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Abstract

Background: Elucidating metabolic network structures and functions in multicellular organisms is

an emerging goal of functional genomics. We describe the co-expression network of three core

metabolic processes in the genetic model plant Arabidopsis thaliana: fatty acid biosynthesis, starch

metabolism and amino acid (leucine) catabolism.

Results: These co-expression networks form modules populated by genes coding for enzymes

that represent the reactions generally considered to define each pathway. However, the modules

also incorporate a wider set of genes that encode transporters, cofactor biosynthetic enzymes,

precursor-producing enzymes, and regulatory molecules. We tested experimentally the hypothesis

that one of the genes tightly co-expressed with starch metabolism module, a putative kinase

AtPERK10, will have a role in this process. Indeed, knockout lines of AtPERK10 have an altered

starch accumulation. In addition, the co-expression data define a novel hierarchical transcript-level

structure associated with catabolism, in which genes performing smaller, more specific tasks appear

to be recruited into higher-order modules with a broader catabolic function.

Conclusion: Each of these core metabolic pathways is structured as a module of co-expressed

transcripts that co-accumulate over a wide range of environmental and genetic perturbations and

developmental stages, and represent an expanded set of macromolecules associated with the

common task of supporting the functionality of each metabolic pathway. As experimentally

demonstrated, co-expression analysis can provide a rich approach towards understanding gene

function.

Background
Biological systems are characterized by their capacity to
achieve net metabolic inter-conversions while maintain-
ing homeostasis in the face of environmental and devel-
opmental cues. This capacity is hard-wired into the

genetic blueprint of an organism, and is manifested by the
controlled expression of the genetic potential of the
organism's genome as it responds to divergent signals and
prompts. Mechanisms that control the expression of an
organism's genetic potential include those that regulate
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gene transcription, RNA processing, stability and transla-
tion, and processing of polypeptides and their assembly
into complexes. Some of these complexes are enzyme cat-
alysts, whereas others are structural or regulatory. A meta-
bolic network in its broadest sense can be defined as
encompassing the collection of catalytic, structural and
regulatory genes, which are expressed as mRNAs, proteins
and metabolites that work in coordination to achieve net
metabolic conversions.

Advances made over the last decade in the area of func-
tional genomics have provided an increasing ability to
globally profile genome expression at the level of RNAs,
proteins and metabolites. These data define the transcrip-
tome, proteome and metabolome, respectively. It is con-
ceptually possible to identify metabolic networks from
experimental data that reveal correlations in abundance of
sub-group of molecules (mRNAs, proteins/protein com-
plexes, or metabolites). Given that the behavior of an
organism can be regulated by multiple mechanisms that
impact the transcriptome, proteome and metabolome, it
is significant to ask the extent to which the transcriptome
can reveal metabolic networks. In the unicellular eukary-
ote Saccharomyces cerevisiae, which offers the advantage of
cell populations that are homogenous and a relatively
simple genome with only 6,608 genes (SGD project "Sac-
charomyces Genome Database", January 13, 2008 [1]),
the operation of metabolic networks, including glycolysis
and purine metabolism, has been revealed from transcrip-
tome datasets alone [2-4]. But can such metabolic net-
works be detected in organisms with a larger, more
complex genome, or in multicellular organisms, where
evidence for metabolic networks can be swamped by
noise associated with cellular differentiation?

The pathway-guided approach to examine the corre-
spondence between the known metabolic pathway and
the organization of metabolic processes learned from
expression data is to select sets of genes for pathways and
search for significant co-expression within each pathway.
This method has been used to reveal transcriptional co-
expression of genes belonging to the same metabolic
pathway across different tissues in complex organisms,
e.g., Krebs cycle enzymes in frog [5] or lactose biosynthe-
sis enzymes in mouse [6]. Another, module-guided,
approach is to classify a set of genes according to their
expression patterns, and study the correspondence of
these clusters with identifiable biological processes. This
approach was used to reveal 44 modules that correspond
to several metabolic pathways in C. elegans, including
lipid and amino acid biosynthesis [7].

In recent years, wealth of expression data emerged and
several online repositories for microarray data have been
created, including NASCArrays [8], Genevestigator [9],

PLEXdb [10], MetaOmGraph [11], ArrayExpress [12],
Vanted [13], Virtual Plant [14], ATTED-II [15], Arabidop-
sis Coexpression Data Mining Tool [16], MapMan [17],
and PageMan [18]. The availability of the data querying
the transcriptome across the diverse conditions allows for
the creation of the compendium of the biological
responses to many perturbations, that may guide the
interpretation of the microarray experiments and the
annotation of the new genes [19-22]. Because it has
become technically possible to profile the entire transcrip-
tome of an organism (it is still a technical challenge to
determine the proteome and metabolome), we tested the
feasibility of using only transcriptomics data to reveal the
operation of metabolic networks in Arabidopsis. A study
by Gachon et al. has shown that genes for enzymes of
indole, phenylpropanoid and flavonoid biosynthesis in
Arabidopsis are co-expressed [23]. Similar co-expression
has been shown for enzymes for synthesis of cellulose and
other cell wall components [24-26] and in isoprenoid
biosynthesis pathways [27]. An analysis of the transcrip-
tion coordination of 1,330 Arabidopsis genes implicated
in metabolic pathways in AraCyc revealed that the co-
expression among genes from the same pathway is higher,
than among genes from different pathways [28]. Several
metabolic processes could be also identified as coherent
subnetworks in the recent analysis of Arabidopsis gene
network, based on the compendium of the expression
profiles [29].

