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Abstract

The main challenge in articulated body motion track-

ing is the large number of degrees of freedom (around 30)

to be recovered. Search algorithms, either deterministic or

stochastic, that search such a space without constraint, fall

foul of exponential computational complexity. One approach

is to introduce constraints — either labelling using markers

or colour coding, prior assumptions about motion trajec-

tories or view restrictions. Another is to relax constraints

arising from articulation, and track limbs as if their mo-

tions were independent. In contrast, here we aim for general

tracking without special preparation of subjects or restric-

tive assumptions.

The principal contribution of this paper is the develop-

ment of a modified particle filter for search in high dimen-

sional configuration spaces. It uses a continuation princi-

ple, based on annealing, to introduce the influence of narrow

peaks in the fitness function, gradually. The new algorithm,

termed annealed particle filtering, is shown to be capable of

recovering full articulated body motion efficiently.

1. Introduction

Marker-based human motion capture has been used commer-

cially [19] for a number of years with applications found

in special effects and biometrics. The use of markers how-

ever is intrusive, necessitates the use of expensive specialised

hardware and can only be used on footage taken especially

for that purpose. A markerless system of human motion cap-

ture could be run using conventional cameras and without the

use of special apparel or other equipment. Combined with

today’s powerful off-the-shelf PC’s, cost-effective and real-

time markerless human motion capture has for the first time

become a possibility. Such a system would have a greater

number of applications than its marker based predecessor

ranging from intelligent surveillance to character animation

and computer interfacing. For this reason the field of human

motion capture has recently seen somewhat of a renaissance.

Research into human motion capture has so far failed to

produce a full-body tracker general enough to handle real-

istic real-world applications. This gives an insight into the

difficulty of the problem. Research has concentrated on the

articulated-model based approach. The reason this approach

is popular is the high level output it produces in the form of

a model configuration for each frame. This output can easily

be used by higher-order processes to perform tasks such as

character animation.

The problem with using articulated models is the high

dimensionality of the configuration space and the exponen-

tially increasing computational cost that results. A realistic

articulated model (see figure 4) of the human body usually

has at least 25 DOF. The model used in this paper for ex-

ample has 29 DOF, and models employed for commercial

character animation usually have over 40.

A number of effective 2D systems have been presented

[7] [10]. These are good for applications such as surveil-

lance, however they do not provide output in the form of 3D

model configurations that are needed for applications such

as 3D character animation.

There are several possible strategies for reducing the di-

mensionality of the configuration space. Firstly it is possible

to restrict the range of movement of the subject. This ap-

proach has been pursued by Hogg [8], Rohr [17] and Niyogi

[15]. All three assume the subject is walking. Rohr even

reduces the dimension of the problem to the phase of the

walking cycle. Goncalves [6] and Deutscher [3] assume a

constant angle of view of the subject as does Bregler [2] and

Rehg [16]. Such an approach greatly restricts the resulting

trackers generality.

Another way to constrain the configuration space is to

perform a hierarchical search. If one part of an articulated

model can be localised independently then it can be used as

a constraint for reducing the rest of the model. Gavrila [4]

does just this when he uses what he terms search space de-

composition. He is able to localise the torso using colour

cues and uses this information to constrain the search for

the limbs. Without the assistance of colour cues (or other

labelling cues) however it is very hard to independently

localise specific body parts in realistic scenarios. This is

mainly due to the problem of self occlusion and rules out



the use of a hierarchical search.

For a practical full body tracker to be developed it can-

not rely on assumptions about motion, angle of view or the

availability of labelling cues. The principal contribution of

this paper is the development of a modified particle filter for

searching high dimensional configuration spaces which does

not rely on such assumptions. It uses a continuation princi-

ple, based on annealing, to introduce the influence of narrow

peaks in the fitness function, gradually. The new algorithm,

termed annealed particle filtering, is shown to be capable of

recovering full articulated body motion efficiently.

2. Particle filters

Particle filtering (also known as the Condensation algorithm

[9]) provides a robust Bayesian framework for human mo-

tion capture. The Condensation algorithm was developed

for tracking objects in clutter, in which the posterior den-

sity p(X|Z
k
) and the observation process p(Zk|X) are often

non-Gaussian or even multi-modal (X denotes the model’s

configuration vector, Z
k

= {Z1, . . . ,Zk} notates the his-

tory of observations at time tk). The complicated nature of

the observation process during human motion capture causes

the posterior density to be non-Gaussian and multi-modal as

shown by Deutscher [3]. It is well known that a Kalman filter

will fail in this case. Deutscher et al were able to show that

the use of a particle filter will improve tracking performance.

