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Abstract In this paper, we investigate articulated human

motion tracking from video sequences using Bayesian

approach. We derive a generic particle-based filtering proce-

dure with a low-dimensional manifold. The manifold can be

treated as a regularizer that enforces a distribution over poses

during tracking process to be concentrated around the low-

dimensional embedding. We refer to our method as manifold

regularized particle filter. We present a particular implemen-

tation of our method based on back-constrained gaussian

process latent variable model and gaussian diffusion. The

proposed approach is evaluated using the real-life benchmark

dataset HumanEva. We show empirically that the presented

sampling scheme outperforms sampling-importance resam-

pling and annealed particle filter procedures.

Keywords Articulated motion tracking · Manifold

regularization · Generative approach · Back-constrained

gaussian process latent variable model

List of symbols

I Set of all available images from all cameras

It Set of all available images in the t th moment

I1:T Set of all available images from the first to

the T th moment

x A human body configuration

xt A human body configuration in the t th

moment
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Poland

x1:T The whole trajectory of body configurations

from the first to the T th moment

z A human body configuration in the low-

dimensional manifold coordinate system

zt A human body configuration in the low-

dimensional manifold coordinate system in

the t th moment

z1:T The whole trajectory of human body config-

urations in the low-dimensional manifold

coordinate system from the first to the T th

moment

δ(·) The Dirac delta function

SI A binary silhouette obtained by subtracting

background from the input image I

SI(x) A binary silhouette obtained by projecting

a body model generated from a given pose

x onto the image I

| · | Matrix determinant

tr(·) Matrix trace

‖ · ‖F The Frobenius norm

ID×D The D-dimensional identity matrix

k(·, ·) A kernel function

K A kernel matrix

1 Introduction

Articulated human motion tracking from video image

sequences is one of the most challenging computer vision

problems for the past two decades. The basic idea behind

this issue is to recover a motion of a complete human body

basing on the image evidence from a single or many cameras.

Moreover, it is assumed that the motion tracking is performed

without any additional devices, e.g., color or electromag-

netic markers. The human motion tracking system can be
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applied in many everyday life areas, see [9,15,18]. Giving

some examples, it may be used in control devices for human–

computer interaction, surveillance systems detecting unusual

behaviors, dancing or martial arts training assistants, support

systems for medical diagnosis.

During last years, a lot of effort has been put in solving

the human motion tracking issue. However, excluding some

minor cases, the problem remains open. There are several

reasons worth mentioning that make the issue challenging.

First, there is a huge variety of different images correspond-

ing to the same pose that may be obtained. This is caused by

diversity of human wear and appearance, changes in light-

ing conditions, camera noise, etc. Second, an image lacks

depth information which makes impossible to obtain three-

dimensional pose from two-dimensional images. Moreover,

one has to handle different types of occlusions including

self-occlusions and occlusions caused by external environ-

ment. Finally, efficient exploration of the space of all possible

human poses is troublesome because of high-dimensionality

of the space and its non-trivial constraints.

To date, however, several conceptually different

approaches have been proposed to address the human motion

tracking problem. They can be roughly divided into two

groups.

In the first group, discriminative methods are used to

model directly the probability distribution over poses con-

ditioned on the image evidence. This approach is usually

composed of two parts where feature extraction is followed

by prediction using multivariate regression model. To obtain

informative features simple techniques like binary silhou-

ettes [1,14] as well as more sophisticated descriptors like

histogram of oriented gradients or a HMAX model [3] were

adapted. As a regression model a whole spectrum of different

techniques were used, e.g., ridge regression and support vec-

tor machines [1], mixture of experts [10], gaussian processes

[3], kernel information embedding [14].

On the contrary, in the second group a generative approach

is used to model separately the prior distribution over poses

and the likelihood of how well a given pose fits to the current

image. Pure generative modeling assumes that one tries to

model the true pose space and uses Bayesian inference to

combine this prior knowledge with the image evidence to

estimate the current pose. Within this group of methods the

two important branches have evolved.

