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Abstract

Speech emotion recognition methods combining articulatory information with acoustic features have been

previously shown to improve recognition performance. Collection of articulatory data on a large scale may not be

feasible in many scenarios, thus restricting the scope and applicability of such methods. In this paper, a discriminative

learning method for emotion recognition using both articulatory and acoustic information is proposed. A traditional

ℓ1-regularized logistic regression cost function is extended to include additional constraints that enforce the model to

reconstruct articulatory data. This leads to sparse and interpretable representations jointly optimized for both tasks

simultaneously. Furthermore, the model only requires articulatory features during training; only speech features are

required for inference on out-of-sample data. Experiments are conducted to evaluate emotion recognition

performance over vowels /AA/, /AE/, /IY/, /UW/ and complete utterances. Incorporating articulatory information is

shown to significantly improve the performance for valence-based classification. Results obtained for within-corpus

and cross-corpus categorical emotion recognition indicate that the proposed method is more effective at

distinguishing happiness from other emotions.
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1 Introduction

The study of speech-based emotion recognition has

gained practical importance with the recent advances in

human-machine interaction. Emotions convey important

information related to the speaker’s mood or personality

originated from neural activities [1], which can be used to

assist and improve the performance of automatic speech

recognition or spoken dialog systems [2, 3]. This topic has

further applications in automated call centers [4], child

education [5], entertainment, patient care, and diagnosing

post-traumatic stress disorders [6]. Emotion recognition

is a challenging task since their expression and percep-

tion vary greatly across speakers, cultures, and languages.

Often, information is required from multiple sources to

form a reliable estimate of emotion [7–10].

Emotional speech can be characterized by various

descriptors—acoustic properties, spoken content, and

articulatory position/movement. The majority of research
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is focused on using the acoustic properties of speech,

owing to their strong correlations with emotion and

simple recording procedures. However, it is commonly

understood that articulator motion also exhibits a strong

correlation with emotion. One such example highlighting

this relationship between emotions, articulatory move-

ment, and acoustic characteristics is depicted in Fig. 1.

Here, for the vowel /AE/ in the word compare, anger

forces a larger opening of the jaw as opposed to sadness.

Similarly, lips are more protruded towards the outside for

the vowel /IY/ in the word me under anger. The differ-

ences in articulatory movement also correspond to speech

spectral differences between anger and sadness [11–13].

Below, we provide an overview of the existing work on

emotion recognition and related applications that make

use of articulatory kinematics.

There is a vast literature devoted to studying emotion

recognition using acoustic features [14–18]. Low-level

descriptors (LLDs) of the spectral or prosodic type, such

as Mel filter banks (MFBs), pitch, or intensity, have been

used in [17, 19–22]. Supra-segmental representations

derived over linguistic units such as phonemes, words, or

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-019-0157-9&domain=pdf
mailto: visar@asu.edu
http://creativecommons.org/licenses/by/4.0/


Shah et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2019) 2019:14 Page 2 of 17

Fig. 1 Relationship between angry (left panel) and sad (right panel) emotions, acoustic characteristics, and articulatory information for an utterance

“compareme to” by a male speaker. (Top row) Spectrogram and formant tracks, (middle row) position of the jaw along Y-axis, and (bottom row)

position of the lip along Y-axis. Note the differences in articulatory position and frequency response for vowels /AE/ and /IY/ of words “compare” and

“me”, respectively. Negative axis corresponds to downward movement along the Y-axis

sentences have proven to be more successful than frame-

based or instantaneous segmental approaches [14, 23, 24].

Supra-segmental features are typically obtained by calcu-

lating various statistics from the LLDs over the defined

linguistic unit. The size of the feature set often ranges

from as few as 100 to as high as 5000, depending on the

number of statistics extracted [16, 23, 25]. Discriminative

classifiers are then trained over such high-level features

for a multitude of tasks such as binary (arousal, valence)

or categorical (happy, sad, angry, etc.) classification as

well as regression over continuous emotional attributes

[26–31]. Recently, deep neural network (DNN)-based

models trained on simple frame-level speech features

have achieved better performance than models trained

on human-engineered utterance-level features [32–35];

however these models typically require training on large,

labeled data sets.

On the other hand, there are relatively few studies

that attempt to characterize emotion using articulatory

information. In [11], it was shown that the degree of

jaw opening increased significantly as subjects became

annoyed , while in [12], the lateral lip distance between

the corners of the mouth was shown to be strongly influ-

enced by the emotional state. In [13], the authors showed

that articulation-based features achieved a much bet-

ter classification rate compared to acoustic features for

a single male subject. Articulatory data in each of the

above works was collected using a multi-channel elec-

tromagnetic articulography (EMA) system. Alternatively,

articulatory data captured using facial markers have been

applied in a multi-modal framework [7, 36]. In [36], the

authors showed that the lower region of the face (chin

and lips) was the best indicator of emotion. These studies

are mostly limited to single subjects, or multiple speak-

ers recorded under similar conditions. However, more

importantly, these methods require articulatory data dur-

ing inference on out-of-sample data in order to perform

reliably. Acquisition of such data on a large scale is dif-

ficult and time-consuming due to its invasive and highly

sensitive recording procedure; this limits the scope and

application of these methods.

To alleviate the need for articulatory data during

training, several studies propose to use pre-trained

acoustic-to-articulatory inversion models to first estimate

articulatory features and then to use these features in dif-

ferent speech classification tasks [37]. For example, the

authors in [38] evaluated the utility of articulatory features

estimated from a pre-trained acoustic-to-articulatory

inversion model for emotion recognition. In [39], a similar

approach is used for phonetic classification. The authors

in [40] integrated the acoustic-to-articulatory mapping

system within a DNN architecture and used this archi-

tecture for both senone classification and feature map-

ping. The study in [41] augmented input acoustic features

with estimated articulatory features generated from a

pre-trained acoustic-to-articulatory model. This body of

work suggests that augmenting speech classification mod-

els with estimated articulatory features yields improved
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performance; however, these approaches rely on com-

plex and non-linear acoustic-to-articulatory models that

are not optimized in any way for the underlying task of

interest.

In this paper, we propose a discriminative learning

method for emotion recognition using articulatory and

acoustic information. Rather than training a stand-alone

acoustic-to-articulatory inversion model, the proposed

articulation constrained learning (ACL) method is formu-

lated to jointly minimize emotion classification error and

articulatory reconstruction error using articulatory and

acoustic features from the same or different databases.

