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Abstract. Web services designed for human users are being abused by computer programs (bots). The bots steal 

thousands of free email accounts in a minute; participate in online polls to skew results; and irritate people by 

joining online chat rooms. These real-world issues have recently generated a new research area called Human 

Interactive Proofs (HIP), whose goal is to defend services from malicious attacks by differentiating bots from 

human users.   In this paper, we make two major contributions to HIP.  First, based on both theoretical and 

practical considerations, we propose a set of HIP design guidelines which ensure a HIP system to be secure and 

usable.  Second, we propose a new HIP algorithm based on detecting human face and facial features. Human 

faces are the most familiar object to humans, rendering it possibly the best candidate for HIP. We conducted user 

studies and showed the ease of use of our system to human users. We designed attacks using the best existing 

face detectors and demonstrated the difficulty to bots.  

Keywords: Human interactive proof (HIP), Web services security, CAPTCHA, Turing test, face detection, and 

facial feature detection. 

 

1. Introduction 

Web services are increasingly becoming part of people’s everyday life.  For example, we use free email accounts 

to send and receive emails; we use online polls to gather people’s opinion; and we use chat rooms to socialize 

with others. But all these Web services designed for human use are being abused by computer programs (bots).  

•  Free email services 



For people’s convenience, Hotmail, Yahoo and others are providing free email services.  But malicious 

programmers have designed bots to register thousands of free email accounts every minute.  These bots-

created email accounts not only waste large amount of disk space of the service providers, they are also being 

used to send thousands of junk emails [1][4][16]. 

•  Online polls and recommendation systems 

Online polling is a convenient and cost-effective way to obtain people’s opinions. But if they are abused by 

bots, their credibility reduces to zero. In 1998, http://www.slashdot.com released an online poll asking for the 

best computer science program in the US [1].  This poll turned into a bots-voting competition between MIT 

and CMU.  Clearly, in this case the online poll has lost its intended objectives. Similar situation arises in 

online recommendation systems. For example, at Amazon.com, people write reviews for books, 

recommending others to buy or not to buy.  But if malicious bots start to write book reviews, this online 

recommendation system becomes useless. 

•  Chat rooms 

In the information age, people use online chat rooms to socialize with others.  But bots start to join chat 

rooms and point people to advertisement sites [3]. Chat room providers such as Yahoo and MSN do not like 

the bots, because they irritate human users and decrease human users’ visit to their sites. 

•  Meta services and shopping agents 

Meta service is unwelcome among E-commerce sites and search engines [21][14].  In the case of E-

commerce, a malicious programmer can design a bots whose task is to aggregates prices from other E-

commerce sites. Based on the collected prices, the malicious programmer can make his/her price a little 

cheaper, thus stealing away other sites’ customers.  Meta service is a good thing to consumers but E-

commerce owners hate it because it consumes their site’s resources but does not bring in any revenue.  

Similar situations arise with search engine sites. 



The above real-world issues have recently generated a new research area called Human Interactive Proofs (HIP), 

whose goal is to defend services from malicious attacks by differentiating bots from human users. The design of 

HIP systems turns out to have significant relationship with the famous Turing test. 

In 1950, Turing proposed a test whose goal was to determine if a machine has achieved artificial intelligence (AI) 

[18].  The test involves a human judge who asks questions to a human and a machine and decides which of them 

is human based on their answers.  So far, no machine has passed the Turing test in a generic sense, even after 

decades of hard research in AI.  This fact implies that there still exists considerable intelligence gap between 

human and machine. We can therefore use this gap to design tests to distinguish bots from human users.  HIP is a 

unique research area in that it creates a win-win situation.  If attackers cannot defeat a HIP algorithm, that 

algorithm can be used to defend Web services. On the other hand, if attackers defeat a HIP algorithm, that means 

they have solved a hard AI problem, thus advancing the AI research. 

So far, there exist several HIP algorithms. But most of them suffer from one or more deficiencies in ease of use, 

resistance to attack, dependency on labeled database and lack of universality (see Section 3 for details). In this 

paper, we make two major contributions.  First, based on both theoretical and practical considerations, we 

propose a set of HIP design guidelines which ensure a HIP system to be secure and usable.  Second, we propose a 

new HIP algorithm based on detecting human face and facial features. Human faces are the most familiar object 

to humans, rendering it possibly the best candidate for HIP.  