The posterior density p(X|Z
k
) is represented by a set of

weighted particles {(s
(0)
k , π

(0)
k ) . . . (s

(N)
k , π

(N)
k )} where the

weights π
(n)
k ∝ p(Zk|X = s

(n)
k ) are normalised so that

∑

N π
(n)
k = 1. The state Xk at each time step tk can be

estimated by

Xk = Ek[X] =

N
∑

n=1

π
(n)
k s

(n)
k (1)

or the mode

Xk = Mk[X] = s
(j)
k , π

(j)
k = max(π

(n)
k ) (2)

of the posterior density p(X|Z
k
).

Particle filtering works well because it can model uncer-

tainty. Less likely model configurations will not be thrown

away immediately but given a chance to prove themselves

later on, resulting in more robust tracking. However a price

is paid for these attributes in computational cost. The most

expensive operation in the standard Condensation algorithm

is an evaluation of the likelihood function p(Zk|X = s
(n)
k )

and this has to be done once at every time step for every

particle. To maintain a fair representation of p(X|Z
k
) a cer-

tain number of particles are required, and this number grows

with the size of the model’s configuration space. In fact it

has been shown by MacCormick and Blake [14] that

N ≥
Dmin

αd
(3)

where N is the number of particles required, d is the number

of dimensions. The survival diagnostic Dmin and the parti-

cle survival rate α are both constants with α << 1. An ex-

planation of both of these constants can be found in section

5. Clearly when d is large normal particle filtering becomes

infeasible.

Partitioned sampling was developed by MacCormick and

Blake [13] as a variation on Condensation to reduce the num-

ber of particles needed to track more than one object. Mac-

Cormick [14] has also now applied this technique to tracking

articulated objects. Using partitioned sampling reduces the

number of particles required to

N >=
Dmin

α
. (4)

making the problem tractable. However, this assumes that

the configuration space can be sliced so that one can con-

struct an observation densityp(Zk|x
i
k) for each dimension

xi
k of the model configuration vector X = {x0

k . . . x
d
k}. This

assumption, that it is possible to independently localise sep-

arate parts of an articulated model, is similar to that make by

Gavrila to enable a hierarchical search. It has already been

argued that it is not possible to use this approach without the

use of labelling cues.

Another variation on the standard particle filter used to

reduce the number of particles needed to effectively repre-

sent a posterior density has been developed by Sullivan et

al [18]. Called layered sampling it is centered around the

concept of importance resampling. Experimental evidence

however suggests that this technique is not sufficient to solve

the problem of tracking with d > 30, reducing the number

of particles required by at best a factor of 5 to 10 before the

expected behaviour of the Condensation framework breaks

down.

The second reason why Bayesian particle filtering may

not be suitable for full body human motion capture is the

difficulties associated with constructing a valid observation

model p(Zk|Xk) as a normalised probability density distri-

bution. Another factor is the computational cost of calculat-

ing p(Zk|X = s
(n)
k ). Often an intuitive weighting function

w(Zk,X) can be constructed that approximates the proba-

bilistic likelihood p(Zk|Xk) but which requires much less

computational effort to evaluate. Probabilistic observation

models also have a tendency to utilise only the information

that can be modelled well, discarding other available infor-

mation.

Given these factors it was decided to reduce the prob-

lem from propagating the conditional density p(X|Z
k
) us-

ing p(Z|X) to finding the configuration Xk which returns

the maximum value from a simple and efficient weighting

function w(Zk,X) at each time tk, given Xk−1. By doing

this gains will be made on two fronts. It should be possi-

ble to make do with fewer likelihood (or weighting function)

evaluations because the function p(X|Z
k
) no longer has to

be fully represented and an evaluation of a simple weighting



function w(Zk,X) should require minimal computational

effort when compared to an evaluation of the observation

model p(Zk|X). The main disadvantage will be not being

able to work within a robust Bayesian framework.