In the first one, kinematic-tree models are used to repre-

sent the body pose. Since it is straightforward to render a

3D body model using this representation, the likelihood is

usually computed by comparing the difference between the

given images and body model projections. The main effort

in this branch of methods is to design an appropriate pose

prior. Many strategies were applied here, from simple limits

on joint movements [20] to more advanced models trying

to capture the manifolds of human poses embedded in high-

dimensional pose space, e.g., gaussian process latent variable

model (GPLVM) [25,27], gaussian process dynamical model

[26], mixtures of factor analyzers [13], hierarchical hidden

Markov model [17], restricted Boltzmann machines [24].

Eventually, we can predict the body pose by finding max-

imum a posteriori (MAP) estimator or use a fully Bayesian

approach by computing the complete posterior distribution

over poses. The latter approaches usually take advantage of

particle filters to approximate the posterior.

In the second branch of methods part-based models are

used for pose recovery [2,4,22,23,29]. Here, we assume that

all body parts are modeled individually. More flexible priors

are used to cover many possible relative positions between

parts. The main effort is put in constructing rich likelihood

models that are required to detect individual body parts.

In general, inference is based on searching MAP estimate

using for example dynamic programming [29] or Branch and

Bound methods [22,23]; however, there are some individ-

ual cases where a fully Bayesian inference is used, see [5].

Finally, part-based models are mainly applied to 2D pose

estimation.

In this paper, we present a novel fashion of involving

information about low-dimensional embedding in the pose

space into the tracking process that leads to a generic filter-

ing procedure. We use the generative approach based on a

kinematic-tree model and Bayesian inference. We propose

a particle filter-based algorithm for the filtering problem,

which we will refer to as manifold regularized particle fil-

ter. Finally, we present a dynamics model based on gaussian

process latent variable model with back constraints.

The contribution of the paper is fourfold. First, a new

class of particle filter algorithms is proposed where a

low-dimensional information is involved into the inference

process. This allows to utilize full Bayesian reasoning. Sec-

ond, we present a specific instance of the proposed approach

that utilizes the gaussian process latent variable model with

back constraints combined with gaussian diffusion. Third, the

outlined approach is applied to the articulated human-motion

tracking. Fourth, we show empirically that the presented sam-

pling scheme outperforms sampling-importance resampling

and annealed particle filter procedures on benchmark dataset

HumanEva.

The paper is organized as follows. In Sect. 2 the problem

of the human motion tracking is outlined and the proposed

filtering procedure is presented. In Sect. 3 the manifold reg-

ularized particle filter is proposed. The model of dynamics

with low-dimensional manifold is presented in Sect. 5. At

the end, the empirical study is carried out in Sect. 6 and con-

clusions are drawn in Sect. 7.
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Fig. 1 a Human body model represented by articulately connected

rigid parts. b Kinematic tree representing connections between neigh-

boring rigid parts. Red, blue, and green vertices correspond to joints

with one, two and three degrees of freedom, respectively. Yellow vertex

is the root of the tree

2 Human motion tracking

In this paper, we assume that a human body is represented by

a set of articulately connected rigid parts (see Fig. 1a). Each

connection between two neighboring elements characterizes

a joint and can be described by up to three degrees of free-

dom, depending on movability of the joint. All connected

parts form a kinematic tree with the root typically associ-

ated with the pelvis. A common representation of the state of

the kth joint uses Euler angles that describe relative rotation

between neighboring parts in the kinematic tree (see Fig. 1b).

However, we prefer to use quaternions because they can be

compared using the Euclidean distance metric. Moreover, if

the relative rotations between connected parts in the kine-

matic tree are small, i.e., in the range between 0 and π then

we can reduce quaternion representation to 3-tuple instead

of 4-tuple, see [21] or [5] for details.

The set of quaternions for all relative rotations in the kine-

matic tree together with the global position and orientation

in 3D constitutes the minimal set of variables that are used

to describe the current pose of the human body, which is

denoted by x. It is worth mentioning that x is usually around

40–50 dimensions, which is one of the fundamental reasons

that makes the human motion tracking a difficult problem due

to intractability in searching over high-dimensional spaces.

We assume that there are several synchronized cameras

that provide video images of a human body from differ-

ent perspectives. The cameras should be located so that to

contribute as much information about the body as possible,

i.e., they should register different parts of the scene. We will

denote a set of all available images from all cameras by I.

In typical pose estimation problem, we want to estimate

the human body configuration x basing on I. Thus, the key

issue is to properly model the conditional distribution p(x|I).