We name our HIP algorithm ARTiFACIAL, standing for Automated Reverse Turing test using FACIAL features. 

It relates to (and differs from) the original Turing test in several ways.  First, our test is automatically generated 

and graded, i.e., the Turing test judge is a machine instead of a human.  Second, the goal of the test is the reverse 

of the original Turing test – we want to differentiate bots from human, instead of proving bots is as intelligent as 

human.  These two features constitute the first three letters (ART) in ARTiFACIAL: Automated Reverse Turing 

test.   



ARTiFACIAL works as follows. Per each user request, it automatically synthesizes an image with a distorted 

face embedded in a cluttered background. The user is asked to first find the face and then click on 6 points (4 eye 

corners and 2 mouth corners) on the face. If the user can correctly identify these points, ARTiFACIAL concludes 

the user is a human; otherwise, the user is a machine. We conduct user studies and show the ease of use of 

ARTiFACIAL to human users. We design attacks using the best existing face detectors and demonstrate the 

difficulty to malicious bots. 

The rest of the paper is organized as follows.  In Section 2, we discuss related work, which mainly uses letters, 

digits and audio.  In Section 3, we propose a set of design guidelines that are important to the success of a HIP 

algorithm. We further evaluate existing HIP algorithms against the proposed guidelines.  In Section 4, we first 

give a brief review of various face detection techniques and point out their limitations.  Based on these 

limitations, we then design ARTiFACIAL, covering 3D wire model, cylindrical texture map, geometric head 

transformation and deformation, and appearance changes. To demonstrate a HIP algorithm is effective, we need 

to at least show it is easy for human and very hard for computer programs. In Section 5, we describe our user 

study design and results, showing the ease of use to human users.  In Section 6, we present various attacks to 

ARTiFACIAL using the best existing techniques. The results show that ARTiFACIAL has very high resistance to 

malicious attacks.  We give concluding remarks in Section 7. 

2. Related work 

While HIP is a very new area, it has already attracted researchers from AI, cryptography, signal processing, 

document understanding and computer vision.  The first idea related to HIP can be traced back to Naor who 

wrote an unpublished note in 1996 [14].  The note contained many important intuitive thoughts about HIP but did 

not produce functional systems.  The first HIP system in action was developed in 1997 by researchers at Alta 

Vista [3].  Its goal was to prevent bots from adding URLs to the search engine to skew the search results.  The 

specific technique they used was based on distorted characters, and it worked well in defeating regular optical 

character recognition (OCR) systems.  



In 2000, Udi Manber of Yahoo talked to researchers (von Ahn, Blum, Hopper and others) at CMU that bots were 

joining in Yahoo’s online chat rooms and pointing people to advertisement sites [1][4].  Udi Manber challenged 

the CMU researchers to come up solutions to distinguish between humans and bots.  Later that year, von Ahn, et. 

al.  proposed several approaches to HIP [6].  The CMU team so far has been one of the most active teams in HIP, 

and we highly recommend readers to visit their web site at http://www.captcha.net to see concrete HIP examples.  

The CMU team introduced the notion of CAPTCHA: Completely Automated Public Turing Test to Tell 

Computers and Humans Apart.  Intuitively, a CAPTCHA is a program that can generate and grade tests that 1) 

most human can pass; but 2) current computer programs cannot pass [1][2].  They have developed several 

CAPTCHA systems [6]. 

•  Gimpy 

Gimpy picks seven random words out of a dictionary, distorts them and renders them to users.  An example 

Gimpy test is shown in Figure 1 (a). The user needs to recognize three out of the seven words to prove that he 

or she is a human user. Because words in Gimpy overlap and undergo non-linear transformations, they pose 

serious challenges to existing OCR systems. However, they also pose burden on human users. The burden is 

so much that Yahoo pulled Gimpy out from its website [4]. The CMU team later developed an easier version, 

EZ Gimpy, which is shown in Figure 1 (b). It shows a single word over a cluttered background, and it is 

currently used at Yahoo’s website. 

•  Bongo 

   

(a)       (b) 

Figure 1. (a) Gimpy.  (b) EZ Gimpy 



Bongo explores human ability in visual pattern recognition [5].  It presents to a user two groups of visual 

patterns (e.g., lines, circles and squares), named LEFT and RIGHT.  It then shows new visual patterns and 

asks the user to decide if the new patterns belong to LEFT or RIGHT. 