It was decided to continue to use a particle based stochas-

tic framework because of its ability to handle multi-modal

likelihoods, or in the case of a weighting function, one with

many local maxima. The question is: What is an efficient

way to perform a particle based stochastic search for the

global maximum of a weighting function with many local

maxima? It was decided to use an approach which is sim-

ilar to that of simulated annealing.

3. Simulated annealing

The Markov chain based method of simulated annealing was

developed by Kirkpatrick et al [11] as a way of handling

multiple modes in an optimisation context. It employs a

series of distributions, with probability densities given by

p0(x) to pM (x), in which each pm(x) differs only slightly

from pm+1(x). Samples actually need to be drawn from

the distribution p0(x). The distribution pM is designed so

that the Markov chain used to sample from it allows move-

ment between all regions of the state/search space. The usual

method is to set pm(x) ∝ p0(x)
βm , for 1 = β0 > β1 >

. . . > βM .

An annealing run is started in some initial state, from

which a Markov chain designed to converge to pM is first

simulated. Some number of iterations of a Markov chain de-

signed to converge to pM−1 are simulated next, starting from

the final state of the previous simulation. This process is con-

tinued in this fashion, using the final state of the simulation

for pm as the initial state for the simulation for pm−1, until

the chain designed to converge to p0 is finally simulated.

Note that if p0 contains isolated modes, simply simulat-

ing the Markov chain designed to converge to p0 starting

from some arbitrary point could give very poor results, as it

might become stuck in whatever mode is closest to the start-

ing point, even if that mode has little of the total probability

mass. The annealing process is a heuristic for avoiding this,

by taking advantage of the freer movement possible under

the other distributions. This is exactly the kind of behaviour

needed for the stochastic search. One wants to move towards

the global maximum of the weighting function w(Zk,X),
using the overall trend of the matching function as a guide,

without becoming misguided by local maxima as seen in fig-

ure 1.

The idea of annealing for optimisation is now adapted to

perform a particle based stochastic search within the frame-

work of an annealed particle filter.

4. Annealed particle filter

A series of weighting functions w0(Z,X) to wM (Z,X) are

employed in which each wm differs only slightly from wm−1

(see figure 2, where M = 3). The function wM is designed

to be very broad, representing the overall trend of the search

space while w0 should be very peaked, emphasising local

features. This is achieved by setting

wm(Z,X) = w(Z,X)βm , (5)

for β0 > β1 > . . . > βM , where w(Z,X) is the original

weighting function. Because it is not the aim to sample from

w(Z,X), but only to find its maximum it is not required that

β0 = 1.

One annealing run is performed at each time tk using im-

age observations Zk. The state of the tracker after each layer

m of an annealing run is represented by a set of N weighted

particles

Sπ
k,m = {(s

(0)
k,m, π

(0)
k,m) . . . (s

(N)
k,m, π

(N)
k,m)}. (6)

An unweighted set of particles will be denoted

Sk,m = {(s
(0)
k,m) . . . (s

(N)
k,m)}. (7)

Each particle in the set Sπ
k,m is considered as an (s

(i)
k,m, π

(i)
k,m)

pair in which s
(i)
k,m is an instance of the multi-variate model

configuration X, and π
(i)
k,m is the corresponding particle

weighting. Each annealing run can be broken down as fol-

lows (the process is illustrated in figure 2).

1. For every time step tk an annealing run is started at layer

M , with m = M .

2. Each layer of an annealing run is initialised by a set of

un-weighted particles Sk,m.

3. Each of these particles is then assigned a weight

π
(i)
k,m ∝ wm(Zk, s

(i)
k,m) (8)

which are normalised so that
∑

N π
(i)
k,m = 1. The set of

weighted particles Sπ
k,m has now been formed.

4. N particles are drawn randomly from Sπ
k,m with replace-

ment and with a probability equal to their weighting

π
(i)
k,m. As the nth particle s

(n)
k,m is chosen it is used to

produce the particle s
(n)
k,m−1 using

s
(n)
k,m−1 = s

(n)
k,m +Bm (9)

where Bm is a multi-variate gaussian random variable

with variance Pm and mean 0.

5. The set Sk,m−1 has now been produced which can be

used to initialise layer m − 1. The process is repeated

until we arrive at the set Sπ
k,0.