Since it is a multivariate regression model, we can estimate

the pose by computing the expected value x̂ = E[x|I]. In the

generative approach we follow the Bayes rule to inverse the

conditional probability:

p(x|I) ∝ p(I|x)p(x), (1)

and then model the prior p(x) and the likelihood p(I|x)

separately.

We can extend the individual pose estimation problem

to tracking of the whole trajectory x1:T = {x1, . . . , xT } in

the pose space. Then, let I1:T = {I1, . . . IT } denote the

corresponding sequence of available images.

Before giving the formal problem statement, notice that

the high-dimensional pose space consists of human body con-

figurations where most of them are unrealistic. Additionally,

during specific motions (e.g., walking or running) all degrees

of freedom exhibit strong correlations that depend on the cur-

rent pose. These two remarks yield a corollary that the true

trajectories form a low-dimensional manifolds. Therefore,

we assume that any pose x corresponds to a point z in the

coordinate system on the low-dimensional manifold.

Formally, in the generative approach we need to model the

joint probability distribution p(x1:T , z1:T , I1:T ). This task is

rather difficult unless we assume some conditional indepen-

dence between variables. Typically, it is assumed that current

pose depends only on the current low-dimensional represen-

tation, as well as the current observation depends only on

the current pose. Temporal dependencies are assumed only

between low-dimensional representations [25,26,28]. This

is a reasonable assumption if the variance of the conditional

distribution p(xt |zt ) is low. However, we have found out that

for typical video frame rates (e.g., 60 Hz) the variance of the

distribution p(xt |zt ) is usually much higher than the variance

of the distribution p(xt |xt−1). Hence, this leads to the corol-

lary that human motion formulates continuous trajectories

that locally oscillate around the low-dimensional manifold.

Therefore, we indicate that it is more important to model

temporal coherence between high-dimensional poses, and

low-dimensional representations should be used just to keep

the trajectory close to the manifold. The manner how the

joint probability distribution is factorized is presented by the

probabilistic graphical model in Fig. 2. Notice that the cur-

rent state xt influences future state and future point on the

manifold zt+1 which in turn impacts xt+1.

In the Bayesian inference we are interested in calculating

the posterior probability distribution for xt given images I1:t
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Fig. 2 Probabilistic graphical model presenting how the joint proba-

bility distribution p(x1:T , z1:T , I1:T ) factorizes

by marginalizing out all previous poses x1:t−1 and hidden

variables z1:t from p(x1:t , z1:t |I1:t ) which yields:

p(xt |I1:t ) =
p(It |xt )

p(It |I1:t−1)

∫∫

p(zt |xt−1)

× p(xt |xt−1, zt )p(xt−1|I1:t−1)dxt−1dzt , (2)

where p(It |I1:t−1) is a normalization constant given by:

p(It |I1:t−1) =

∫∫

p(It |xt )p(zt |xt−1)

× p(xt |xt−1, zt )p(xt−1|I1:t−1)dxt−1:t zt .

(3)

We have obtained a filtering procedure that includes

information about the low-dimensional manifold and is inde-

pendent of actual forms of each component. Further, we show

that if the filtering procedure is performed in this manner, then

choosing relatively simple component models p(xt |xt−1, zt )

and p(zt |xt−1) leads to very promising results.

3 Manifold regularized particle filter

In the context of the human motion tracking the filtering pro-

cedure is intractable usually since we are unable to compute

analytically the integral in (2) and the normalization con-

stant (3) except the case where all distributions are gaussian.

Hence, an approximation of the posterior should be applied.

Typically, sampling methods like particle filter-based tech-

niques are used, in the context of human motion tracking the

most popular method is known as Condensation algorithm

[8]. However, the main disadvantage of this technique is that

it requires to generate a huge amount of particles in order

to cover a high-dimensional state space. Otherwise, it fails

to approximate the true distribution. In order to cover the

highly probable areas in the pose space only, an extension

called annealed particle filter (APF) has been proposed [6].

However, in this method particles tend to be trapped in one or

a few dominating local maxima in the posterior distribution.

Therefore, the method is non-robust to cases where substan-

tial number of local maxima occurs and thus fails to track the

proper trajectory. This usually happens when the image evi-

dence is inconsiderable, e.g., we use noisy likelihood model

or small number of cameras.