•  Pix 

Pix relies on a large database of labeled images.  It first randomly picks an object label (e.g., flower, baby, 

lion, etc.) from the label list, and then randomly selects six images containing that object from the database, 

and shows the images to a user.  The user needs to enter the correct object label to prove he or she is a human 

user. 

•  Animal Pix 

Animal Pix is similar to Pix but differ in the following ways: 1). It uses 12 animals (bear, cow, dog, elephant, 

horse, kangaroo, lion, monkey, pig and snake) instead of generic objects as the labeled objects; 2). Instead of 

asking a user to enter the object label, it asks a user to select from the set of predefine 12 animals [6]. 

Almost at the same time that the CMU team was building their CAPTCHAs, Xu, Lipton and Essa were 

developing their HIP system at Georgia Tech [21].  Their project was motivated by the security holes in E-

commerce applications (see meta services in Section 1).  They developed a new type of trapdoor one-way hash 

function, which transforms a character string into a graphical form such that human can recover the string while 

bots cannot.  No specific string examples were given in their paper [21]. 

In the past two years, researchers at PARC and UC Berkeley published a series of papers on HIP, e.g., [9][8][4].  

In their systems, they mainly explored the gap between human and bots in terms of reading poorly printed texts 

(e.g., fax prints). In Pessimal Print [9], Coates, Baird and Fateman reported close to zero recognition rates from 

three existing OCR systems: Expervision, FineReader and IRIS Reader. In BaffleText [8], Chew and Baird 

further used non-English words to defend dictionary attacks. 



In addition to the above visual HIP designs, there also exist audio challenges, e.g., Byan [7] and Eco [6].  The 

general idea is to add noise and reverberation to clean speech such that existing speech recognizers can no longer 

recognize it.  The audio challenges are complementary to the visual ones and are especially useful to vision-

impaired users. 

To summarize, HIP is still a young and developing area.  But it has already attracted researchers from 

cryptograpy, AI, computer vision, and document analysis.  The first HIP workshop was held in January 2002 in 

PARC [12], and [4] provides a good summary.  For a new area to develop and advance, it is necessary for 

researchers to formulate design guidelines and evaluation criteria. The CMU and PARC teams have proposed 

many of the crucial aspects of HIP.  In the next section, we present further guidelines on how to design a practical 

HIP system and evaluate existing and our proposed approaches against the guidelines. 

3. HIP guidelines 

The CMU and PARC researchers have summarized the following desired properties of a HIP system [1][4]: 

1. The test should be automatically generated and graded by a machine. 

2. The test can be quickly taken by a human user.  

3. The test will accept virtually all human users. 

4. The test will reject virtually all bots. 

5. The test will resist attacks for a long time. 

The above five properties capture many important aspects of a successful HIP system. But we realize that there 

are other theoretical and practical considerations that need to be taken into account. Furthermore, we think it is 

beneficial to the HIP community that the desired HIP properties should be orthogonal to each other and can be 

clearly evaluated against. We therefore propose the following new guidelines for designing a HIP algorithm: 

1. Automation and gradability. The test should be automatically generated and graded by a machine. This is 

the same as the old guideline and is the minimum requirement of a HIP system. 



2. Easy to human. The test should be quickly and easily taken by a human user. Any test that requires longer 

than 30 seconds becomes less useful in practice. 

Table 1. Evaluation of existing HIP tests against the proposed criteria. 

Guidelines 1.  Automation 

and gradability 

2. Easy to human 3. Hard to 
machine 

4. Universality 5. Resistance to 
no-effort attacks 

6. Robustness 
when database 

publicized 

Gimpy Yes Yes 

But the partially 
overlapped text 
can be hard to 
recognize [4] 

No 

It has been 
broken [13] 

No 

People who know 
English have 
much more 
advantages 

Yes Yes 

EZ Gimpy Yes Yes No 

It has been 
broken [13] 

Yes 

 

Yes 

 

No 

Has only 850 
words [8] 

Bongo Yes Yes 

 

Yes 

 

Yes No 

A machine can 
randomly guess 

an answer 

Yes 

Pix Yes 

But the labels 
can be 

ambiguous 
(cars vs. White 

cars) 

Yes 

 

Yes No 

Some objects do 
not exist in some 

countries. 

Yes No 

With the 
database, it 

becomes simple 
image matching. 

Animal Pix Yes Yes Yes No 

Some animals are 
only popular in a 

few countries. 

