (typhus) lice Pediculus humanus

 Rickettsia (e.g., Rocky Mountain spotted fever), Borrelia (Lyme disease) ticks Dermacentor, Ixodes

protozoa

 Plasmodium (malaria) mosquitoes Anopheles

 Trypanosoma

  Trypanosoma cruzi (Chagas disease) kissing bugs Rhodnius, Triatoma

  Trypanosoma brucei (sleeping sickness) tsetse flies Glossina morsitans

 Leishmania (leishmaniasis) S flies Phlebotomus, Lutzomyia

filarial worms

 Onchocerca (river blindness) black flies Simulium

 Loa loa deer flies Chrysops

 Wucheria bancrofti, Brugia malayi mosquitoes Culex, Anopheles, Aedes, Mansonia
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