In this paper, we propose a different approach that

modifies the Condensation algorithm by introducing a reg-

ularization in a form of the low-dimensional manifold. This

filtering procedure operates in the neighborhood of the low-

dimensional space where the true poses are concentrated,

and thus it guarantees that highly probable regions are cov-

ered and the particles are distributed around different local

extrema.

In fact the proposed particle-based filtering procedure pro-

vides a proxy to the posterior p(xt |I1:t ) obtained in (2),

because we can approximate the distribution as follows:

p(xt |I1:t ) ≈

N
∑

n=1

π(x
(n)
t )δ(xt − x

(n)
t ), (4)

where x
(1)
t , . . . , x

(N )
t ∼ p(xt |I1:t−1) denote samples from

the current prior, δ(·) is the Dirac delta function, and π(x
(n)
t )

is a normalized form of a single score calculated using the

likelihood model π̃(x
(n)
t ) = p(It |x

(n)
t ), so:

π(x
(n)
t ) =

π̃(x
(n)
t )

∑N
j=1 π̃(x

( j)
t )

. (5)

However, in most cases it is troublesome to generate a

sample from the prior p(xt |It−1) using standard sampling

techniques for directed graphical models since generating xt

from p(xt |xt−1, zt ) is usually intractable. Thus, we intro-

duce an auxiliary distribution q(xt |xt−1) from which we can

sample effectively. Then, taking advantage of conditional

independencies defined by the probabilistic graphical model

in Fig. 2, we get:

p(xt , xt−1, zt |I1:t−1) =
1

Z
ω̃(xt , xt−1, zt )

× q(xt , xt−1, zt |I1:t−1), (6)

where ω̃ are weight coefficients defined as follows:

ω̃(xt , xt−1, zt ) =
p(xt |xt−1, zt )

q(xt |xt−1)
, (7)

and q(xt , xt−1, zt |I1:t−1) is a joint auxiliary distribution:

q(xt , xt−1, zt |I1:t−1) = q(xt |xt−1)p(zt |xt−1)

× p(xt−1|I1:t−1), (8)
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and Z is a normalization constant.

Let us assume that we can sample from q(xt |xt−1) and

p(zt |xt−1).
1 Thus, once we have a sample from the previous

posterior p(xt−1|I1:t−1), eventually we can easily generate

a sample from the auxiliary joint distribution (8) and further

we can use it to approximate the distribution (6). Since inte-

grating out variables in discrete approximations is trivial, we

obtain the following expression for the prior:

p(xt |I1:t−1) ≈

N
∑

n=1

ω(x
(n)
t , x

(n)
t−1, z

(n)
t )δ(xt − x

(n)
t ), (9)

where coefficients ω(x
(n)
t , x

(n)
t−1, z

(n)
t ) are obtained by nor-

malizing (7) in analogical manner as in (5).

Eventually, by combining the prior (9) with the image

likelihoods we can approximate the posterior distribution (2)

using the following formula:

p(xt |I1:t ) ≈

N
∑

n=1

ξ(x
(n)
t , x

(n)
t−1, z

(n)
t )δ(xt − x

(n)
t ), (10)

where the weights are defined as follows:

ξ(x
(n)
t , x

(n)
t−1, z

(n)
t ) =

π̃(x
(n)
t )ω̃(x

(n)
t , x

(n)
t−1, z

(n)
t )

∑N
j=1 π̃(x

( j)
t )ω̃(x

( j)
t , x

( j)
t−1, z

( j)
t )

.

(11)

Notice that we introduce the low-dimensional manifold in

the manner that the particles are weighted both by the image

evidence and coefficients ω̃.

As a result we obtain a new generic particle-based fil-

tering procedure which takes advantage of the prior given

by the low-dimensional manifold. The proposed approach is

referred to as manifold regularized particle filter (MRPF).

The schematic representation of the MRPF is presented in

Fig. 3 and the detailed procedure is presented in Algorithm

1. Notice that to mitigate particle degeneration phenomenon,

which is a typical problem in particle filter-based algorithms,

we apply resampling procedure. For more detailed consider-

ations on the importance of resampling see for example [7].