No 

A machine can 
randomly guess 

an answer 

No 

With the 
database, it 

becomes simple 
image matching. 

Pessimal Yes Yes Yes No 

People who know 
English have 
much more 
advantages 

Yes 

 

No 

Has only 70 
words [8][9] 

BaffleText Yes Yes 

But has been 
attacked when 

using single font 
[8] 

Yes Yes 

But people who 
know English 

may have 
advantages 

Yes Yes 

Byan Yes Yes Yes No 

Users need to 
know English 

Yes Yes 

ARTiFACIAL Yes Yes Yes Yes Yes Yes 



3. Hard to machine. The test should be based on a well-known problem which has been investigated 

extensively, and the best existing techniques are far from solving the problem. This guideline consolidates the 

old guidelines 4 and 5. The old guideline 4 is a consequence of this new guideline.  The old guideline 5 is 

difficult to evaluate against, i.e., it is difficult to define “for a long time”.  Instead of predicting the future, we 

only require that the problem is a well known problem, and the best existing techniques are far from solving 

the problem.  This new guideline avoids the interrelationship between old guidelines 4 and 5 and is much 

easier to evaluate against. An example problem that satisfies our requirement is “automatic image 

understanding” which is well known and has been investigated for more than three decades but is still 

without success. On the other hand, printed clean text OCR is not a hard problem, as today’s existing 

techniques can already do a very good job.  As pointed out by von Ahn, et. al., HIP has an analogy to 

cryptography: in cryptography it is assumed that the attacker cannot factor 1024-bit integer in reasonable 

amount of time.  In HIP, we assume that the attacker cannot solve a well-known hard AI problem [2]. 

4. Universality. The test should be independent of user’s language, physical location, and education 

background, among others. This new guideline relates to the old guideline 3 but is more concrete, and is more 

clear to evaluate against. This guideline is motivated by practical considerations, and is especially important 

for companies with international customers, e.g., Yahoo and Microsoft.  It would be a nightmare for Yahoo 

or Microsoft if they had to localize a HIP test to 20 different languages. As an example, any digits-based 

audio HIP tests are not universal because there is no universal language on digits (even though visually they 

are the same). A different HIP test would have to be implemented for each different language, thus not cost 

effective. Strictly speaking, no HIP test can be absolutely universal, as there are no two humans that are the 

same in this world.  However, we can make reasonable assumptions. For example, we can consider EZ 

Gimpy as universal because if a user can use a computer, it is reasonable to assume he or she knows the 10 

digits and the 26 English alphabets.  In contrast, Gimpy is not as universal as EZ Gimpy because users who 

know English have much better chance to succeed. Gimpy is quite difficult for non-English speakers. 



5. Resistance to no-effort attacks. The test should survive no-effort attacks. No-effort attacks are the ones that 

can solve a HIP test without solving the hard AI problem. Here is an example.  Bongo is a two-class 

classification challenge (see Section 1). To attack Bongo, the attacker needs no effort other than always 

guessing LEFT.  This will guarantee the attacker to achieve 50% accuracy.  Even if Bongo can ask a user to 

solve 4 tests together, that still gives no-effort attacks 1/16 accuracy.  Animal Pix is another example that will 

not survive no-effort attack. Because there are 12 predefined animal labels, a no-effort attack can achieve 

1/12 accuracy without solving the animal recognition problem. The HIP tests that cannot survive no-effort 

attacks do not have practical usefulness and cannot advance AI research. 

6. Robustness when database publicized. The test should be difficult to attack even if the database, from 

which the test is generated, is publicized. For example, both Pix and Animal Pix would be very easy to attack 

once the database is publicly available. They therefore are not good HIP tests [1]. 

Compared with the 5 old guidelines, the proposed 6 new guidelines are more comprehensive, more orthogonal to 

each other and more clear to evaluate against. We summarize the evaluations of the existing approaches against 

the new guidelines in Table 1. From Table 1, it is clear that most of the existing HIP algorithms suffer from one 

or more deficiencies.  In the following section, we propose a new HIP algorithm: ARTiFACIA, which is based on 

detecting human faces and facial features. It is easy to human, hard to bots, universal, survives no-effort attacks 

and does not require a database. 