Compared to the previous work in [38–41], this results in

a much simpler model that is specifically optimized for

emotion recognition. We evaluate the model by extend-

ing the conventional logistic regression cost function to

include additional constraints that enforce the model to

also reconstruct articulatory data. The classifier weights

are constrained to be sparse via L1 regularization, which

leads to a shared and interpretable representation. We

note that the method is not limited to linear models only.

The articulation reconstruction criterion can be used to

constrain DNN learning through regularization; however,

in this paper, we focus on a linear model given the limited

size of the training set and leave the DNN extension for

future work.

The proposed regularizer in ACL is well suited for

databases with high dimensional feature sets and limited

articulatory data, as is common in emotion recognition

studies. A review of 32 publicly available speech emotion

databases reveals that most are comprised of a very small

number of subjects with, at most, a few hundred instances

per class [42]. Since our method constrains the solu-

tion space during training by requiring that the learned

model focuses on acoustic features that capture articula-

tory kinematics, it has similarities with the literature on

using transfer learning for emotion recognition [43–45].

In transfer learning, the aim is to improve performance

on a target task (emotion recognition) by transferring

the shared knowledge that exists in a related source task

(articulator motion reconstruction). This is especially use-

ful in applications where training data is limited but the

feature dimension is large [43, 46]. In the literature, trans-

fer learning is typically used as a means of adapting the

model to new domains by including limited data from

the source domain during training (e.g., new background

noise conditions and new speakers) [45]. Our application

of transfer learning is quite different; our aim is to use

the articulator reconstruction task to improve emotion

recognition models. In contrast to this previous work, the

contributions of our work can be summarized as follows:

• A speaker-independent, articulation-constrained

learning model is proposed, where the hypothesis

space for the emotion recognition model is

constrained by requiring that the model jointly

predicts emotion and articulator kinematics. In this

paper, the model is derived for a linear discriminative

learning example; however, the method can be

extended to other models, including DNNs;
• The resultant model is much simpler compared to

other approaches that estimate articulatory

information using complex acoustic-to-articulatory

inversion models;
• In contrast to most multi-modal emotion recognition

methods, articulatory data is not required during

inference;
• We conduct cross-corpus studies, where the acoustic

features used for emotion recognition and articulatory

target reconstruction belong to different databases.

Experiments are performed using two databases, the

USC EMA [13] and the USC IEMOCAP [47], consist-

ing of acted and scripted emotional utterances. Ear-

lier studies [13, 48] have shown that the dependence

between emotions, acoustic characteristics, and artic-

ulatory kinematics is clearly manifested in the vow-

els. Hence, the performance is first evaluated over 4

peripheral vowels, such as /AA/, /AE/, /IY/, and /UW/.

Additional experiments are conducted to evaluate the

performance over complete utterances, involving all vow-

els and consonants. Overall, the proposed method shows

significant improvements in valence classification over

traditional approaches based on acoustic features only.

Further experiments on categorical emotion recognition

show that articulatory information helps improve the

accuracy of recognizing happy emotions; this is impor-

tant for applications that evaluate how emotion spreads

in group settings and its impact on productivity [49].

In a mixed-corpus scenario in which the speech data

comes from one corpus and the articulatory data comes

from another corpus, the performance is observed to be

almost similar to a within-corpus scenario, which high-

lights the ability of the proposedmethod to generalize well

across databases with speech and articulatory information

recorded using different techniques and under different

conditions.

The remainder of this paper is organized as follows: The

databases used in this work are described in Section 2. The

proposed ACL method is described in Section 3. Exper-

iments and results for within- and cross-corpus exper-

iments are presented in Sections 4 and 5, respectively.

Finally, conclusions are presented in Section 7.

2 Data preparation

Abrief overview of the two databases, USC EMA andUSC

IEMOCAP, and the respective articulatory information

are described in this section.
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2.1 The USC EMA database

The USC EMA database is comprised of scripted and

acted emotions by three (1 male, 2 female) speakers [13].

A set of 14 sentences, mostly neutral in emotional content,

were used. Four different emotions, i.e., neutral, angry,

sad and happy, were simulated by each speaker. The male

speaker recorded each sentence 5 times for each emotion

resulting in a total of 280 utterances. The female speak-

ers performed the same exercise, with only 10 out of 14

sentences, resulting in 200 utterances per speaker. From

a total of 680 utterances, only those utterances were cho-

sen for which external evaluators were in consensus with

regard to the perceived emotion, resulting in a set of 503

utterances.

Articulatory data was collected using an EMA sys-

tem. The positions of three sensors attached to the

tongue tip, the lower maxilla (for the jaw move-

ment), and the lower lip are tracked. Each sensor

trajectory (target) was recorded along the X (forward-

backward movement) and Y (vertical movement) axes.

The velocity and acceleration of each trajectory are also

included in addition to the position. This results in a

total of 18 articulatory targets, as shown in Table 1.

Articulatory data is recorded at a sampling rate of

200 Hz, and speech is recorded at a sampling rate of

16 KHz.

Figure 2 shows the mean value of the X,Y coor-

dinates for the tongue, jaw, and lip positions for dif-

ferent vowels and emotions. Angry utterances show

the most distinct characteristics compared to other

emotions. This effect is prominent especially for the

vowels AE and AA. Previously, researchers studied

these aspects in detail and showed that such dif-

ferences are statistically significant [13]. This fur-

ther highlights the dependence between emotions and

articulatory kinematics.

Table 1 Articulatory targets for the USC EMA and USC IEMOCAP

databases

Location Attributes Axes Total

USC EMA

Tongue (TNG) Position (POS)

Jaw (JAW) Velocity (VEL) (X , Y) 18

Lip (LIP) Acceleration (ACC)

USC IEMOCAP

Chin (CHN) Chin Width (CHW) (X , Y , Z) 15

Chin Position (CHP)

Lip (LIP) Lip Width (LPW)

Lip Height (LPH)

Lip Position (LPP)

2.2 The USC IEMOCAP database

TheUSC IEMOCAP database [47] was collected by asking

five pairs of male-female actors to elicit emotions either

by reading from a script or via improvisation in a conver-

sational setting. This database consists of a total of 10,039

utterances. Categorical attributes, including neutral, sad,

happy, angry, frustrated, surprised, disgust, fear, and

unknown, are assigned to each utterance. Only scripted

utterances for which a majority consensus was reached

among external evaluators are considered in this study.

Only utterances labeled as neutral, sad, happy, excited,

and angry are selected, while the remaining attributes are

not considered as they are under-represented. Further-

more, happy and excited are treated as the same emotion

and merged under one class. This results in a total of

1262 utterances distributed across ten speakers and four

emotions. The procedure for data selection and labeling

is similar to previous studies conducted on this database

[9, 18, 24].