6. Sπ
k,0 is used to estimate the optimal model configuration

Xk using

Xk =
N
∑

i=1

s
(i)
k,0π

(i)
k,0. (10)



7. The set Sk+1,M is then produced from Sπ
k,0 using

s
(n)
k+1,M = s

(n)
k,0 +B0. (11)

This set is then used to initialise layer M of the next

annealing run at tk+1.

(    )Xw0

X

Figure 1: Illustration of the annealed particle filter with M = 1.
Even though a large number of particles are used (so that an equiva-
lent number of weighting function evaluations are made as in figure
2), the search is misdirected by local maxima. From the resulting
weighted set it is very hard to tell where the global maximum of w0

lies.
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Figure 2: Illustration of the annealed particle filter with M = 3.
With a multi-layered search the sparse particle set is able to gradu-
ally migrate towards the global maximum without being distracted
by local maxima. The final set Sπ

k,0 provides a good indication of
the weighting function’s global maximum.

5. Setting the tracking parameters

As stated previously the function wm(Zk,X), used in each

layer of the annealing process is determined by

wm(Z,X) = w(Z,X)βm (12)

with β0 > β1 > . . . > βM . The value of βm will determine

the rate of annealing at each layer. A large βm will produce

a peaked weighting function wm resulting in a high rate of

annealing. Small values of βm will have the opposite effect.
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Figure 3: Annealed particle filter in progress. The sets Sk,m are
plotted here, taken while tracking the walking person as seen in
figure 9. Only the horizontal translation components x0 and x1 of
the model configuration vector X are shown. Starting with Sk−1,0

from the previous time step the particles are diffused to form Sk,9

which easily covers the expected range of translational movement
of the subject. The particles and are then slowly annealed over 10
layers (the sets Sk,6 to Sk,4 are omitted for brevity) to produce Sk,0

which is clustered around the maximum of the weighting function.

If the rate of annealing is too high the influence of local

maxima will distort the estimate of Xk as seen in figure 1. If

the rate is too low Xk will not be determined with enough

resolution (unless more layers are used wasting computa-

tional resources).

A good measure of the effective number of particles that

will be chosen for propagation to the next layer is the sur-

vival diagnostic D (taken from [14]) where

D =

(

N
∑

n=1

(π(n))2

)−1

(13)

and from this a good measure for the rate of annealing can

be derived, called the particle survival rate α [5] [12]

α =
D

N
. (14)



Now a measure for the rate of annealing has been derived

it is possible to set the values of βk
0 , . . . , β

k
M at each time

step tk. At layer m in an annealing run, βk−1
m from tk−1

is used to calculate a preliminary set of particle weights for

Sπ
k,m. From this set an initial rate of annealing αinit can

be calculated using equations 13 and 14. It can be shown

that D(β) is monotonic decreasing in β so that, given α, the

equation

D(β) = Nα (15)

has a unique solution for β. With this knowledge we can

minimise the error function ∆α between the desired rate of

annealing αm and the initial rate of annealing αinit

∆α(β) = (αm − αinit(β)), (16)

using gradient descent to find the desired βk
m. Note that

this does not mean the weights have to be completely re-

evaluated each time βk
m is adjusted during gradient descent.

Since wm(Z,X) = w(Z,X)βm the values w(Z,X =

s
(i)
k,m), i : 1 . . . N can be stored for each set Sk,m and βk

m

applied to each individual weight as appropriate to produce

Sπ
k,m.

How then are the appropriate values for α0 . . . αM deter-

mined? There are also a number of other tracking parameters

that need to be set before tracking can begin, including the

number of particles N , the number of annealing layers M

and the diffusion variance vectors P0 . . .PM . A tentative

framework has been developed to allocate values to these pa-

rameters although it is acknowledged that more work needs

to be done in this area.

1. The first step is to decide on how many annealing layers

are needed. It was found that doubling the number of

annealing layers reduces the number of particles needed

for successful tracking by more than half. This will only

work up to a point however as there seems to be a min-

imum number (N ) of particles needed for tracking no

matter how many layers are used. Using a 30 DOF model

it was found that setting M = 10 with N ≥ 200 worked

well.

2. Each element in the vector P0 is allocated a value equal

to half the maximum expected movement of the corre-

sponding model configuration parameter over one time

step. In this way the set Sk+1,M should cover all possible

movements of the subject between time tk and tk+1. The

amount of diffusion added to each successive annealing

layer should decrease at the same rate as the resolution

of the set Sk,m increases. It has been found that setting

Pm = P0(αMαM−1 . . . αm) (17)

produces good results.