4. Proposed test -- ARTiFACIAL 

Human faces are arguably the most familiar object to humans [15][17][19], rendering it possibly the best 

candidate for HIP. Regardless of nationalities, culture differences or educational background, we all recognize 

human faces.  In fact, our ability is so good that we can recognize human faces even if they are distorted, partially 

occluded, or in bad lighting conditions.   

Computer vision researchers have long been interested in developing automated face detection algorithms. A 

good survey paper on this topic is [23].  In general face detection algorithms can be classified into four 



categories. The first is the knowledge-based approach. Based on people’s common knowledge about faces, this 

approach uses a set of rules to do detection. The second approach is feature-based. It first detects local facial 

features, e.g., eyes, nose and mouth, and then infer the presence of a face. The third approach is based on 

template matching. A parameterized face pattern is pre-designed manually, which is then used as a template to 

locate faces in an image. The fourth approach is appearance-based. Instead of using pre-designed templates, it 

learns the templates from a set of training examples. So far, the fourth approach is the most successful one [23]. 

In spite of decades of hard research on face and facial feature detection, today’s best detectors still suffer from 

the following limitations: 

1. Head Orientations. Let axis x point to the right of the paper, axis y point to the top of the paper, and axis z 

point out of the paper. All face detectors handle frontal face well.  That is, they work well when there is no 

rotation around any of the three axes.  They can also handle rotations around axis y to some extent, but worse 

than handling frontal faces. They do not handle rotations around axes x and z well.  

2. Face Symmetry. Face detectors assume, either explicitly or implicitly, that the faces are symmetric, e.g., the 

left eye and right eye are roughly of the same height, and are roughly of the same distance from the nose 

bridge. 

3. Lighting and Shading.  Face detectors rely on different intensity levels of landmarks on human faces. For 

example, they assume that the two eyes are darker than the surrounding region, and the mouth/lip region is 

also darker than the rest of the face. When a face image is taken under very low or high lighting conditions, 

the image’s dynamic range decreases.  This in turn results in difficulties in finding the landmark regions in 

faces.  In addition, lighting also creates shading which further complicates face detection. 

4. Cluttered Background. If there exist face-like clutters in the background of the face image, the face 

detectors can be further distracted.  

The above 4 conditions are among the most difficulty cases for automated face detection, yet we human seldom 

have any problem under those conditions.  If we use the above 4 conditions to design a HIP test, it can take 



advantage of the large detection gap between human and machine.  Indeed, this gap motivates our design of 

ARTiFACIAL.  When taking a closer exam of ARTiFACIAL against the HIP criteria, we can see that it is one of 

the best HIP candidates (see Table 1).  

ARTiFACIAL works as follows. Per each user request, it automatically synthesizes an image with a distorted 

face embedded in a cluttered background. The user is asked to first find the face and then click on 6 points (4 eye 

corners and 2 mouth corners) on the face. If the user can correctly identify these points, we can conclude the user 

is a human; otherwise, the user is a machine. 

We next use a concrete example to illustrate how to automatically generate an ARTiFACIAL test image, taking 

into account of the 4 conditions summarized above.  For clarity, we use F to indicate a foreground object in an 

image, e.g., a face; B to indicate the background in an image; I to indicate the whole image (i.e., foreground and 

background); and T to indicate cylindrical texture map. 

[Procedure] ARTiFACIAL 

[Input] The only inputs to our algorithm are the 3D wire model of a generic head (see Figure 2 (a)) and a 512 x 

512 cylindrical texture map Tm of an arbitrary person (see Figure 2 (b)).  Note that any person’s texture map will 

work in our system and from that single texture map we can in theory generate infinite number of test images. 

[Output] An 512 x 512 ARTiFACIAL test image IF (see Figure 5 (d)) with ground truth (i.e., face location and 

facial feature locations). 

  
(a)    (b) 

Figure 2. (a) The 3D wire model of a generic head. (b) 
The cylindrical head texture map of an arbitrary person. 



1. Confusion texture map Tc generation 

This process takes advantage of the Cluttered Background limitation to design the HIP test. The 512 x 512 

confusion texture map Tc (see Figure 3) is obtained by moving facial features (e.g., eyes, nose and mouth) in 

Figure 2 (b) to different places such that the “face” no longer looks like a face. 