Here, we focus on three core metabolic pathways of Ara-
bidopsis: fatty acid biosynthesis, starch metabolism and
leucine catabolism, and analyze their expression in the
context of the 22,746 genes represented on the Affymetrix
ATH1 chip. Our approach unites the pathway-guided and
module-guided methods in that we group the pre-selected
set of known and putative genes from pathways into mod-
ules, and subsequently assign the function to those puta-
tive candidates that are within the module. We exploit the
assumption that a node in a network can be hypothesized
to have a similar attribute (e.g., function, or location, if
nodes represent genes) as the majority of the nodes in its
neighborhood of some radius. This assumption has
recently gained popularity as the way of assigning func-
tion to otherwise unknown genes [28,30,31]. The co-
expression network created from among the genes from
these pathways forms modules that include enzymes for
reactions within each pathway, suggest extensions of cata-
lytic steps in the pathway, and also allow for identification
of transporters, cofactors and regulatory molecules associ-
ated with the module. Indeed, one of the genes identified
in the starch module had been shown independently [32]
to be involved in regulation of starch metabolism. We
used knock out mutants to experimentally evaluate a sec-
ond putative regulatory gene in the starch module.
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Results and discussion
Fatty Acid Biosynthesis, Starch Metabolism and Leucine 

Catabolism form Comprehensive Modules

In order to determine how co-expression networks extend
across metabolic processes, we selected three core meta-
bolic pathways for analysis: fatty acid biosynthesis, starch
metabolism, and mitochondrial leucine catabolism (Fig.
1). These pathways were selected in part because of the
authors' extensive knowledge of their structure and bio-
logical implications (e.g., [33-39]). Fatty acid biosynthesis
is the process by which acetyl-CoA is used to generate acyl
moieties that are used as components of cellular mem-
branes, signaling molecules, and molecules that store
energy (e.g., seed oils) [40]. Starch is the principal poly-
meric storage form of glucose, and is stored either tran-
siently in leaves or long-term in seeds [41]. Leucine
catabolism provides an alternate source of acetyl-CoA to
sustain respiration and metabolic processes in the absence
of photosynthesis [42]. We assembled a list of genes with
a demonstrated or putative function in these three meta-
bolic pathways; these genes encode not only the enzymes
of the "textbook pathway", but also enzymes important
for synthesis of cofactors and transporters that are thought
to be involved in these processes. Specifically, a set of 126
genes associated with these pathways was identified based
upon one of three criteria: 1) genes that were demon-
strated by experimental evidence to belong to one of these
pathways; 2) genes assigned "putative" functionality in
one of these pathways, based on sequence similarity and
subcellular localization; or 3) genes encoding transporters
and enzymes synthesizing co-factors required for these
pathways [see Additional file 1].

Publicly available Affymetrix ATH1 chip-transcriptomic
datasets comprising of 956 biological samples were used
to infer patterns of transcript co-accumulation for the
22,746 Arabidopsis genes that are represented on this
chip (see Methods section for details). These data are
drawn from 72 experiments from NASCArrays [43] and
PLEXdb [44] that represent a wide range of developmen-
tal, and environmental and genetic perturbations on Ara-
bidopsis [see Additional file 2]. Data with poor
reproducibility were discarded, and the data was normal-
ized to the same mean and range (available at MetaOm-
Graph [11]). We calculated the values of Pearson pair-
wise correlation across these data for the set of 126
selected genes. The results were visualized as a graph, such
that genes form the nodes, which are joined by an edge if
the value of correlation between them is higher than
selected threshold. Using Pearson correlation thresholds
of 0.5, 0.6 and 0.7 yields three co-expression networks of
107, 77 and 62 genes, connected by 733, 444, and 204
edges, respectively (Fig. 2). The positioning of the nodes
(genes) in these networks was produced by graph-layout
software that places highly interconnected nodes close

together [45]. Thus, the absolute position of the node on
the plot has no meaning, only its relative position versus
other nodes: the most closely crowded nodes indicate
genes with the highest co-expression. Within each of these
co-expression networks the number of correlations
between genes from the same metabolic pathway is signif-
icantly larger than in randomly generated networks with
similar link structure (specifically, in the network at
threshold 0.6, the proportion of within-pathway edges is
245/444, versus a mean of 112/444 in randomly rewired
networks; this is equal to a difference of ~20 standard
deviations; Fig. 3). As the correlation threshold is
increased from 0.5 to 0.7, three distinct closely-intercon-
nected clusters emerge, whose member genes closely cor-
respond with the three metabolic pathways that were the
focus of this study. We refer to the three closely-intercon-
nected clusters identifiable in Fig. 2B as modules.