Articulatory information is available in the form of

motion capture markers located at different points on a

speaker’s face. An example arrangement with 53 facial

markers is shown in Fig. 3. This was originally intended

for studying facial expressions; hence, not all markers con-

tain information relevant to articulation. Markers located

in the chin and lip areas are considered in this study

as they are expected to relate the most to articulatory

movement. Specifically, the chin position (6), width of

the chin (difference between 5 and 7), lower lip posi-

tion (4), lip height (difference between 2 and 4), and

lip width (difference between 1 and 3) are considered.

Each marker is represented by its (X,Y ,Z) co-ordinates,

resulting in a total of 15 articulatory targets, as described

in Table 1. Articulatory data is recorded at a sampling

rate of 120 Hz. Speech is recorded at a sampling rate of

48 KHz and downsampled to 16 KHz prior to feature

extraction.

Figure 4 shows the mean value of the X,Y ,Z coordi-

nates for the chin and lower lip positions, averaged across

all speakers, for different vowels and emotions in the

USC IEMOCAP database. There is a strong correlation

between the chin and lip positions along the Y ,Z axes.

Similar to the USC EMA database, the articulatory behav-

ior is different across emotions for the same vowel. For

/UW/, the position of the chin along the Y -axis for sadness

is higher compared to happiness or anger. The effective-

ness of these markers towards emotion recognition was

studied in [36].

Comparing the two databases, USC EMA and USC

IEMOCAP, a few more similarities can be observed from

Figs. 2 and 4. The jaw/chin/lip position along the Y -axis is

lower for vowels /AA/ and /AE/, especially for anger and

happiness. The behavior of the lip position along the X-

axis is also similar across the two databases for different
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Fig. 2Mean position of select articulatory targets, averaged across all speakers, for different vowels and emotions in the USC EMA database. (Top

row) Tongue, (middle row) jaw, and (middle row) lip. Negative axis corresponds to forward movement along X-axis and downward movement

along Y-axis

vowels. In comparison with the acoustic characteristics

of different emotions, which vary highly across speakers

and databases, articulatory behavior tends to show a lower

variation.

3 Proposed approach

In this section, the preprocessing and feature extraction

routines are first presented, followed by a detailed descrip-

tion of the proposed ACL method.
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Fig. 3 Arrangement of facial markers in the USC IEMOCAP database. The markers used in this study are numbered from 1 to 7. Image obtained from

[47]

3.1 Preprocessing

This work focuses on studying peripheral vowels (/AA/,

/AE/, /IY/, and /UW/) and full-sentence utterances. In

this section, we present the approach assuming a vowel-

level analysis; however, it is easily extensible to complete

utterances as seen in the Experimental Results section. For

the peripheral vowel analysis, vowel duration is appropri-

ately chosen as the unit of analysis. The utterances are

forced-aligned to obtain the vowel boundaries. For USC

EMA, the SailAlign [50] tool was used to perform this

task. Forced alignment was not necessary for USC IEMO-

CAP as boundary information was already provided with

the database.

Acoustic, low-level descriptors (LLD) such as energy

of 26 MFBs, pitch, first two formants, and overall inten-

sity (30 LLDs) are extracted using sliding and overlapping

windows over the vowel segments with a frame rate of

200 frames/s. The overall intensity and energy in MFBs

were extracted using the openEAR toolkit [25]. Pitch and

formants were calculated using Praat [51]. Five statistics

including the mean, standard deviation, minimum, maxi-

mum, and range are calculated from each LLD trajectory.

This process results in a 150-dimensional feature vector

for each vowel segment. The supra-segmental, acoustic

features for the ith vowel segment is denoted by xi.

A supra-segmental representation, similar to the acous-

tic features, is also extracted from the articulatory tar-

gets; we use the mean value of each articulatory target

calculated over the vowel segment. The kth articulatory

target of the ith vowel segment is denoted by aki .

Each vowel segment is assigned the same emotion

that external evaluators assigned to the complete utter-

ance during the preparation of the database [13, 47].

In case of binary classification, the four emotions are

split into two categories depending on the task under

consideration—arousal (happy/angry vs neutral/sad) and

valence (happy/neutral vs angry/sad). We chose to bina-

rize the emotion labels as this would allow for evaluation

across corpora when annotations for different corpora are

not the same. A similar label combination strategy for

acoustic emotion recognition was also used in previous

studies for the same reason [52, 53]. The emotion label for

the ith vowel segment is denoted by yi.

3.2 L1-regularized logistic regression

The traditional cross-entropy cost function for logistic

regression over the acoustic features x and binary emotion

labels y for N segments is defined as:

f (w)=−
1

N
[

N∑

i=1

yi log σ(wT
xi) + (1− yi) log(1− σ(wT

xi))] . (1)

Here, the logistic or sigmoid function, σ(·), is given as:

σ(wT
xi) =

1

1 + e−wTxi
. (2)
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Fig. 4Mean position of select articulatory targets, averaged across all speakers, for different vowels and emotions in the USC IEMOCAP database.

(Top row) X , (middle row) Y, and (bottom row) Z coordinates

Training involves learning the optimal weightsw⋆, bymin-

imizing the given cost function. Recognition on new sam-

ples involves label assignment by calculating the posterior

probability by:

p(y = 1|x;w) = σ(wT
x). (3)

To avoid over-fitting and learn a sparse weight vector,

it is a common practice to modify the cost function to

include an additional L1 regularization term,

fL1(w, λ1) = f (w) + λ1‖w‖1. (4)
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This regularization term makes this method suitable for

feature selection and shows good generalization on high-

dimensional feature sets [54, 55]. Such L1-regularized

problems have been widely used to learn interpretable

representations in different tasks including, but not

limited to, computer vision [56] and natural language

processing [57]. The objective function in Eq. (4) is con-

vex, and a number of generic or application-dependent

techniques are available to solve this problem [58–61].

3.3 Articulation constrained learning

In order to improve emotion recognition performance

using acoustic and articulatory information, the proposed

articulation constrained learning method is constructed

by further modifying Eq. (4) to:

fACL(w, λ1, λ2) = fL1(w, λ1) +
λ2

M

M∑

j=1

(aj −w
T
xj)

2, (5)

where aj is the articulatory target for the jth vowel seg-

ment, and xj is the corresponding feature vector as

described in Section 3.1. An additional regularization

term is included to minimize the mean squared error

over articulatory target reconstruction. Here, λ1 con-

trols the sparsity of the solution, while λ2 controls the

importance given to articulatory target reconstruction rel-

ative to classification. Thus, the optimal weight vector is

learnt by jointly optimizing over two tasks: (i) articulatory

target reconstruction and (ii) emotion recognition. The

hypothesis is that the correlation between the two tasks

is reflected in the weights and leads to an improvement

in classification accuracy, especially when there is limited

training data.