To avoid confusions we use Xt and X t to denote samples

before and after resampling, respectively.

4 Likelihood function

The likelihood function p(It |xt ) aims at evaluating the given

human body configuration xt corresponds to the set of images

1 Exemplary models of q(xt |xt−1) and p(zt |xt−1) will be discussed in

Sect. 5.

Fig. 3 Schematic illustration of the manifold regularized particle filter

Algorithm 1: Manifold regularized particle filter

Input : initial state x0, sequence of images I1:T

Output: sequence of state estimates x̂1:T

1 Duplicate the initial state x0 and formulate a set:

X 0 = {x
(1)
0 , . . . , x

(N )
0 } ;

2 for t = 1 : T do

3 Generate a sample Zt = {z
(1)
t , . . . , z

(N )
t } using

z
(n)
t ∼ p(zt |x

(n)
t−1);

4 Generate a sample Xt = {x
(1)
t , . . . , x

(N )
t } using

x
(n)
t ∼ q(xt |x

(n)
t−1);

5 Calculate π̃(x
(n)
t ) using the likelihood model p(It |xt ) ;

6 Calculate ω̃(x
(n)
t , x

(n)
t−1, z

(n)
t ) using (7);

7 Normalize the weights ω(x
(n)
t , x

(n)
t−1, z

(n)
t ) using (11);

8 Calculate the estimate of the state variables

x̂t =
∑N

n=1 ω(x
(n)
t , x

(n)
t−1, z

(n)
t )x

(n)
t ;

9 Resample particles to obtain X t = {x
(1)
t , . . . , x

(N )
t } using

approximation (10);

10 end

It . We compare images which contain a human body model

(see Fig. 1a) projected onto camera views with binary silhou-

ettes obtained from background subtraction procedure, by

calculating the difference between them. This model is called

bidirectional silhouette likelihood [20] and can be defined as

follows:

− ln p(I|x) =
1

|I|

∑

I∈I

{

1

|{SI
i j

(x) = 1}|

∑

(i, j)∈{SI
i j (x)=1}

(

1 − SI
i j

)

+
1

|{SI
i j

= 1}|

∑

(i, j)∈{SI
i j =1}

(

1 − SI
i j (x)

)

}

+ const,

(12)
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Fig. 4 a An example input image I. b Binary silhouette SI obtained

in background subtraction procedure. c Comparison between SI and

binary silhouette SI(x) obtained by projecting body model onto image

I

where SI denotes binary silhouette obtained by subtracting

background from the input image I, and SI(x) denotes binary

silhouette obtained by projecting a body model generated

from a given pose x onto the image I. Additional constant

value in (12) corresponds to the normalizing coefficient in the

probability distribution that is independent of the image. We

use a simple body model composed of articulately connected

cylindrical elements. Analogous model was used in [20]. The

idea of calculating the likelihood is presented in Fig. 4.

5 Dynamics model using low-dimensional manifold

We propose to model the dynamics using low-dimensional

manifold and a nonlinear dependency. First, we need to

learn the low-dimensional manifold. Second, we need to con-

struct a model of dynamics on the low-dimensional manifold,

p(zt |xt−1), and the model of dynamics in the pose space with

the low-dimensional manifold, p(xt |xt−1, zt ).

5.1 Learning the low-dimensional manifold

For learning the low-dimensional manifold, we apply the

Gaussian process latent variable model (GPLVM) [11]. The

GPLVM model constitutes a nonlinear dependency between

the pose and the low-dimensional manifold as follows:

x = f(z) + ε, (13)

where ith function is a realization of the gaussian process

[19], fi ∼ GP( f |0, k(z, z′)), where k is a kernel function,

and ε ∼ N (ε|0, σ 2
z ID×D) denotes univariate gaussian noise,

where σ 2
z is variance, and ID×D denotes the D-dimensional

identity matrix. In this paper, we use the RBF kernel,

k(z, z′) = β exp
(

−
γz

2
‖z − z′‖2

)

+ β0, (14)

where β, β0, and γz are kernel parameters.