Starch is a complex molecule, whose metabolism com-
prises a network with many genes of known catalytic func-
tion but unclear physiological function [46,47]. Indeed,
several genes may function both in the catabolism and
biosynthesis of starch (e.g., pullulanase [48]). At the 0.6
correlation level, the starch metabolism module contains
28 genes encoding all the known enzymes of starch
metabolism. The module incorporates genes encoding
proteins, for which, to date, there is no experimental evi-
dence of involvement in starch metabolism, for example
beta-amylase At2g32290 (BAM2), and three phosphoglu-
comutase-like proteins (At4g11570, PGM-like2;
At1g70730, PGM-like3 and At1g70820, PGM-like4). On
the other hand, alpha-glucosidase, an enzyme which his-
torically had been considered to be involved in starch deg-
radation, although recent experimental data from potato
indicate otherwise [49], is not correlated with the Arabi-
dopsis starch metabolic module (Fig. 2B). Although the
processes of starch synthesis and degradation are tempo-
rarily separated over diurnal cycles in Arabidopsis leaves
(reviewed in [50]; [51]), as is the transcription of many of
the starch metabolic genes ([52,53]; Foster and Wurtele,
unpublished data), this is not reflected in the co-expres-
sion network of Arabidopsis; rather the two processes
cluster together in a single module. Two factors in partic-
ular may contribute to starch synthesis and degradation
transcripts being in a common module. First, Arabidopsis
doesn't have a major starch-storage organ such as a tuber,
thus an organ of Arabidopsis that is highly capable of
starch synthesis may also be capable of a rapid shift to
starch degradation, and the overall levels of all the rele-
vant transcripts may be high. Indeed, this is the case for
the diurnal fluctuations of the transcripts. Second, as sev-
eral of the starch metabolic enzymes appear to function in
both starch degradation and synthesis [48] (indeed the
full extent to which this is true is not yet known), expres-
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sion of such genes may be associated with both starch deg-
radation and starch synthesis.

The fatty acid synthesis module contains genes encoding
the complete set of enzymes required for the biosynthesis
of 18-carbon fatty acids from acetyl-CoA: three nuclear-
encoded subunits of acetyl-CoA carboxylase (CAC2,
CAC3, BCCP1, BCCP2, and BCCP1-like), malonyl-
CoA:ACP transacylase (MAT), acyl carrier protein (ACP1,
ACP2&3 and ACP5), beta-ketoacyl-[ACP] synthases (KAS
I, KAS II and KAS III), beta-ketoacyl-[ACP] reductase
(KAR), beta-hydroxyacyl-[ACP] dehydratase (HD and
HD-like), enoyl-ACP reductase (MOD1), stearoyl-[ACP]
desaturase (FAB2 and FAB2-like2) and acyl-[ACP]
thioesterases (FATA and FATA-like) (Fig. 4A). This mod-
ule also contains all genes for the four subunits of plas-
tidic pyruvate dehydrogenase, which produces acetyl-CoA
(the precursor for fatty acid biosynthesis) from pyruvate.
The apparent co-expression of the pyruvate dehydroge-
nase genes with fatty acid biosynthesis may indicate the
direction of the major metabolic flux of acetyl-CoA, even
though there are other fates of plastidic acetyl-CoA (e.g.,
biosynthesis of glucosinolates and amino acids, such as

leucine and cysteine). Interestingly, the module contains
genes for the final reaction in biotin biosynthesis [54-56]
and for lipoic acid biosynthesis, obligate cofactors of
acetyl-CoA carboxylase and pyruvate dehydrogenase,
respectively. In contrast, the acetyl-CoA synthetase (ACS)
genes do not show any expression correlation, consistent
with experimental evidence that this enzyme is not
required to provide acetyl-CoA for fatty acid biosynthesis
[33,57,58].

The leucine degradation module contains genes for the
four known enzymes of mitochondrial leucine catabolism
(Fig. 5): branched-chain amino acid aminotransferase
(BCAT), three out of four subunits of branched-chain
alpha-keto acid dehydrogenase (BCDH), isovaleryl-CoA
dehydrogenase (IVD) and methylcrotonyl-CoA carboxy-
lase (MCC). Only a single BCAT is included in the module
(BCAT2, At1g10070). This gene is not the one postulated
by Schuster and Binder [59] to participate in leucine deg-
radation. Consistent with these results, seven out of the
eight genes in our module (except IVD) form a coherent
subnetwork in the Arabidopsis gene network based on
partial correlation [29].

Metabolic context of Arabidopsis leucine catabolism, starch metabolism and fatty acid biosynthesis pathways (blue rectangles)Figure 1
Metabolic context of Arabidopsis leucine catabolism, starch metabolism and fatty acid biosynthesis pathways 
(blue rectangles).
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Coexpression of genes within three core metabolic pathwaysFigure 2
Coexpression of genes within three core metabolic pathways. The entities with correlations above the threshold are 
connected with an edge; networks at three thresholds of Pearson correlation are compared: A, 0.5; B, 0.6; and C, 0.7. With 
increasing correlation threshold, the within-pathway links emerge from noisy inter-pathway connections. Node colors repre-
sent the metabolic function assigned to each gene (blue: fatty acid synthesis, green: starch metabolism, red: leucine catabolism, 
yellow: transport or cofactor synthesis, white: acetyl-CoA generation) [see Additional file 1 for gene names]. The networks 
layouts were produced by GraphExplore software. The most densely crowded nodes indicate genes with the highest co-
expression. Within each of these three co-expression networks the number of links between genes from the same metabolic 
pathway is significantly larger than in randomly generated networks with similar link structure. Isolated nodes not shown.
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Modules are Identifiable in the Space of All Gene 

Transcripts

To test whether these pathway-specific modules can be
detected in the context of the expression of the entire
genome, and to determine whether genes other than those
encoding catalytic functions of the pathway are co-regu-
lated, we calculated Pearson correlations between individ-
ual pathway-specific hub genes and the 22,746 genes
represented on the Affymetrix chip. The genes used as
hubs for each metabolic pathway are: At2g05990, encod-
ing the enoyl-ACP reductase that is uniquely required in
de novo fatty acid biosynthesis [60]; At2g40840, starch
metabolism hub gene coding for disproportionating
enzyme [61]; and the leucine catabolism hub gene,
At4g34030, which encodes the β subunit of methylcroto-
nyl-CoA carboxylase [39,42] (Table 1).