3. The appropriate rates of annealing α0 . . . αM are influ-

enced by the number of annealing layers used. With a

higher number of annealing layers a lower rate of an-

nealing can be used to obtain the desired resolution. It

was found that while using 10 annealing layers setting

α0 = α1 = . . . = αM = 0.5 provided sufficient resolu-

tion of Xk.

6. The model

The articulated model of the human body used in this pa-

per is built around the framework of a kinematic chain, as

seen in figure 4. Each limb is fleshed out using conic sec-

tions with elliptical cross-sections. It is believed that such a

model has a number of advantages including computational

simplicity, high-level interpretation of output and compact

representation.

(a) (b)

Figure 4: The model is based on a kinematic chain consisting of 17
segments (a). Six degrees of freedom are given to base translation
and rotation. The shoulder and hip joints are treated as sockets
with 3 degrees of freedom, the clavicle joints are given 2 degrees of
freedom (they are not allowed to rotate about their own axis) and the
remaining joints are modelled as hinges requiring only one. This
results in a model with 29 degrees of freedom and a configuration
vector X = {x1 . . . x29}. The model is fleshed out by conical
sections (b).

7. The weighting function

When deciding which image features are to be used to con-

struct the weighting function a number of factors must be

taken into account.

• Generality. The image features used should be invariant

under a wide range of conditions so that the same track-

ing framework will function well is a broad variety of

situations.

• Simplicity. In an effort to make the tracker as efficient as

possible the features used must be easy to extract.

Two image features were chosen to construct the weight-

ing function: edges and foreground silhouette. The strongest

continuous edges produced by a human subject in an image

usually provide a good outline of visible arms and legs and

are mostly invariant to colour, clothing texture, lighting and

pose. In severely cluttered environments or when the subject

is wearing very baggy clothes edges may lose some of their

usefulness, however in most situations they provide a good

basis for a weighting function. A gradient based edge detec-

tion mask is used to detect edges. The result is thresholded



to eliminate spurious edges, smoothed with a Gaussian mask

and remapped between 0 and 1. This produces a pixel map

(figure (5(b))) which each pixel is assigned a value related to

its proximity to an edge.

A sum-squared difference (SSD) function Σe(X,Z) is

then computed using

Σe(X,Z) =
1

N

N
∑

i=1

(1− pei (X,Z))
2

(18)

where X is the model’s configuration vector and Z is the

image from which the pixel map is derived. pi(X,Z) are the

values of the edge pixel map at the N sampling points taken

along the model’s silhouette as seen in figure 6(a).

The second feature extraction performed on the image

is foreground-background segmentation. Thresholded back-

ground subtraction was used here to separate the subject

from the background and typical results can be seen in figure

5(c). This may be inappropriate in some environments with

a lot of background movement where more sophisticated

methods may have to be employed. Most foreground seg-

mentation techniques are largely invariant to clothing, light-

ing, pose motion and environment and as such provide an

excellent image feature for a general human motion capture

system. Once again a pixel map is constructed, this time with

(a) (b) (c)

Figure 5: Feature extraction. A gradient based edge detection
mask is used to find edges. The result is thresholded to eliminate
spurious edges and smoothed using a Gaussian mask to produce a
pixel map (b) in which the value of each pixel is related to it prox-
imity to an edge. The foreground is segmented using thresholded
background subtraction to produce the pixel map (c) used in the
weighting function.

foreground pixels set to 1 and background to 0 (figure 5(b)),

and an SSD is computed

Σr(X,Z) =
1

N

N
∑

i=1

(1− pri (X,Z))
2

(19)

where pi(X,Z) are the values of the foreground pixel map at

the N sampling points taken from the interior of the conical

sections as seen in figure 6(b).

(a) (b)

Figure 6: Configurations of the pixel map sampling points
pi(X,Z) for the edge based measurements (a) and the foreground
segmentation measurements (b). The sampling points for the edge
measurements are located along the occluding contours of the
model’s conical sections that have been projected into the image.
The sampling points for the foreground segmentation measure-
ments are taken from a grid within these occluding contours.