We are interested in finding a matrix of low-dimensional

variables corresponding to observed poses, i.e., a matrix Z

for observed poses X. Additionally, we want to determine

the mapping between the manifold and the high-dimensional

space by learning parameters β, β0 and γz , and σ 2
z . The train-

ing corresponds to finding the parameters and points on the

manifold that maximize the logarithm of the likelihood func-

tion in the following form:

ln p(X|Z) = ln

D
∏

i=1

N (X:,i |0, K + σ 2
z IT ×T )

= −
DT

2
ln(2π) −

D

2
ln |K|+

−
1

2
tr(XTK

−1
X), (15)

where X:,i denotes i th column of the matrix X, | · | and tr(·)

are matrix determinant and trace, respectively, K = K +

σ 2
z IT ×T , and K = [knm] is the kernel matrix with elements

knm = k(zn, zm).

Let us notice that solutions of the maximization zt and γz

can be arbitrarily re-scaled, thus, there are many equivalent

solutions. In order to avoid this issue we introduce a regu-

larizer 1
2
‖Z‖2

F , where ‖ · ‖F is the Frobenius norm, and the

final objective function takes the form:

L(Z) = ln p(X|Z) −
1

2
‖Z‖2

F . (16)

The objective function can be optimized using standard

gradient-based optimization algorithms, e.g., scaled conju-

gate gradient method. Additionally, the objective function

is not concave and hence it has multiple local maxima.

Therefore, it is important to carefully initialize the numer-

ical algorithm, e.g., by using principal component analysis.

Optimization algorithms need information about the gra-

dient of the objective function. In order to calculate the

gradient of (16) w.r.t. K we use the properties of derivatives

for matrices [16], which yields:

∂L(Z)

∂K
= −

D

2
K

−1
+

1

2
K

−1
XXTK

−1
. (17)

Next, the derivative of (16) w.r.t. zi
t is as follows:

∂L

∂zi
t

= tr

(

(

∂L(Z)

∂K

)T
∂K

∂zi
t

)

−
1

2

∂‖Z‖2
F

∂zi
t

, (18)

where ∂L(Z)

∂K
is given by (17), and derivatives ∂K

∂zi
t

are given

in the following form:
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∂kz(zn, zm)

∂zi
t

=

{

−γz(knm − β0)(z
i
n − zi

m), t = n

γz(knm − β0)(z
i
n − zi

m), t = m

0, t �= n, m

(19)

and eventually

∂‖Z‖2
F

∂zi
t

= 2zi
t . (20)

We can calculate derivatives w.r.t. β, β0, γz and σ 2
z analogi-

cally.

Notice that the kernel used to determine the covariance

function takes high values for points zn and zm that are close

to each other, i.e., they are similar. Moreover, because the

points on the manifold are similar, the original poses xn and

xm are similar as well. However, the situation does not hold

in the opposite direction. This issue is undesirable in the pro-

posed filtering procedure (2) since the distribution p(zt |xt−1)

is multi-modal and thus hard to determine. However, this

effect can be reduced by introducing back constraints that

leads to back-constrained GPLVM (BC-GPLVM) [12].

The idea behind BC-GPLVM is to define z as a smooth

mapping of x, z = g(x). For example, this mapping can be

given in the linear form, i.e.,

gi (x) =

T
∑

t=1

ati kx (x, xt ) + bi , (21)

where gi denotes ith component of z, ati , bi are parameters,

and

kx (x, x′) = exp
(

−
γx

2
‖x − x′‖2

)

(22)

is the kernel function in the high-dimensional space of poses.

We can incorporate the mapping into the objective function,

i.e., zi
n = gi (xn), and then optimize w.r.t. ati and bi instead of

zi
n . The application of the back constraints entails closeness

of low-dimensional points zt if high-dimensional points xt

are similar.

The big advantage of gaussian processes is tractability of

calculating the predictive distribution for new pose xp and its

low-dimensional representation zp. The corresponding ker-

nel matrix is as follows:

[

K k

k
T

kz(zp, zp)

]

, (23)

and finally the predictive distribution [19]:

p(xp|zp, X, Z) = N (xp|µp, σ
2
pID×D), (24)

where:

µp = XTK
−1

k, (25)

σ 2
p = kz(zp, zp) − k

T
K

−1
k. (26)