Despite the complexities associated with a genome of
about 32,000 genes (TAIR7 Genome Release, April 23,
2007 [62]), and the challenge associated with the fact that
the RNAs used for the microarray analyses came from
plant samples that mix metabolically distinct cellular and
tissue compartments, it was still possible to find expres-
sion correlations among genes of common metabolic
pathways. Specifically, the majority of the genes that show
the highest correlation with the fatty acid biosynthesis
hub gene, the starch metabolism hub-gene, and the leu-
cine catabolism hub-gene are the structural genes that
code for the enzymes required in each of these metabolic
pathways (Table 1). Similarly, for every gene in the mod-

ule, we found genes correlated with it (above the set
threshold) among 22,746 genes on ATH1 array and
checked how many of those correlated genes are also in
the same module ("in" links) and how many are not in
module ("out" links). We found that at 0.7 threshold, for
19 genes out of 22 in the fatty acid biosynthesis module,
the number of "in" links is higher than the number of
"out" links, and the same is true for 7 out of 8 leucine
catabolism genes, and 9 out of 16 starch metabolism
genes at the threshold of 0.8. Thus, these genes are prefer-
entially interconnected among themselves with fewer
connections to other genes, which defines them as a mod-
ule in the context of the Arabidopsis genome.

Analysis of co-expression also provides means of querying
the consequence of genome duplications. As with other
plant genomes, Arabidopsis has undergone whole-
genome duplications (polyploidization), followed by
radical gene silencing, gene turnover, and expansion of
gene families, the most recent of which is thought to have
occurred about 25 million years ago [63,64]. In our anal-
ysis, At5g52920, one of the fourteen Arabidopsis genes
that code for pyruvate kinase, is highly correlated with the
fatty acid biosynthesis hub-gene (Table 1). Pyruvate
kinase catalyzes the conversion of phosphoenolpyruvate
to pyruvate, the immediate precursor of the acetyl-CoA
used for fatty acid biosynthesis [65]. These data, therefore,
help to constrain the complexity associated with the poly-
ploidization, and indicate that of the fourteen pyruvate
kinase genes that occur in the genome, At5g52920 is most

Enrichment of edges joining genes from the same pathway in the graph in Fig. 2B (red arrow), as compared to random graphs (blue histogram)Figure 3
Enrichment of edges joining genes from the same pathway in the graph in Fig. 2B (red arrow), as compared to 
random graphs (blue histogram). Histogram shows distribution of numbers of links joining genes from the same pathway 
in each of 10,000 random graphs with the same links structure as the original graph (μ = 111.7; σ = 6.8). Red arrow denotes 
number of within-pathway links (245) based on expression data (from Fig. 2B graph), blue arrow denotes mean number of 
within-pathway links (111.7) in randomly obtained graphs. Total number of links in each graph is 444.
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Coexpression of the genes for fatty acid biosynthesisFigure 4
Coexpression of the genes for fatty acid biosynthesis. A – Fatty acid biosynthesis in chloroplast. Candidate genes for 
enzymatic function (enzyme names in blue) are shown in black or red font; genes whose Locus ID is in red are co-expressed. 
These genes form connected network in Fig. 2B and encode all enzymes required for the biosynthesis of 18-carbon fatty acids 
from acetyl-CoA (sequence of reactions on the lighter green background), as well as genes for producing of acetyl-CoA sub-
strate, and for biosynthesis of biotin and lipoic acid, obligate cofactors for the acetyl-CoA carboxylase and for pyruvate dehy-
drogenase (sequence of reactions on the lighter yellow background). Gene for pyruvate kinase (on yellow background, 
identified by search for genes co-expressed with MOD1), required for production of pyruvate, is also co-expressed with genes 
from the fatty acid biosynthesis pathway [see Additional file 1 for the correspondence between gene names and Locus IDs]. B 
– Expression profiles of the 11 most tightly co-expressed genes from fatty acid biosynthesis module across 956 microarray 
chips (top panel) and, for comparison, expression profiles of the 11 randomly chosen genes (bottom panel). Experiments with 
tissues and organ samples are denoted: WP, whole plant; RL, rosette leaf; F, fruit; R, root; S, shoot; SD, seed; L, leaf; FL, flower; 
G, male gametophyte; H, hypocotyls; LA, leaf apex; O, other. ABC, acyl transporter; ACC, heteromeric acetyl-CoA carboxy-
lase; ACS, acetyl-CoA synthetase; BIO2, biotin synthase; ENR, enoyl-[ACP] reductase; FAD, fatty acyl-[ACP] desaturase; 
FAT, fatty acyl-[ACP] thioesterase; HD, 3-hydroxyacyl-[ACP] dehydratase; KAR, 3-ketoacyl – [ACP] reductase; KAS, 3-
ketoacyl-[ACP] synthase; LACS, plastidial long-chain acyl-CoA synthetase; lipS, lipoate synthase; lipT, lipoate transferase; 
MAT, malonyl-CoA:ACP transacylase; PDHC, pyruvate dehydrogenase complex; PK, pyruvate kinase.
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likely the one predominantly utilized for fatty acid bio-
synthesis.