To combine the edge and region measurements the two

SSD’s are added together and the result exponentiated to give

w(X,Z) = exp− (Σe(X,Z) + Σr(X,Z)) . (20)

When there is more than one camera the measurements are

combined in a similar way, giving

w(X,Z) = exp−

(

C
∑

i=1

(Σe
i (X,Z) + Σr

i (X,Z))

)

(21)

where C is the number of cameras and
∑

∗

i (X) is from cam-

era i. An example of the output of this weighting function

can be seen in figure 7.

−1.5 −0.5 0.5
0

0.5

1

x
15

 (rad)

w(X,Z)

(a) (b)

Figure 7: Example output of the weighting function obtained by
varying only component x15 of X (the right knee angle) using the
image and model configuration seen in (a). The function is highly
peaked around the correct angle of -0.7 radians (b).

8. Results

The human motion capture system was used to track a sub-

ject performing two different activities. The first was walk-

ing in a circle as seen in figure 9. The second was the sub-

ject stepping over a box, turning around and stepping over it

again as seen in figure 10.



Three cameras were used to capture the motion and all

three views can be seen in the corresponding figures. The

same tracking parameters were used in all three sequences,

which demonstrate the tracker’s ability to follow a wide

range of human movement. A comparison of the annealed

particle filter with standard Condensation can be seen in

figure 8 showing the improved tracking performance given

equivalent computational resources.

The tracker was run on an SGI Octane with a single 175

MHz R10000 CPU. Using 10 annealing layers with 200 par-

ticles the system took approximately 1 hour to process 5 sec-

onds of footage. The tracker is however still in the prototype

stage and we hope to achieve near to real-time performance

in the future.

9. Conclusion

The main obstacle to practical human motion capture is

the high number of dimensions associated with an artic-

ulated full-body model. Algorithms, either deterministic

or stochastic, that search such a space without constraint,

fall foul of exponential growth in computational complexity.

One solution to this problem is to introduce constraints — ei-

ther labelling using markers or colour coding, prior assump-

tions about motion trajectories or view restrictions. Using

these constraints limits the generality of the resulting tracker.

In developing an unconstrained full-body tracker we have

had to address the problem of tracking in high dimensional

configuration spaces.

Although the Condensation algorithm has been shown to

be a robust and powerful stochastic filter it is not feasible to

apply it in high dimensional configuration spaces. As a con-

sequence we developed a modified particle filter. It uses a

continuation principle, based on annealing, to gradually in-

troduce the influence of narrow peaks in the fitness function.

The new algorithm, termed annealed particle filtering, is ca-

pable of recovering full articulated body motion efficiently.

As can be seen in the practical results the new method leads

to very robust tracking even when faced with complex and

difficult sequences of movement. Since the number of par-

ticles required for successful tracking was reduced by over

a factor of 10 a considerable step towards real-time tracking

has been made.

Acknowledgements This work was supported by Oxford

Metrics and EPSRC grant GR/M15262 (JD, IR). IR ac-

knowledges the support of an EPSRC Advanced Research

Fellowship. JD would also like to thank Ben North and the

rest of the Oxford Visual Dynamics group for all their help

over the last year.

References

[1] Blake, A., and Isard, M. Active contours. Springer, 1998.

[2] Bregler, C., and Malik, J. Tracking people with twists and exponential

maps. In Proc. CVPR (1998).

Condensation

One layer annealed search

Ten layer annealed search

t = 0 sec t = 0.4 sec t = 0.8 sec t = 1.2 sec

Figure 8: A comparison of Condensation with the annealed par-
ticle filter. At top the results of tracking with 4000 particles using
standard Condensation can be seen. An observation model based
on a fusion of edge information (as in [1]) and SSD template cor-
relation was used. Tracking gradually deteriorates until terminal
failure after 1.2 seconds. Experiments with 40000 particles were
carried out taking over 30 hours to process just 4 seconds of video,
still with negative results. An annealed search using 4000 parti-
cles with one layer fairs little better (middle), also suffering termi-
nal failure after 1.2 seconds. The main difference between normal
Condensation and single layer annealed sampling is that instead of
a complicated observation model, a simple weighting function is
used as described in section 7. This results in a 4 fold speed in-
crease. An annealed search using 400 particles and 10 layers (ie.
4000 weighting function evaluations per frame) tracks very well. It
was found in practice that good results could be achieved with as
little as 100 particles.