2. Global head transformation 

Because we have the 3D wire model (see Figure 2 (a)), we can easily generate any global head 

transformations we want. Specifically, the transformations include translation, scaling, and rotation of the 

head. Translation controls where we want to position the head in the final image IF. Scaling controls the size 

of the head, and rotation can be around all the three x, y, and z axes. At run time, we randomly select the 

global head transformation parameters and apply them to the 3D wire model texture-mapped with the input 

texture Tm. This process takes advantage of the Head Orientations limitation to design the HIP test. 

3. Local facial feature deformations 

The local facial feature deformations are used to modify the facial feature positions so that they are slightly 

deviated from their original positions and shapes.  This deformation process takes advantage of the Face 

Symmetry limitation to design the HIP test. Each geometric deformation is represented as a vector of vertex 

differences. We have designed a set of geometric deformations including the vertical and horizontal 

translations of the left eye, right eye, left eyebrow, right eyebrow, left mouth corner, and right mouth corner. 

 

Figure 3. The confusion texture map Tc, is generated 
by randomly moving facial features (e.g., eyes, nose 
and mouth) in Figure 2 (b) to different places such 
that the “face” no longer looks like a face. 



Each geometric deformation is associated with a random coefficient uniformly distribution in [-1, 1], which 

controls the amount of deformation to be applied. At run time, we randomly select the geometric deformation 

coefficients and apply them to the 3D wire model. An example of a head after Steps 2 and 3 is shown in 

Figure 4 (a). Note that the head has been rotated and facial features deformed. 

4. Confusion texture map transformation and deformation 

In this step, we conduct exactly the same Steps 2 and 3 to the confusion texture map Tc, instead to Tm. This 

step generates the transformed and deformed confusion head Fc as shown in Figure 4 (b). 

5. Stage-1 image I1 generation 

Use the confusion texture map Tc as the background B and use Fh as the foreground to generate the 512 x 512 

stage-1 image I1 (see Figure 5 (a)). 

6. Stage-2 image I2 generation 

Make L copies of randomly shrunk Tc and randomly put them into image I1 to generate the 512 x 512 stage-2 

image I2 (see Figure 5 (b)). This process takes advantage of the Cluttered Background limitation to design 

the HIP test. Note that none of the copies should occlude the key face regions including eyes, nose and 

mouth. 

  
(a)    (b) 

Figure 4. (a) The head after global transformation and 
facial feature deformation. We denote this head by Fh. 
(b) The confusion head after global transformation and 
facial feature deformation. We denote this head by Fc. 



7. Stage-3 image I3 generation 

There are three steps in this stage.  First, make M copies of the confusion head Fc and randomly put them 

into image I2. This step takes advantage of the Cluttered Background limitation. Note that none of the 

copies should occlude the key face regions including eyes, nose and mouth. Second, we now have M+1 

regions in the image, where M of them come from Fc and one from Fh. Let Avg(m), m = 0, …, M+1, be the 

   

(a). Image I1.      (b). Image I2. 

   

(c). Image I3.      (d). Final Image IF. 

Figure 5. Different stages of the image. 



average intensity of region m. We next re-map the intensities of each region m such that Avg(m)’s are 

uniformly distributed in [0,255] across the M+1 regions, i.e., some of the regions become darker and others 

become brighter. This step takes advantage of the Lighting and Shading limitation. Third, for each of the 

M+1 regions, randomly select a point within that region which divides the region into four quadrants. 

Randomly select two opposite quadrants to undergo further intensity changes.  If the average intensity of the 

region is greater than 128, the intensity of all the pixels in the selected quadrants will decrease by a randomly 

selected amount; otherwise, it will increase by a randomly selected amount.  This step takes advantage of 

both the Face Symmetry and Lighting and Shading limitations. An example I3 image is shown in Figure 

5(c). Note in the image that 1) the average intensities of the M+1 regions are uniformly distributed, i.e., some 

regions are darker while others are brighter; 2) two of the quadrants undergo further intensity changes.  

8. Final ARTiFACIAL test image IF generation 

Make N copies of the facial feature regions in Fh (e.g., eyes, nose, and mouth) and randomly put them into I3 

to generate the final 512 x 512 ARTiFACIAL test image IF (see Figure 5 (d)). This process takes advantage 

of the Cluttered Background limitation to design our HIP test. Note that none of the copies should occlude 

the key face regions including eyes, nose and mouth. 

The above 8 steps take the 4 face detection limitations into account and generate ARTiFACIAL test images that 

are very difficult for face detectors.  We used the above described procedure and generated 1,000 images to be 

used in both user study (Section 5) and bots attacks (Section 6).   