In addition, the co-expression of pyruvate dehydrogenase
and pyruvate kinase with the fatty acid biosynthesis genes
implies that the functional pathway commonly thought

of as "fatty acid synthesis" (acetyl-CoA to fatty acids)
could be expanded to begin with phosphoenolopyruvate
(PEP), the substrate for pyruvate kinase (Fig. 4A).

Potential Regulatory Genes Identified as Coexpressing 

with Metabolic Pathways

A set of potential regulatory genes whose expression pat-
terns highly correlate with each of the pathway-specific
hub-gene was identified in this analysis (genes marked
with an asterisk, Table 1). Although these correlations
cannot be extrapolated to imply a causative role, identifi-
cation of candidate regulatory genes delineates hypothe-
ses and suggests experimental approaches for identifying
the regulatory function of these genes.

One such putative regulatory gene encodes a protein tyro-
sine phosphatase/kinase gene SEX4 (At3g52180) (Table 1
and Fig. 6A). Its presence in this module would lead us to
hypothesize an involvement in regulation of starch
metabolism. Indeed, this gene was recently shown exper-
imentally to have a regulatory role in starch metabolism;
knockout alleles of At3g52180 have a starch excess pheno-
type [32]. Similarly, a gene encoding a putative protein
kinase (At1g26150, AtPERK10 [66]) is correlated with
genes in the starch metabolism module. We directly
checked whether this gene might play a role in regulation
of starch synthesis.

We obtained three independent alleles, named Atperk10-
1, Atperk10-2, and Atperk10-3, corresponding to T-DNA
insertions at gene AtPERK10 locus. Homozygous mutant
lines stained for starch using Lugol solution showed an
increase in starch accumulation (data not shown). Figure
7 shows a quantitative comparison of starch content in
wild type and Atperk10-3 homozygous allele.

Interestingly, the starch hub-gene shows a high negative
correlation with two Rab-like, GTPase-coding genes
(At5g47200; RAB1A and At4g17530; RAB1C; Fig. 6B). In
eukaryotes, proteins from this family of small GTP-ases
are regulatory and act as signaling molecules in diverse
processes [67]. The Arabidopsis protein that is phyloge-
netically the closest homolog to Rab-like GTPase is RAB1B
(At1g02130), which is localized to the ER, and as in mam-
malian systems, it is important for Golgi apparatus devel-
opment [68]. RAB1A and RAB1C are predicted to be
secretory and might have function similar to that of
RAB1B, or some novel plant-specific regulatory function,
which appears to be negatively correlated with starch
metabolism.

The fatty acid synthesis module contains a pentatricopep-
tide repeat-containing protein (encoded by At5g50390).
Because such proteins are thought to participate in modu-
lating the stability of organelle transcripts [69], this corre-

Leucine degradation pathway in mitochondriaFigure 5
Leucine degradation pathway in mitochondria. The 
enzyme names are in blue, gene names in black/red [see 
Additional file 1] [42,84]. Genes that are co-expressed are 
depicted in red font. BCAT, branched-chain amino acid ami-
notransferase; BCKDH (BCKDC), branched-chain alpha-
keto acid dehydrogenase; IVD, isovaleryl-CoA dehydroge-
nase; MCC, methylcrotonyl-CoA carboxylase; MG-CoAH 
(E-CoAH), methylglutaconyl-CoA hydratase (enoyl-CoA 
hydratase); HMG-CoAL, hydroxymethylglutaryl-CoA lyase. 
The candidate genes for enzymes catalyzing two terminal 
reactions have not been identified.
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Table 1: Genes from 22 k Arabidopsis ATH1 array that have the highest correlation across 965 chips with the hub genes.

Hub Gene: MCCB, At4g34030, methylcrotonyl-CoA carboxylase, subunit B, leucine catabolism