The proposed ACL regularizer has several important

properties. First, note that the term related to articulatory

target reconstruction is not required to operate on the

same acoustic data that is used for emotion classification,

i.e., it allows for the flexibility to jointly optimize over fea-

tures corresponding to different speakers and belonging to

the same or different databases. Hence, ACL is applicable

in scenarios where limited articulatory data is available,

but acoustic data is available in abundance. Second, in

spite of the additional regularization term, the posterior

probability calculation remains the same as Eq. (3). Hence,

articulatory data is not required during the recognition

step, which is an appealing property, owing to the diffi-

cult and time-consuming procedures for articulatory data

collection. Lastly, the L1 regularization term enforces the

weight vector to be sparse, thus providing a shared and

interpretable representation of features that contribute

towards both tasks.

A specific example highlighting the last aspect is shown

in Fig. 5 and Table 2. Figure 5 shows the weights assigned

to each feature for valence classification of the vowel /IY/.

The samples are selected from a single male speaker in the

USC EMA database. Three sets of weights are learnt using

different objective functions—(i) acoustic only (ACO),

which performs emotion recognition using only acoustic

features; (ii) ACL; and (iii) articulation only (AR), which

Fig. 5 A comparison of weight vectors learnt from different training criteria. (Top row) ACO: emotion recognition using only logistic regression,

(middle row) proposed ACL method, and (bottom row) AR: least squares regression over the articulatory target only
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Table 2 Example comparison of top-ranked features for different

training objective functions

ACO ACL AR

Rank Top Features

1 MFB 18, MIN MFB 18, MIN MFB 19, MIN

2 MFB 15, MIN MFB 19, MAX MFB 19, MEAN

3 MFB 16, RNG MFB 19, MEAN MFB 19, MAX

4 MFB 26, MIN MFB 15, MEAN MFB 11, MEAN

5 MFB 22, MIN MFB 21, MEAN MFB 15, MEAN

UAR (%) 80.1 83.2* –

CC − 0.42 0.78 0.90

Results are for valence classification for male speaker and vowel IY. Learning is

constrained using jaw position along the Y-axis, with λ1 = 0.5 and λ2 = 0.1. UAR

unweighted average recall, CC correlation coefficient,MFBMel filter bank.

*Statistically significant improvement (p < 0.05) over compared methods

performs least squares regression using acoustic features

over articulatory targets. In addition to being sparse, the

weight vector learnt using ACL captures features rele-

vant to both ACO and AR tasks. For the same example,

Table 2 shows the valence classification accuracy as well

as the correlation coefficient between the ground truth

articulatory target and the reconstruction from acous-

tic features using the three criteria. In this case, ACL

yields a better classification performance over ACO and

also performs well over the articulatory target recon-

struction task. Ranked on the basis of the magnitude of

their weights (as shown in Eq. 5), the top 5 most impor-

tant features for each training criteria are also shown in

Table 2. It can be seen that the top-ranked features for

ACL overlap with the top-ranked features for ACO or AR.

For instance, ACL shares 3 features with the AR model

and 1 feature with the ACO model. This further demon-

strates the potential of the proposed ACLmethod towards

feature selection and interpretation, while improving the

classification accuracy.

3.4 Extension to multiple targets

The ACL cost function given in Eq. (5) is suitable for

learning from a single articulatory target. As described in

Sections 2.1 and 2.2, databases often include articulatory

information captured from sensors across multiple loca-

tions and axes. The proposed modification to ACL for K

targets is given by a single cost function as:

fACL(W, λk1, λ
k
2) =

K∑

k=1

[ fL1(wk , λ
k
1) +

λk2

M

M∑

j=1

(akj − w
T
k xj)

2] , (6)

where akj is the mean value of the kth articulatory tar-

get for the jth vowel segment, and xj is the corresponding

feature vector as described in Section 3.1. Here, the

final weight matrix is defined as W =[w1, ..,wk , ...wK ].

Effectively, the function fACL,M(W, ·) is a summation of

fACL(wk , ·) over K targets. Hence, the learning from each

target is considered independently from other targets,

i.e., fACL(wk , ·) is solved independently for each of the K

targets. During recognition, the posterior probability esti-

mates from the targets are combined to yield an average

estimate:

p(y = 1|x;W) =
1

K

K∑

k=1

σ(wT
k x). (7)

An important benefit of this strategy is that it allows

for one to separately measure or investigate the con-

tribution of each target or a group of targets to

the overall classification without requiring additional

training.

3.5 Extension to multiple classes

So far, the emotion labels were assumed to be binary,

arousal, or valence-based attributes. An alternative and

intuitive representation for emotions is in terms of dis-

crete or categorical attributes such as happy, sad, and

angry. Popular strategies, such as a one-vs-one or a

one-vs-rest setup, exist in order to modify the ACL

method for recognizing multiple emotion classes. The

latter method is adopted here owing to its lower com-

plexity during training. Following this approach, a one-

vs-rest classifier is trained for each emotion, i.e., happy

vs not happy, and so on. In this case, ACL yields a set

of C posterior probabilities corresponding to each of

the C emotion categories. The output label is assigned

according to:

ŷ = argmax
c

p(y = 1|x;wc). (8)

3.6 Optimization

Keeping the regularization coefficients λk1 and λk2 fixed,

the cost functions specified in Eqs. (4), (5), and (6) are

convex in w. There are several solvers that are suitable

for joint logistic and linear regression tasks; a majority

of openly available solvers are either applicable to logistic

regression or linear regression [60]. In this work, the CVX

toolbox for convex optimization was used [61]. Optimiza-

tion was performed using a splitting conic solver (SCS)

with a tolerance level set to 1E−5.

3.7 Selecting the regularization coefficients

Different methods including Bayesian optimization or

cross-validation are available to estimate suitable values

for λk1 and λk2. In this work, an exhaustive search

across discrete combinations of λk1 and λk2 is combined

with cross-validation. The search is restricted to the

following values: λk1 ∈ {0.1, 0.5, 1.0} and λk2 ∈

{0.001, 0.005, 0.01, 0.05, 0.1}. Further details regarding the
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cross-validation procedures specific to each database are

described in Section 4.