[3] Deutscher, J., Blake, A., North, B., and Bascle, B. Tracking through

singularities and discontinuities by random sampling. In Proc. 7th Int.

Conf. on Computer Vision (1999), vol. 2, 1144–1149.

[4] Gavrila, D., and Davis, L. 3d model-based tracking of humans in ac-

tion: a multi-view approach. Proc. Conf. Computer Vision and Pattern

Recognition (1996), 73–80.

[5] Geweke, J. Bayesian inference in econometric models using Monte

Carlo integration. Econometrica 57 (1989), 1317–1339.

[6] Goncalves, L., di Bernardo, E., Ursella, E., and Perona, P. Monocular

tracking of the human arm in 3D. In Proc. 5th Int. Conf. on Computer

Vision (1995), 764–770.

[7] Haritaoglu, I., Harwood, D., and Davis, L. w
4
s: A real-time system

for detecting and tracking people in 2.5D. In Proc. 5th European Conf.



t = 0 sec t = 1.2 sec t = 2.4 sec t = 3.6 sec

Figure 9: Walking in a circle. Using three cameras (arrayed here
from top to bottom) a person is tracked over 4 seconds while walk-
ing in a circle. The tracker maintains an accurate lock throughout.
10 annealing layers were used with 200 particles for this sequence.
Download the movie from www.robots.ox.ac.uk/∼ jdeutsch/HMC/.

Computer Vision (Freiburg, Germany, June 1998), vol. 1, Springer

Verlag, 877–892.

[8] Hogg, D. Model-based vision: a program to see a walking person. J.

Image and Vision Computing 1, 1 (1983), 5–20.

[9] Isard, M., and Blake, A. Visual tracking by stochastic propagation

of conditional density. In Proc. 4th European Conf. Computer Vision

(Cambridge, England, Apr 1996), 343–356.

[10] Ju, S., Black, M., and Yacoob, Y. Cardboard people: A parameterized

model of articulated motion. In 2nd Int. Conf. on Automatic Face and

Gesture Recognition, Killington, Vermont (1996), 38–44.

[11] Kirkpatrick, S., Gellatt, C., and Vecchi, M. Optimisation by simu-

lated annealing. Tech. rep., IBM Thomas J. Watson Research Centre,

Yorktown Heights, NY, USA, 1982.

[12] MacCormick, J. Probabilistic models and stochastic algorithms for

visual tracking. PhD thesis, University of Oxford, 2000.

[13] MacCormick, J., and Blake, A. A probabilistic exclusion principle for

tracking multiple objects. In Proc. 7th Int. Conf. on Computer Vision

(1999), vol. 1, 572–578.

[14] MacCormick, J., and Blake, A. Partitioned sampling, articulated ob-

jects and interface-quality hand tracking. In Accepted to ECCV 2000

(2000).

[15] Niyogi, S., and Adelson, E. Analysing and recognising walking fig-

ures in xyt. In Proc. of IEEE Conference on Computer Vision and

Pattern Recognition (1994), 469–474.

[16] Rehg, J., and Morris, D. Singularities in articulated object tracking

with 2-d and 3-d models. Tech. rep., Digital Equipment Corporation,

Cambridge Research Lab, 1997.

t = 0.2 sec t = 0.9 sec t = 2.7 sec t = 4.6 sec

Figure 10: Stepping over a box. Using three cameras (arrayed here
from top to bottom) a person is tracked over 5 seconds while step-
ping over a box, turning around and stepping over the box again.
The tracker maintains an accurate lock throughout. 10 annealing
layers were used with 200 particles for this sequence. Download
the movie from www.robots.ox.ac.uk/∼ jdeutsch/HMC/.

[17] Rohr, K. Human movement analysis based on explicit motion mod-

els. In Motion-Based Recognition. Kluwer Academic Publishers, Dor-

drecht Boston, 1997, ch. 8, 171–198.

[18] Sullivan, J., Blake, A., Isard, M., and MacCormick, J. Object local-

ization by bayesian correlation. In Proc. 7th Int. Conf. on Computer

Vision (1999), vol. 2, 1068–1075.

[19] Vicon web based literature. URL http://www.metrics.co.uk, 1999.

valid December 1999.