Corr. GeneID Description

0.9 At1g03090 MCCA, methylcrotonyl-CoA carboxylase, subunit A

0.84 At3g06850 BCE2, E2 subunit of branched chain alpha-ketoacid dehydrogenase

0.84 At3g13450 DIN4, E1 beta subunit of branched-chain alpha-keto acid dehydrogenase

0.82 At2g43400 electron transfer flavoprotein: ubiquinone oxidoreductase family protein

0.8 At3g45300 IVD, isovaleryl-CoA dehydrogenase

0.8 At4g35770 Senescence-associated protein (SEN1)

0.79 At5g21170 AMP-activated protein kinase

0.78 At1g08630 threonine aldolase

0.78 At1g15040 glutamine amidotransferase-related

0.77 At1g10070 BCAT2, branched-chain amino acid transaminase

0.74 At4g28040 nodulin MtN21 family protein

0.73 At3g47340 glutamine-dependent asparagine synthetase 1 (ASN1)

0.73 At1g21400 E1 alpha subunit of branched-chain alpha-keto acid dehydrogenase, BCDH_E1a2

0.72 At1g18270 ketose-bisphosphate aldolase class-II family protein

0.71 At5g49450* bZIP family transcription factor

0.71 At1g55510 BCDH BETA1, E1 beta subunit of branched-chain alpha-keto acid dehydrogenase

0.7 At3g49790 expressed protein

Hub Gene: DE2, At2g40840, disproportionating enzyme, starch metabolism

Corr. GeneID Description

0.89 At3g46970 PHS2, starch phosphorylase

0.85 At1g10760 GWD1, glucan water dikinase

0.85 At3g52180* SEX4, protein tyrosine phosphatase/kinase

0.8 At1g03310 ISA2, isoamylase DB

0.79 At4g09020 ISA3, isoamylase DB

0.76 At1g06460 31.2 kDa small heat shock family protein/hsp20 family protein

0.74 At5g26570 GWD2, glucan water dikinase

0.74 At3g29320 PHS1, starch phosphorylase

0.73 At5g59130 subtilase family protein

0.73 At2g39920 acid phosphatase class B family protein

0.72 At1g69830 AAM3, alpha-amylase

0.72 At1g67660 expressed protein

0.71 At3g18500 similar to endonuclease/exonuclease/phosphatase family protein

0.7 At2g31040 ATP synthase protein I-related

0.7 At4g33490 nucellin-like protein

Hub Gene: MOD1, At2g05990, enoyl reductase, fatty acid biosynthesis

Corr. GeneID Description

0.86 At1g34430 PDHC_E2, acetyltransferase subunit of pyruvate dehydrogenase

0.86 At5g10160 HD, 3-hydroxyacyl-[ACP] dehydratase

0.84 At5g35360 CAC2, biotin carboxylase subunit of heteromeric acetyl-CoA carboxylase

0.83 At5g46290 KASI, 3-ketoacyl-[ACP] synthase I

0.8 At2g30200 MAT, malonyl-CoA:ACP transacylase

0.8 At3g16950 LPD1, lipoamide dehydrogenase subunit of pyruvate dehydrogenase

0.79 At1g62640 KAS III, 3-ketoacyl-[ACP] synthase III

0.78 At1g53520$ chalcone-flavanone isomerase-related

0.77 At3g25860 LTA2, acetyltransferase subunit of pyruvate dehydrogenase

0.77 At5g52920 pyruvate kinase

0.76 At5g16390 BCCP1, biotin carboxyl carrier subunit of heteromeric acetyl-CoA carboxylase

0.75 At5g08415 LIP1-like, lipoate synthase

0.73 At2g22230 HD-like, 3-hydroxyacyl-[ACP] dehydratase

0.72 At1g30120 PDHC_E1beta2, E1 beta subunit of plastidic pyruvate dehydrogenase
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lation may indicate a role for this gene in coordinating
nuclear-plastidic interactions for regulating fatty acid bio-
synthesis, via, for example, the control of the plastid-
encoded subunit gene of acetyl-CoA carboxylase (accD,
AtCg00500). This is the plastid-encoded biochemical
function that is most directly involved in fatty acid biosyn-
thesis.

The leucine catabolism module contains a putative tran-
scriptional regulator, At5g49450, which may code for a
bZIP family transcription factor.

Hierarchical Modularity of Catabolism

These transcriptome level analyses provide insights into
the hierarchical modularity of Arabidopsis metabolism.
Hierarchical organization can be considered the nesting of
one, tightly connected module within a larger one, still
distinct and separable from the surrounding network.
Hierarchical organization is particularly evident with leu-
cine catabolism, which forms a functionally coherent and
tightly connected module, nested within a supermodule
[see Fig. 8 and Additional file 3].

Hierarchical organization of modules has been observed
for metabolic and transcriptional networks of E. coli [70-
72] and metabolic networks of 42 other organisms
[73,74]. Hierarchical modular organization has been pos-
tulated as the topology explaining the observed features of
biological networks, like scale-free character, high cluster-
ing coefficient and short path lengths [74,75]. Such archi-
tecture may enable better adaptation of the metabolic
fluxes to the changing conditions [74].

For Arabidopsis, the incorporation of leucine catabolism
into an overarching catabolic module is observed both on
the topological and functional level. From the topological
point of view, genes participating in the leucine catabo-
lism form a fully connected subnetwork, while they also
exhibit weaker connection to the common larger set of
genes. Thus, a smaller, more strongly connected module is
nested within the bigger and less interconnected one.
From the functional point of view, one function (leucine
catabolism) forms a separable part of the larger, more
encompassing biological process. The supermodule con-
tains genes that appear to have a broader but common
biological task of maintaining cellular energy balance via

0.72 At5g15530 BCCP2, biotin carboxyl carrier subunit of heteromeric acetyl-CoA carboxylase

0.71 At1g01090 PDHC_E1alpha, E1 alpha subunit of plastidic pyruvate dehydrogenase

0.71 At5g50390* pentatricopeptide (PPR) repeat-containing protein

0.7 At4g12700 expressed protein

Genes used as the hub (at the top of the table) are methylcrotonyl-CoA carboxylase (MCCB), active in leucine degradation in mitochondria; 
disproportionating enzyme (DE2), from starch metabolism; and enoyl reductase (MOD1), an enzyme from plastidic fatty acid biosynthesis pathway. 
Genes that code for proteins predicted to be in the same pathway as the hub gene are in bold font. Potential regulatory genes are marked with an 
asterisk. Pearson coefficients (> 0.7) were calculated by MetaOmGraph. P-values for enrichment of genes from same pathway as hub are 4.35e-36, 
2.02e-15, and 3.1e-23, respectively.
$ This gene product, although annotated as chalcone isomerase-like, appears to have a direct role in binding and possibly transporting fatty acids 
(Joe Noel and Florence Pojer, personal communication).