5. User study design and results 

For a HIP test to be successful, we need at least prove that it is easy for human user and very hard for bots. In this 

section, we design user studies to evaluate human user’s performance to our test. We will discuss bots attacks in 

the following section. 



5.1 User Study Design 

To evaluate our HIP system across diversified user samples, we invited 34 people to be our study subjects, 

consisting of accountants, administrative staff, architects, executives, receptionists, researchers, software 

developers, support engineers and patent attorneys. The user study procedure is summarized as follows: 

1. A laptop is set up in the subject’s office, and the subject is asked to adjust the laptop so that he or she is 

comfortable using the laptop screen and mouse. 

2. The subject is given the following instructions: “We will show you 10 images. In each image, there is one 

and only one distorted but complete human face.  Your task is to find that face and click on 6 points: 4 eye 

corners and 2 mouth corners.” 

3. The user study application is launched on the laptop. It randomly selects an ARTiFACIAL test image from 

the 1,000 images generated in Section 4, and shows it to the subject. The subject detects the face and clicks 

on the 6 points.  The coordinates of the 6 points and the time it takes the subject to finish the task are both 

recorded for latter analysis. 

4. Repeat Step 3 for another 9 randomly selected images.  Note that no two images of the 10 tests are the same. 

5. The user study application is closed and the subject is debriefed. At this stage, the subject is given the 

opportunity to ask questions or give comments on the system and on the study procedure. 

5.2 User Study Results 

Table 2 summarizes the average time taken for each of the 10 tests. The numbers are averaged over all 34 

subjects. Table 3 summarizes the average mismatch, in pixels, between the ground truth and what were actually 

clicked for the 6 points.  Combining the statistics in the two tables and feedback obtained during debriefing, we 

can make the following observations: 

•  On average, it takes 14 seconds for a subject to find the face and click on the 6 points.  This shows that the 

test is easy to complete for human users. Out of the 34x10=340 tests, for the best case, it takes a subject 6 

seconds to finish the task.  For the worst case, there are 3 tests that take longer than 30 seconds to finish. And 



interestingly they all occurred with the same subject. During our debriefing, the subject told us that he was a 

perfectionist and was willing to spend longer time to ensure no mistakes.   

•  Table 3 tells us that the mismatches between the point coordinates of the ground truth and where the subjects 

actually clicked are small. This fact allows us to enforce a tight mismatch threshold (in pixels) to efficiently 

distinguish bots from human users. Currently we set the threshold to be twice of the average mismatches (in 

pixels) as in Table 3. Out of the 340 tests, human subjects only made one wrong detection (see Figure 6).  

Table 2. The average time (in seconds) taken for each of the 10 tests. The 
last column gives the average time over all the 10 tests. 

Test 1 2 3 4 5 6 7 8 9 10 Avg 

Time 

(sec.) 
22 15 16 13 12 11 12 12 11 12 14 

 

Table 3. Mismatches (in pixels) of the 6 points, averaged over the 34 
subjects. 

Points (x,y) Mismatches (in pixels) 

Left corner of the left eye (2.0, 2.3) 

Right corner of the left eye (3.3, 5.5) 

Left corner of the Right eye (3.2, 5.0) 

Right corner of the Right eye (2.6, 1.8) 

Left corner of the mouth (2.5, 1.8) 

Right corner of the mouth (2.7, 3.6) 

 

 

Figure 6. The only wrong detection made by human users out of 340 tests.  
The 6 black dots indicate the 6 points clicked by the human user. The black 
bounding box is inferred from the 6 points as the user detected face region. 
The ground truth face region is shown with a white bounding box.  We only 
show part of the test image for clarity. 



The correct rate is 99.7%.  During debriefing, the subject told us that she was not paying too much attention 

for this image but should be able to get it correct if she was given a second chance.  Indeed, she only made 

one mistake out of the 10 tests. 

•  The first test takes longer than the rest of the tests (see Table 2).  This implies that our instruction may not be 

clear enough to the subjects. One possible solution is, as suggested by several subjects, to show users an 

example of the task before asking them to conduct the test.  

To summarize, in this section we designed and conducted a user study and demonstrated that the proposed HIP 

test is easy for human to take.  A byproduct of the user study is that it also provides us with human behavior 

statistics (e.g., small mismatches for the coordinates of the 6 points) which enables us to defend our system from 

attacks.  