5.2 Models of dynamics

Idea of the model p(zt |xt−1) is to predict new position on the

manifold basing on the previous pose. Therefore, we need a

mapping that allows to transform a high-dimensional rep-

resentation to a low-dimensional one. For this purpose, we

apply the back constraints. By adding gaussian noise with

the covariance matrix diag(σ 2
x→z) to the back constraints,

we obtain the following model of the dynamics on the man-

ifold:

p(zt |xt−1) = N (zt |g(xt−1), diag(σ 2
x→z)). (27)

On the other hand, the model p(xt |xt−1, zt ) determines the

probability of the current pose basing on the previous pose

and the current point on the low-dimensional manifold. A

reasonable assumption is that the model factorizes into two

components, namely, one concerning only previous pose, and

second—the low-dimensional manifold. This factorization

follows from the fact that these two quantities belong to two

different spaces and thus are hard to compare quantitatively.

Then, the model of the dynamics takes the following form:

p(xt |xt−1, zt ) ∝ p(xt |xt−1)p(xt |zt ). (28)

The first component is expressed as a normal distribution

with the diagonal covariance matrix diag(σ 2
x→x ):

p(xt |xt−1) = N (xt |xt−1, diag(σ 2
x→x )). (29)

The second component is constructed using the mean of the

predictive distribution (25) and is disturbed by a gaussian

noise with the diagonal covariance matrix diag(σ 2
z→x ) which

leads to the following model:

p(xt |zt ) = N (xt |X
TK

−1
k, diag(σ 2

z→x )). (30)

It is important to highlight that the training of the para-

meters diag(σ 2
z→x ) has to be performed using a separate

validation set which contains data. Otherwise, using the same

training set as for determining Z leads to underestimation of

the parameters.

Eventually, let us consider the application of the MRPF

(see Algorithm 1) in the context of the outlined models

of dynamics. We need to propose the auxiliary distribu-

tion q(xt |xt−1). In our case it is given in the form (29),

i.e., q(xt |xt−1) = N (xt |xt−1, diag(σ 2
x→x )). Then, the

weights ω̃ are given in the form (30), i.e., ω̃(xt , xt−1, zt ) =

N (xt |X
TK

−1
k, diag(σ 2

z→x )).
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Fig. 5 Low-dimensional pose representations learned using training data for each sequence

6 Empirical study

6.1 Setup

Dataset The performance of the proposed approach is eval-

uated using real-life benchmark dataset HumanEva [20].

The dataset contains multiple subjects performing a set of

predefined actions. Originally, for each subject and action

the dataset is divided into training, validation and testing

sequences. However, all testing sequences are not publicly

available. Therefore, very often a different data division is

utilized to perform an evaluation, e.g., see [5].

In the experiment we focused on two motion types,

namely, walking and jogging, performed by three differ-

ent persons, i.e., S1, S2, S3, which results in six various

sequences. In each sequence we used 350 and 300 frames

from different training trials for training and validation sets,

respectively. Only the sequence S1-Jog contained 200 and

200 frames in training and validation sets, respectively. For

testing we utilized first 200 frames from each validation trial.

Evaluation methodology The aim of the experiment is to

evaluate the proposed approach using MRPF. The presented

method was tested against two well-known approaches using

the ordinary sampling importance resampling (SIR) and the

annealed particle filter (APF). These two methods are usu-

ally used as baselines for comparison on HumanEva, e.g.,

[5,13]. The code of these approaches is provided together

with HumanEva. In both methods gaussian diffusion as the

dynamics model was applied.

Each motion sequence is synchronized with measure-

ments from the MOCAP system and thus it is possible to

evaluate the difference between the true values of a pose

configuration with the estimated ones using the following

equation (w(·) ∈ W denotes M points on a body for given

state variables):

err(x̂1:T ) =
1

T M

T
∑

t=1

∑

w∈W

‖w(xt ) − w(x̂t )‖. (31)

The obtained value of the error err(x̂1:T ) is expressed in mil-

limeters.

In the empirical study we used the following number of

particles: (i) MRPF with 500 particles, (ii) SIR with 500 parti-

cles, and (iii) APF with 5 annealing layers with 100 particles

each. The low-dimensional manifold had 2 dimensions. In

Fig. 5 the learnt low-dimensional embeddings are presented.

All parameters (except γx = 10−4) were set according to the

optimization process. The methods were run 5 times.