Table 1: Genes from 22 k Arabidopsis ATH1 array that have the highest correlation across 965 chips with the hub genes. (Continued)

Correlation of regulatory genes with starch metabolism module in 956 microarray chipsFigure 6
Correlation of regulatory genes with starch metabolism module in 956 microarray chips. A – Positive correlation. 
SEX4, protein tyrosine phosphatase/kinase; DE2, disproportionating enzyme. Correlation = 0.85. B – Negative correlation. 
RAB1A, a RAB-like GTPase; ISA1, isoamylase. Correlation = -0.54.
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catabolism. Specifically, the 26 genes most highly corre-
lated with the eight genes in the leucine catabolic module
(defined in Fig. 2B) include genes that might be involved
in protein turnover (At1g76410), amino acid catabolism
(At1g06570, At1g08630, At2g14170, At3g47340,
At5g63620, in addition to eight genes from leucine catab-
olism pathway), carbohydrate catabolism (At1g18270,
At5g20250, At5g49360), lipid breakdown (At3g51840,
At5g41080) and cell wall degradation (At4g30270). Five

genes are annotated as associated with aging, senescence,
or response to light or sucrose stimuli (At2g43400,
At3g47340, At4g30270, At4g35770, At5g20250). Because
plants are photoautotrophs, such catabolic processes may
be expected to become critical when photosynthesis can-
not maintain cellular energy balance, for example during
senescence, seed germination, carbon deprivation or
autophagy [37,39,42,76]. Consistent with this concept,
we find that the genes within this supermodule are co-
induced to highest levels of expression under experimen-
tal conditions that are expected to limit photosynthetic
carbon fixation and induce catabolic processes for main-
taining energy balance (e.g., oxidative, cold, heat and
drought stress – experiments from NASCArrays: NASCAR-
RAYS-28, NASCARRAYS-79, NASCARRAYS-70; disrup-
tion of plastome-nucleome communication,
NASCARRAYS-89; mutations and illumination condi-
tions that affect the phytochrome response, NASCAR-
RAYS-89, NASCARRAYS-124; sucrose starvation,
Contento et al. [76] and NASCARRAYS-14; and hexose
signaling, NASCARRAYS-40 [8]).

This catabolic supermodule also contains genes with well-
defined or partially defined molecular functions, but
undefined physiological functionality (e.g. At1g76410,
zinc finger protein; At5g21170, protein kinase;
At5g16340, AMP-binding protein). The inclusion of these
genes within this catabolic supermodule may indicate
their broader physiological function in catabolic proc-
esses; a hypothesis that can be experimentally tested by
new genetic and biochemical analyses.

Conclusion
This study reveals that transcriptomics data can divulge
hitherto unsuspected aspects of metabolic networks in a
complex eukaryotic organism. Each of these core meta-
bolic pathways that were targeted for analysis is structured
as a co-expressed module whose transcripts co-accumu-
late over a wide range of environmental and genetic per-
turbations and developmental stages. These analyses
further indicate that modules can be recruited into hierar-
chical organization (supermodules), hinting at the possi-
bility that supermodules are regulated by common signals
that coordinate net metabolic changes within highly inter-
active networks. The fact that such hierarchical organiza-
tion is detected from the transcriptome data implies that
at least a subset of the higher-order metabolic network
may be regulated at the transcript level.

Methods
Transcriptomic Data

The experimental and meta-data was obtained from
online microarray depositories: NASCArrays [43] and
PLEXdb [44]. The data obtained from NASCArrays, from
72 experiments comprising of 956 Affymetrix ATH1

Starch content of AtPERK10 knockout plantsFigure 7
Starch content of AtPERK10 knockout plants. Starch 
content of the wild type phenotypes and the knockouts of 
the AtPERK10 gene (At1g26150), a putative protein kinase 
whose expression correlates with the expression of starch 
metabolism genes. The mutant plants have 13% more starch 
than WT plant (p-value = 0.045). Atperk10-3 is in Col-0 back-
ground. Col-0 is a wild type sibling. EOL: samples taken at 
the end of the light phase.

Higher order catabolic module is revealed from the func-tional categories of the genes correlated with the leucine catabolism module (Pearson coefficient > 0Figure 8
Higher order catabolic module is revealed from the 
functional categories of the genes correlated with 
the leucine catabolism module (Pearson coefficient > 
0.5). Genes in the module were identified by intersection of 
lists of all genes that are correlated above 0.5 threshold with 
each of eight genes from leucine catabolism module.

catabolism

response to light, sucrose,
aging, senescence

unknown

unclassified
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microarray slides, had already been normalized with the
Affymetrix MAS 5.0 algorithm to the common mean value
of 100. We scaled the data from PLEXdb to set the mean
to 100.