4 Experimental results: within-corpus

In this section, we describe experiments conducted to

evaluate performance in a within-corpus scenario. Here,

the acoustic and articulation feature vectors used for

ACL belong to the same corpus. Furthermore, the fea-

ture vectors used for articulatory reconstruction are

speaker-independent from the ones used for emotion

classification. For the latter, both speaker-dependent

and speaker-independent emotion recognition are con-

sidered. A classifier learnt using ℓ1-regularized logistic

regression, i.e., Eq. (4), and an RBF-kernel-based sup-

port vector machine (SVM) using only acoustic fea-

tures, which has been used in previous studies for both

binary and multi-class acoustic emotion recognition [52,

53], are considered as the baseline. The unweighted

average recall (UAR), which is equal to the average class-

wise accuracy, is used to evaluate and compare differ-

ent methods. Statistical significance is calculated using

a difference of proportions test at a significance level

of α = 0.05.

4.1 The USC EMA database (binary classification)

Experiments are carried out using a leave-one-speaker-

out (LOSO) strategy. Hence, for the 3 speakers in this

database, if the first speaker is designated as the test

speaker, then the data from the remaining speakers is used

for articulatory reconstruction, i.e., speaker-independent.

In comparison, the emotion classification part in ACL is

speaker-dependent: a random subset of data belonging

to the test speaker is used for training the classifier and

the remaining data is used for evaluation. The train/test

ratio is kept fixed at 0.5 for all speakers and vowels. This

approach is justified as there are only 3 speakers in the

USC EMA database, which is not sufficient to obtain reli-

able speaker-independent emotion classification models.

Given the limited amount of data, the cross-validation

procedure for choosing the regularization coefficients

λk1 and λk2 is as follows: First, 15 independent trials

of training with different train/test partitions are per-

formed according to the process outlined above. A dis-

crete combinatorial search is then performed to find the

coefficients that achieve the best average performance

over these trials. The training process is then repeated

an additional 10 times over different train/test partitions,

but with the selected coefficients only. The recall perfor-

mance achieved on the test set in each of the 10 trials

is then averaged. This entire process is repeated for each

vowel and speaker in the database. The final results are

presented separately for each vowel, but aggregated across

all speakers.

The UA recall performance for binary, arousal, and

valence classification tasks are presented in Table 3.

Acoustic features respond strongly to changes in emo-

tional intensity; hence, the UA recall for arousal classifi-

cation is expected to be higher than valence classification.

The proposed ACL method does not yield any signifi-

cant improvements for arousal classification, partly due

to this saturation in performance. In comparison, the

contribution of ACL is higher towards valence classifi-

cation. For all vowels except /AE/, an improvement over

the baseline ACO method is observed. Specifically, for

vowels /IY/ and /UW/, the improvement is statistically

significant over the baseline ACO method, with a relative

Table 3 Within-corpus results for binary classification on the USC EMA database

Vowel SVM ACO ACL Best target Best group BCUAR

Arousal

/AA/ 95.26 95.12 93.46 93.84 (JAW, VEL, Y) 93.51 (JAW) 54.51

/AE/ 91.09 91.47 91.88 91.74 (LIP, POS, X) 92.01 (LIP) 53.16

/IY/ 95.34 95.59 95.74 95.57 (JAW, POS, X) 95.80 (JAW) 53.35

/UW/ 94.49 93.64 93.85 93.64 (TNG, ACC, X) 94.41 (LIP) 57.75

FULL 99.51 99.51 99.13 99.64 (LIP, POS, X) 99.25 (TNG) 52.88

Valence

/AA/ 78.38 77.89 79.46* 79.38 (JAW, ACC, Y) 79.34 (LIP) 53.17

/AE/ 76.75 78.40 78.34 78.26 (TNG, VEL, X) 78.20 (JAW) 52.47

/IY/ 70.14 69.45 73.04* 73.90 (LIP, VEL, Y) 73.01 (LIP) 54.02

/UW/ 76.25 72.01 76.13* 77.63 (JAW, ACC, X) 76.30 (LIP) 53.44

FULL 92.85 92.79 95.11* 95.33 (TNG, VEL, X) 95.31 (TNG) 52.68

The UAR is expressed in percentage. The columns of the table represent results from several models: support vector machine (SVM), acoustic only model (ACO), articulation

constrained learning (ACL), best target using ACL, best group of targets using ACL, the by-chance unweighted average recall . *Statistically significant improvement(p<0.05)

over compared methods
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increase of ∼ 4%. For full utterances, ACL yields a relative

improvement of 2.4% over the baseline ACO method.

Similar improvements can also be observed over the base-

line SVM method as well. Previous studies have shown

that valence classification using only acoustic features

is quite challenging, often requiring additional informa-

tion from alternative sources, such as facial expressions

[18, 36]. Articulatory information, which closely relates

to facial expressions, likely accounts for the observed

improvements for valence classification.

The results above are for the case where the posterior

estimates from all the articulatory targets are combined

according to Eq. (7) for prediction. It is also possible to

obtain estimates from a group of targets or a single tar-

get using Eq. (5). The individual targets and groups are

defined according to Table 1. For example, the JAW group

consists of 6 targets—jaw position, velocity, and accelera-

tion along the X and Y axes. Here, Table 3 shows both, the

UA recall achieved by the best individual target and group

of targets and the by-chance UAR (BCUAR). To determine

the best targets for USC EMA corpus, instead of learn-

ing a single model using all the 18 articulatory targets as

described in Table 1, 18 separate models are learnt, one

for each articulatory target. Similarly, for the best group,

targets are grouped as per the location column in Table 1,

yielding 3 groups and their corresponding models. The

model with the best performance is selected as the best

performing target or group. Between the 3 groups of tar-

gets, information from the jaw or lip is found to be more

useful on peripheral vowels, while the tongue information

is more useful over full utterances. Marginal improve-

ments are observed for arousal and valence classification

of /UW/ if only the information pertaining to lip is used

for learning.

4.2 The USC EMA database (multi-class classification)

For multi-class or categorical emotion recognition, the

training and cross-validation procedures are the same as

described earlier for the binary classification case. Again,

the articulatory reconstruction is speaker-independent,

while emotion classification is speaker-dependent. The

recall performance averaged across all 3 speakers for

different vowels is shown in Table 4. ACL shows an

improvement over the baseline ACO method across all

vowels and full utterances. Emotions in /IY/ are the hard-

est to recognize among all vowels, perhaps due to the

saturation in articulatory movement during their expres-

sion. These observations are quite similar to the findings

in an earlier study on the same database [13]. However,

a direct comparison is not feasible as experiments in the

latter work were restricted to a single subject and the par-

titioning strategy for training and testing was not clearly

specified.