6.2 Results and discussion

The averaged results obtained within the experiment are gath-

ered in Table 1. The results show that the proposed approach
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Table 1 The tracking errors err(x̂1:T ) for all methods are expressed as

an average and a standard deviation (in brackets)

Sequence APF SIR MRPF

S1-Walk 107 (31) 82 (18) 69 (7)

S1-Jog 111 (17) 81 (4) 82 (8)

S2-Walk 106 (16) 95 (7) 86 (12)

S2-Jog 121 (9) 106 (13) 94 (8)

S3-Walk 114 (27) 88 (13) 79 (10)

S3-Jog 111 (27) 117 (29) 70 (8)

The best results are in bold

with MRPF gave the best results except the sequence S1-Jog

for which SIR was slightly better. It is probably caused by the

low-quality of this sequence which resulted in shorter train-

ing and validation sets. Because of this fact the manifold was

possibly not fully discovered.

The worst performance was obtained by the APF. The

explanation for such result can be as follows. First, the like-

lihood model used in the experiment is highly noised by the

low quality of the silhouettes achieved in the background

subtraction process. The noise in the likelihood model leads

to displacement of extrema and thus wrong tracking. Second,

the number of particles can be insufficient. However, consid-

Table 2 The tracking errors err(x̂1:T ) for different body parts are

expressed as an average and a standard deviation (in brackets)

Seq. Algorithm Body part

Torso Head Legs Arms

APF 50 (5) 46 (5) 110 (34) 133 (63)

S1-Walk SIR 41 (4) 39 (2) 74 (28) 111 (32)

MPF 36 (1) 40 (4) 69 (13) 85 (7)

APF 44 (6) 49 (7) 96 (21) 158 (30)

S1-Jog SIR 37 (3) 40 (3) 63 (8) 122 (17)

MPF 35 (4) 43 (6) 80 (19) 106 (7)

APF 73 (6) 78 (5) 120 (35) 107 (11)

S2-Walk SIR 76 (5) 76 (3) 101 (9) 98 (11)

MPF 61 (6) 72 (4) 97 (10) 85 (20)

APF 66 (9) 77 (3) 106 (12) 161 (15)

S2-Jog SIR 62 (7) 73 (2) 86 (8) 146 (40)

MPF 57 (2) 75 (4) 102 (9) 101 (11)

APF 48 (3) 43 (7) 143 (35) 120 (42)

S3-Walk SIR 53 (10) 44 (10) 93 (17) 104 (14)

MPF 39 (4) 35 (3) 99 (26) 81 (11)

APF 50 (13) 54 (14) 105 (15) 148 (51)

S3-Jog SIR 45 (11) 51 (11) 96 (22) 172 (48)

MPF 38 (3) 40 (3) 74 (4) 81 (15)

The best results are in bold

Fig. 6 Tracking error rate over the test sequences
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(a)

(b)

(c)

Fig. 7 Example frames from S3-Jog test sequence

ering larger number of particles would cause prohibitively

long execution time.

In Fig. 6, the tracking error rates are presented. We

can see there that the MPRF method behaves more sta-

ble than SIR and APF, i.e., the error is not accumulating

over consecutive frames. This is the effect of keeping the

trajectory close to the manifold. It is especially impor-

tant if the image evidence is poor, which leads to huge

ambiguity. For more detailed consideration on this problem

see Table 2, where individual tracking errors for differ-

ent body parts are presented. Notice that MRPF always

achieves better results for arms, where the ambiguity is the

biggest since in most of the tracking time arms stay clut-

tered by the torso. This effect can be also seen in Fig. 7,

where some example frames from the last test sequence are

shown.
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7 Conclusions

In this paper, a fully Bayesian approach to the articulated

human motion tracking was proposed. The modification of

the standard Condensation algorithm is based on introducing

low-dimensional manifold as a regularizer that incorporates

prior knowledge about the specificity of human motion.

The application of the low-dimensional manifold allows to

restrict the space of possible pose configurations. The idea is

based on the application of GPLVM with back constraints.

At the end of the paper, the experiment was carried out using

the real-life benchmark dataset HumanEva. The proposed

approach was compared with two particle filters, namely,

SIR and APF, and the obtained results showed that it outper-

formed both of them.
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