The reproducibility of experiments was qualitatively
assessed on scatter plots by visual inspection and chips
with poor biological replicates were discarded. The
remaining biological replicates were averaged to yield 424
samples. Determination of biological replicates (repli-
cates of the same treatment within the experiments) was
done manually, based on the slide name and experiment
information. Most slides have descriptive names that
summarize treatment and the replicate status. Thus, slides
that are biological replicates of the same treatment have
the same slide name, differing only in "Repx" suffix, e.g.,

Shirras_1–3_Non-Calcicole_Rep1

Shirras_1–4_Non-Calcicole_Rep2

The data was subsequently normalized to the same range

by a median absolute deviation (MAD)-based scale nor-

malization method described by Yang et al., [77]. Expres-

sion values xij on microarray chip j were multiplied by the

factor , where MAD is defined by

MADj = mediani{|xij-mediani(xij)|}

and the constant C is an arithmetic mean of MAD

The normalized data is available online [11]. ATH1 probe
set-to-Locus ID mapping was obtained from TAIR, March
31st 2007 [78,79]. The experimental information is
included in Additional file 2.

Pathway Data

The choice of genes involved in each pathway was guided
by: Arabidopsis Lipid Gene Database for fatty acid synthe-
sis genes [80,81]; Arabidopsis Starch Metabolism Net-
work project [82] for starch metabolism; and original
references for leucine catabolism [42,83,84]. We further
considered each candidate gene based on original refer-
ences.

Network of Coexpressed Genes

The 126 genes used in the initial network construction
(Fig. 2), including candidates for functions in fatty acid
synthesis, starch metabolism and leucine catabolism, are

shown in Additional file 1. A correlation matrix was calcu-
lated for these genes, using Pearson Product-Moment
Coefficient, defined as

The values of Pearson correlations above 0.3 are statisti-
cally highly significant (p-value < 0.00001 after Bonfer-
roni correction for multiple testing [85]). We additionally
assessed the validity of correlations higher than 0.6 by
performing 10,000 permutations of the corresponding
data vectors. Correlations that had a permutation-based
p-value < 0.0001 (in our case, all pairs of genes examined)
were considered for further analysis [see Additional file 4].
The networks in Fig. 2 were constructed by placing an edge
between any pair of genes correlated above the threshold.
Modules in the network were defined by the grouping
produced by the network visualization software.

Enrichment of Within-Pathway Edges in the Coexpression 

Network

To test whether there are more correlations between the
genes from the same metabolic pathway (i.e. from fatty
acid biosynthesis, starch metabolism, or leucine catabo-
lism category) than could be expected by chance, we com-
pared the co-expression network from experimental data
(Fig. 2B) to 10,000 computationally generated random
networks. In these random networks the total number of
the edges and the number of neighbors for each node was
set to be the same as in the original graph. A function for
generating random graphs was implemented in R. It con-
structed graphs by random filling of the adjacency matrix,
where nodes' degrees were constrained and self-loops not
allowed. Indeed, the proportion of within-pathway edges
is significantly higher in our coexpression network com-
pared to such proportions in random graphs (245/444
versus a mean of 112/444, which is equal to the difference
of ~20 standard deviations, Fig. 3).

Correlation with Hub Genes

The calculation of Pearson correlations between the three
hub-genes (At2g40840, At4g34030, At2g05990) and all
other genes on the chip (Table 1) was conducted in our
publicly available software, MetaOmGraph [11].
MetaOmGraph is able to handle large datasets with an
efficient use of memory and is integrated with other pub-
licly available bioinformatics tools in MetNet Exchange
suit [86,87].

The genes belonging to catabolic supermodule [see Fig. 8
and Additional file 3] were identified by intersection of
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lists of all genes that are correlated above 0.5 threshold
with each of eight genes from leucine catabolism module.

Plant Material

Three independent alleles named Atperk10-1, Atperk10-2,
and Atperk10-3 corresponding to T-DNA insertions at
gene AtPERK10 locus were found in the mutant collec-
tions generated at INRA-Versailles [88,89], GABI-KAT
[90,91] and SALK [92,93]. The T-DNA insertions are
located in 5'-UTR, exon 1 and intron 6, respectively.

Starch Quantification

Two individual plants (100–400 mg fresh weight) were
boiled in 50 ml 80% (v/v) ethanol. The decolored plants
were then ground in 80% ethanol with a 2 ml Konte tissue
grinder, centrifuged for 10 min at 3,000 g at room temper-
ature. The pellet was washed twice with 80% ethanol.
After centrifugation, the insoluble material was sus-
pended in 1 ml of distilled water and boiled for 30 min.
Total starch was quantified using a commercial Glc assay
kit (catalog no. E0207748; R-Biopharm, Darmstadt, Ger-
many), according to instructions in the kit protocol. The
assay employs amyloglucosidase to achieve complete
digestion of the starch sample to Glc, and measurement of
the Glc by application of a Glc oxidase reagent. The aver-
age of six biological replicates, using two individual plants
for each replicate, was calculated.

Software

The computations (normalization, correlation matrix,
permutation-based p-values, random graphs generation,
hypergeometric distribution) were conducted in R soft-
ware [94]. The RNA profiles were plotted in MetaOm-
Graph. The network of metabolic genes in Fig. 2 was
visualized using GraphExplore [95]. The pathway data is
from MetNetDB database. The R code is available upon
request.
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