Once again, the recall achieved using individual or a

group of targets is also shown in Table 4. The experiments

for results based on the best individual target and group is

the same as those in the binary classification experiments.

The jaw and lip sensors are more valuable for categori-

cal classification over peripheral vowels, and the tongue

information is useful over full utterances. For instance, the

recall performance on vowel /IY/ increases from 72.89 to

74.66% if only the jaw velocity along the X-axis is used to

constrain learning.

Further inferences regarding the performance can be

drawn from the confusion matrices shown in Table 5.

Using articulatory information, the accuracy of recog-

nizing happiness across all vowels increases significantly,

i.e., from 63.3 to 70.6%. This improvement comes at the

expense of a marginal deterioration in recognizing other

emotions. For anger and sadness, the accuracy using ACL

is 73.5% and 81.3%, respectively, compared to 74.2% and

81.8%, respectively, obtained using the baseline method.

Articulatory information also helps to reduce the confu-

sion in discriminating emotions across the valence axis,

i.e., between happy-angry and neutral-sad. Here, the rate

of misclassifying neutral as sadness is 11.7% for ACL com-

pared to 14.4% for the baseline. Similarly, the rate of

misclassifying happy as angry is 16.1% for ACL compared

to the baseline 20.4%.

Previous studies on multi-modal emotion recognition

also showed that facial expressions, especially those cap-

tured from the lower portion of the face, i.e., mouth

and chin, are better at recognizing happiness compared

to other emotions [36]. Once again, the strong relation

Table 4 Within-corpus results for categorical classification on the USC EMA database

Vowel SVM ACO ACL Best target Best group BCUAR

/AA/ 80.92 79.97 81.55* 81.17 (TNG, ACC, X) 81.75 (JAW) 28.09

/AE/ 76.19 78.20 79.02 78.55 (LIP, VEL, X) 79.17 (LIP) 27.35

/IY/ 71.78 71.15 72.89* 74.66 (JAW, VEL, X) 73.14 (LIP) 27.85

/UW/ 77.82 75.17 77.50* 76.31 (JAW, ACC, X) 77.80 (LIP) 29.74

FULL 95.74 95.62 97.05* 96.97 (LIP, VEL, Y) 97.00 (TNG) 27.23

The UAR is expressed in percentage. The columns of the table represent results from several models: support vector machine (SVM), acoustic-only model (ACO), articulation

constrained learning (ACL), best target using ACL, best group of targets using ACL, and the by-chance unweighted average recall (BCUAR). *Statistically significant

improvement (p < 0.05) over compared methods
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Table 5 Confusion matrix for categorical emotion recognition

on the USC EMA database

Neu Ang Sad Hap

(a) ACO

Neu 79.9 1.9 14.4 3.8

Ang 6.2 74.2 4.1 15.5

Sad 14.4 0.5 81.8 3.3

Hap 8.1 20.4 8.2 63.3

(b) ACL

Neu 80.8 2.7 11.7 4.8

Ang 6.1 73.5 4.0 16.4

Sad 13.0 1.3 81.3 4.4

Hap 6.0 16.1 7.3 70.6*

Rows represent the ground truth, and columns indicate the recognized emotion.

Results are averaged across all speakers and vowels and are expressed in percentage.

* Statistically significant improvement (p < 0.05) over compared methods

between articulatory information and facial expressions

likely accounts for the observed increase in performance

when we constrain our model to learn acoustic features

that model articulation.

4.3 The USC IEMOCAP database (binary classification)

Experiments are carried out using a leave-one-speaker-

out (LOSO) strategy for the 10 speakers in this database.

Unlike the experiments on the USC EMA database, the

acoustic features used for training the emotion classi-

fier and articulatory reconstruction term are completely

speaker-independent from the test speaker. Regulariza-

tion coefficients, λk1 and λk2, are estimated on the basis of

the combination that yields the best average recall over all

speakers. Separate models are learnt for each speaker and

vowel/utterance, and the final results are presented sepa-

rately for each vowel/utterance, but aggregated across all

speakers.

The UA recall performance for binary, arousal, and

valence classification tasks are presented in Table 6. Once

again, recall on arousal classification is generally higher

than valence classification. Between the two approaches,

ACO and ACL, the latter method performs slightly worse

or better depending on the vowel. The best improvement

is achieved for the vowel /AA/. For valence classification,

ACL outperforms the baseline for each vowel with the

largest improvement observed for the vowel /AE/. For full

utterances, marginal improvements are obtained over the

baseline ACO method.

The results above are for the case where the posterior

estimates from all the articulatory targets are combined

using Eq. (7). It is possible to study the performance

obtained using individual or a group of targets. For the

USC IEMOCAP database, Table 6 defines the possible

Table 6 Within-corpus results for binary classification on the USC

IEMOCAP database

SVM ACO ACL Best target Best group BCUAR

Arousal

/AA/ 65.81 67.43 69.18* 72.60 (LPH, Z) 70.28 (LPH) 65.44

/AE/ 63.67 64.24 65.40 66.95 (LPH, X) 65.74 (LPH) 63.65

/IY/ 65.27 66.36 65.85 67.90 (LIP, Y) 67.70 (LIP) 66.22

/UW/ 62.49 63.90 64.44 67.60 (LPH, Z) 66.50 (LIP) 69.03

FULL 72.96 72.58 73.52 75.04 (CHN, X) 75.12 (CHN) 50.47

Valence

/AA/ 59.29 60.47 60.68 64.69 (LIP, Z) 63.01 (CHW) 51.21

/AE/ 57.20 57.61 59.06* 61.49 (LPW, X) 60.02 (CHW) 54.83

/IY/ 59.61 60.36 61.34 62.85 (CHN, Y) 61.85 (LPW) 56.88

/UW/ 61.20 63.17 63.62 64.42 (CHW, X) 63.95 (LIP) 56.25

FULL 60.34 61.74 62.16 63.37 (LPH, Z) 62.95 (LPW) 60.45

The UAR is expressed in percentage. The columns of the table represent results

from several models: support vector machine (SVM), acoustic only model (ACO),

articulation constrained learning (ACL), best target using ACL, best group of targets

using ACL, and the by-chance unweighted average recall (BCUAR). *Statistically

significant improvement (p < 0.05) over compared methods

groups and individual targets. For example, the group lip

height (LPH) consists of 3 targets corresponding to the

X, Y, and Z axes. The recall obtained by the best indi-

vidual target and group for different vowels in the USC

IEMOCAP database is shown in Table 6. For the USC

IEMOCAP corpus, there are 15 possible targets and 5 pos-

sible groups based on the attribute column in Table 1.

The best target and best group results reported in Table 6

are derived as per the approach described in Section 4.1.

Among the different groups of targets, the markers per-

taining to the lip are found to be more useful than the

chin markers. Articulation constraints using only a sin-

gle target yields a better performance in comparison with

learning from all available targets. For instance, using only

the lip height data along the Z-axis, statistically signif-

icant improvements are obtained for /AA/. The relative

improvement over the baseline for arousal and valence

classification is 7.6% and 6.9%, respectively. Similarly, a

recall of 61.49% is obtained for valence classification over

/AE/, a relative improvement of 6.7% over the baseline.

4.4 Comparing the two datasets

Based on the experimental results, the proposed ACL

seems to improve emotion recognition performance. The

impact on arousal classification is less compared to

valence classification. Classification along the valence axis

using only acoustic features is quite challenging; hence,

the results obtained in this work are of importance. The

expectation here is that using ACL, a shared represen-

tation can be learnt that would not only lead to reliable
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emotion recognition, but also be able to reconstruct artic-

ulatory targets based on the constraints.

This property is verified through additional experi-

ments, and the corresponding results are shown in Figs. 6

and 7. The correlation coefficient is calculated between

the ground truth and reconstructed articulatory targets

over all the utterances used during training. This coeffi-

cient is calculated for each articulatory target and speaker

and the averaged results for each vowel are presented.

The reconstructions obtained from the 3 models trained

using different criteria (Section 3) are compared: (i) ACO

or Eq. (4), (ii) ACL or Eq. (6), and (iii) AR, which is

a least squares regression over articulatory targets. As

expected, the AR method shows the maximum CC for

all vowels as it is optimized for a single task, i.e., artic-

ulatory target reconstruction. At the opposite end, the

ACO method is bound to perform the worst as articu-

latory data is not considered at all during training. ACL

shows a higher CC than ACO as well as a better emo-

tion recognition performance as seen from our earlier

results. Hence, ACL provides an efficient way of incor-

porating articulatory information to constrain learning,

while achieving better generalization and overcoming the

necessity of articulatory data collection during testing or

recognition.

From the Figs. 6 and 7, a few differences between the

USC EMA database and the USC IEMOCAP databases

can also be observed. The overall CC on the former is rel-

atively higher compared to the latter. This is due to the

fact that the USC IEMOCAP database is larger than the

USC EMA database; hence, less regularization is required

to improve performance (the λ2 term is smaller).

In general, the overall recall for emotion classification

is lower for the USC IEMOCAP database compared to

the USC EMA database. This can mainly be attributed

to the difference in expression types across the two

databases. Emotions were more naturally expressed in the

USC IEMOCAP database; the inter-evaluator agreement

for this database measured using the kappa statistic is

0.4 [47]. This metric indicates the difficulty experienced

by the evaluators while labeling the utterances, thereby

highlighting the naturalness of emotions.

5 Experimental results: cross-corpus

It is straightforward to combine data from different

domains using the ACL objective function and evaluate

performance under more realistic scenarios such as cross-

corpus recognition. Here, cross-corpus is with reference

to the data used for emotion classification and articula-

tory reconstruction in ACL. Specifically, the acoustic data

used for articulatory target reconstruction belongs to a

different database from the one used for training the logis-

tic regression classifier. Experiments are conducted using

the same databases, USC EMA and USC IEMOCAP.

Recognition performance is evaluated in terms of the

UA recall and compared against the within-corpus results

obtained in Section 4.

5.1 The USC EMA database

In the first experiment, the USC EMA database is des-

ignated as the test corpus. Acoustic features from this

database are used to train the logistic regression func-

tion in a speaker-dependent manner. Acoustic features

and articulatory targets, available from 15 facial mark-

ers (Table 1) and all 10 speakers of the USC IEMOCAP

database, are used for the constraints enforcing articu-

latory reconstruction. The training and cross-validation

procedures are the same as described in Section 4.1.

The recall performance for arousal and valence

classification is presented in Table 7. Overall, there is

(a) (b)

Fig. 6 A comparison of the average correlation coefficient over all articulatory targets and speakers under different training criteria for the USC EMA

database
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(a) (b)

Fig. 7 A comparison of the average correlation coefficient over all articulatory targets and speakers under different training criteria for the USC

IEMOCAP database

no significant impact on recall performance in spite of

the data being collected from different sources. The

deterioration relative to the baseline, within-corpus per-

formance, is severe only for select cases: arousal classifi-

cation of vowel /IY/ and valence classification of vowel

/UW/. The relative drop in performance is 5% in the

former case and 3.4% in the latter case. In a few cases,

an improvement in performance is also observed; for

instance, valence classification over vowel /AE/.

5.2 The USC IEMOCAP database

In our second experiment, the USC IEMOCAP database

is designated as the test corpus. Hence, acoustic features

from this database are used to train the logistic regression

model in a speaker-independent manner, while acoustic

features and articulatory targets, from all the 18 targets

Table 7 Cross-Corpus, Binary Classification, Test on the USC EMA

database

Vowel ACL (WC) ACL (CC) Best group

Arousal

/AA/ 93.46 93.85 93.99 (LPP)

/AE/ 91.88 89.59 90.39 (LPH)

/IY/ 95.74 90.89 89.90 (LPH)

/UW/ 93.85 91.04 90.40 (LPH)

FULL 99.13 93.84 95.84 (LPP)

Valence

/AA/ 79.46 79.65 80.32 (LPW)

/AE/ 78.34 79.50 79.62 (LPW)

/IY/ 73.04 73.16 73.42 (CHW)

/UW/ 76.13 73.51 74.39 (LPH)

FULL 92.79 94.92 94.65 (CHW)

(Table 1) and 3 speakers of the USC EMA database, are

used for the term involving articulatory reconstruction

constraints. The training and cross-validation procedure

is similar to the one outlined in Section 4.3.

The recall performance for arousal and valence clas-

sification is presented in Table 8. The impact of cross-

corpus training is minimal on recall performance. Similar

to the USC EMA database, there is an improvement

in recall for select cases: arousal classification for

vowel /IY/ and valence classification for vowels /AA/

and /AE/.

Based on the above experiments and results, cross-

corpus constrained learning is not severely detrimental to

the emotion recognition performance. Marginal deterio-

rations are expected in certain cases as there are notable

differences across different corpora [18, 52, 62–64]. These

Table 8 Cross-corpus, binary classification, and test on the USC

IEMOCAP database

Vowel ACL (WC) ACL (CC) Best group

Arousal

/AA/ 69.18 68.71 70.11 (TNG)

/AE/ 65.40 65.01 66.02 (TNG)

/IY/ 65.85 66.96 67.59 (JAW)

/UW/ 64.44 63.55 65.57 (TNG)

FULL 73.52 74.46 74.97 (JAW)

Valence

/AA/ 60.68 62.41 62.80 (TNG)

/AE/ 59.06 60.83 61.92 (TNG)

/IY/ 61.34 61.27 61.28 (JAW)

/UW/ 63.62 63.02 63.23 (JAW)

FULL 62.16 61.01 61.42 (JAW)
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differences exist among the selection of speakers, record-

ing conditions, and types of emotional expressions.

6 Discussion

Experimental results in this study show that ACL can

improve model performance, even when articulatory

information is not available during model evaluation.

Within each database, the results are consistent. In

within-corpus experiments, we show that our proposed

ACLmethod yields a larger improvement on valence clas-

sification. This is consistent with other studies that show

classification along the valence axis using only acoustic

features is challenging and multi-modal classifiers based

on acoustic and articulatory features can improve perfor-

mance [18, 36]. For multi-class classification, we also see

that ACL shows improvement over ACO (without articu-

latory feature) and the SVM baseline system. Across the

two databases (EMA and IEMOCAP), the error patterns

are different. This is not surprising since (1) the databases

were collected under different conditions, with different

speakers and different sample sizes, and (2) different sen-

sors are used to measure the articulator motion, resulting

in different articulatory targets. The influence of these

factors on acoustic emotion recognition performance was

reviewed in [53], where the authors showed that acoustic

emotion recognition on different corpora exhibits variable

performance due to mismatch of recording conditions,

speakers, and types of speech materials. For example, in

a binary classification task for arousal (same as ours),

the performance of the model varied between 55.0 and

96.8%, depending on which corpus the model was evalu-

ated on. Similarly, the model for valence varied between

50.0 and 87.0%. More consistent performance is expected

on larger datasets with a more representative distribution

of speaker identities, recording conditions, and consistent

articulatory features.

Previous studies have shown that the relationship

among acoustic features, articulatory features, and emo-

tion classes can be complex and non-linear [37, 39, 65].

Unlike previous studies that rely on pre-trained acoustic-

to-articulatory inversionmodels for improving the perfor-

mance on other tasks, our aim in this study is not to first

reliably estimate articulatory features. Our goal is to use

whatever linear relationship exists between the acoustics

and the articulatory parameters to constrain the hypothe-

sis class of the emotion recognition model. In this context,

the ACL regularizer ensures that the model does not over-

fit to the emotion data. A case can certainly be made

for using a more complex model for both the loss func-

tion and the regularizer; however, we decided against this

in this paper for two reasons: (1) typically, larger data

sets are required to learn more complex models and (2)

the resulting model may no longer be convex. Given the

limited sample size in the two databases we used, we

opted for a linear model that can be reliably trained and

understood.

The proposed ACL can be naturally extended to

DNN-based multi-task learning with both emotion and

articulatory features as the training targets. Furthermore,

since articulatory features are recorded at the segment

level while emotion labels are recorded at the sentence

level, sentence-level recurrent neural networks can be

used to predict both emotion labels and articulatory fea-

tures on different time scales [35]. We expect that more

complex models will see consistent improvement with the

proposed ACL on larger andmore diverse speech emotion

corpora.

7 Conclusions

An articulation constrained learning method was pro-

posed to perform emotion recognition using both

acoustic and articulatory information. A conventional L1-

regularized logistic regression cost function was extended

to jointly optimize two tasks—(1) emotion classification

via logistic regression and (2) articulatory reconstruction

via least squares regression. The proposed method was

extended to consider constraints from multiple articula-

tory targets as well as categorical emotion recognition.

The two advantages offered by ACL include its simplicity

and its flexibility to combine data from different domains

without requiring large-scale articulatory data collection.

Experiments were performed to evaluate speaker-

dependent as well as speaker-independent emotion recog-

nition performance on two databases, USC EMA andUSC

IEMOCAP, providing articulatory information in differ-

ent manners. On the USC EMA database, significant

improvements of 5.1% and 5.7% were obtained for valence

classification of vowels /IY/ and /UW/, respectively, while,

on the USC IEMOCAP database, an improvement of 2.5%

was obtained for the same task on vowel /AE/ . Discrim-

inating across the valence axis is quite challenging using

speech; hence, the results obtained in this work demon-

strate the importance of articulatory information towards

improving the performance on this task. The perfor-

mance using individual targets was also presented. In this

case, an improvement of 6.9% and 6.7% was obtained for

valence discrimination of vowels /AA/ and /AE/, respec-

tively, on the USC IEMOCAP database. These results

show that domain knowledge can be incorporated to

improve the performance, i.e., if the relationship between

articulatory target behaviors and vowels is known before-

hand, then other targets can be ignored or given rel-

atively lower importance during the decision-making

process.

For categorical emotion recognition on the USC EMA

database, ACL was found to improve the overall perfor-

mance across all four vowels. Incorporating articulatory

constraints was shown to significantly improve the rate
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of recognizing happy emotions; an 11.55% improvement

relative to the baseline was observed. The confusion

matrices were presented, and it was shown that ACL

tends to decrease the misclassification rate between

emotions with similar arousal characteristics, i.e., happy-

angry or neutral-sad. This observation is supported by

the improvement in valence discrimination described

above.

Cross-corpus studies were conducted to evaluate the

ability of ACL to generalize across different recording

conditions, speakers, and expression types. Articulatory

data available from one database was used to constrain

emotion classification over acoustic features belonging to

another database. The performance in this scenario was

observed to be almost similar to the within-corpus sce-

nario, except for select cases. The deterioration observed

in these cases is a commonly expected behavior inherent

to cross-corpus studies.

In this paper, we focus on emotion recognition as the

task of interest. Future work will focus on applying ACL

to other well-known problems in the speech process-

ing domain, including speech or speaker recognition, to

yield a sparse and physically interpretable representation

of the underlying acoustic characteristics. Furthermore,

while we use the regularizer to constrain a sparse lin-

ear regression problem, a similar approach can be used

to constrain the solution space of other learning models

including deep neural networks, support vector machines,

and kernel-based methods.
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