6. Attacks and results 

To succeed in an attack, the attacker must first locate the face from a test image’s cluttered background by using 

 

Figure 7. The MD face detector’s best detection out of the 1,000 attacks.  
The detected face region is shown with a black bounding box while the 
ground truth face region is shown with a white bounding box.  The face 
detector is distracted by the two dark regions above the true face – the face 
detector thinks the two dark regions as left and right eye regions.  We only 
show part of the test image for clarity. 



a face detector, and then find the facial features (e.g., eyes, nose, and mouth) by using a facial feature detector. In 

this section we present results of attacks from three different face detectors and one face feature detector.  

6.1 Face Detectors 

The three face detectors used in this paper represent the state of the art in automatic face detection.  The first face 

detector was developed by Colmenarez and Huang [10]. It uses the information-based maximum discrimination 

(MD) to detect faces.  

The second face detector was developed by Yang et. al. [24]. It used a sparse network (SNoW) of linear 

functions and was tailored for learning in the presence of a very large number of features.  It used a wide range of 

face images in different poses, with different expressions and under different lighting conditions.  

The third face detector was developed by Li and his colleagues [11][25] following the Viola-Jones approach [20]. 

They used AdaBoost to train a cascade of linear features, and had a very large database consisting of over 10,000 

faces. Their system has been demonstrated live in various places and is regarded as one of the best existing face 

detectors. 

We apply the three face detectors to attack the 1,000 images generated in Section 4. When evaluating if an attack 

is successful, we use very forgiving criterion for the face detectors: as long as the detected face region overlaps 

with the ground truth face region for 60% (or above), we call it a correct detection.  For the MD face detector, it 

has only one correct detection.  For SNoW face detector, it has three correct detections.  For AdaBoost face 

detector, it has zero correct detection.  Comparing these results with the 99.7% detection rate of human users, we 

can clearly see the big gap. Figure 7 shows the only correctly detected face region (in black bounding box) by the 

MD face detector and the ground truth face region (in white bounding box).  It is clear that even this “correct 

detection” is arguable as it is apparently distracted by two dark regions above the true face. 



6.2 Facial Feature Detector 

The facial feature detector proposed by Yan et. al. [22] is an improved version of the Active Shape Model 

(ASM). It assumes that a face detector has already found the general location of the face region.  It then searches 

for the facial features in that region. It works quite well with undistorted and clean faces [22].  

Again, we use those 1,000 images as our test set. During the attack, to the facial feature detector’s advantage, we 

tell it exactly where the true face is. The detection results over the 1,000 test images are summarized in Table 4, 

and the correct detection rate is only 0.2%. 

6.3 Resistance to No-Effort Attacks 

As a final sanity check, let’s take a look at ARTiFACIAL’s resistance to no-effort attacks.  

•  The chance for face detectors.   

The image size is 512 x 512 and the face region is about 128 x 128. It is easy to compute that there are (512-

128) x (512-128) = 147,456 possible face regions in the image.  If we allow 10 pixel mismatch with the 

ground truth, the chance for a no-effort attack is therefore (10x10)/147,456 = 6.8E-4.   

•  The chance for facial feature detectors.  

If we use the very forgiving mismatch tolerance region of 10 x 10 for each point, the chance for each point is 

(10x10) / (128x128) = 0.0061.  For 6 points, 0.00616 = 5.2E-14. The final success rate is the product of face 

detector and facial feature detector: 6.8E-4 x 5.2E-14 = 3.5E-17.  

Before we conclude the paper, we want to make an observation. HIP researchers normally choose hard AI 

problems to create a HIP test. The hope is that if attackers cannot defeat a HIP algorithm, that algorithm can be 

used to defend applications and services; if attackers defeat a HIP algorithm, that means they solved a hard AI 

Table 4.  The number of images with 0, 1, 2, 3, 4, 5 and 6 correctly 
detected points. 

Number of 
correctly 

detected points 
0 1 2 3 4 5 6 

Number of 
images 

509 257 114 79 33 6 2 



problem, thus advancing the AI research.  Mori and Malik’s attack on EZ Gimpy is a good example of how HIP 

motivates people to solve hard AI problems [13]. But we should be careful that HIP tests do not necessarily lead 

to AI advancement.  An obvious example is the no-effort attacks.  In that case, the HIP test is broken and there is 

no AI advancement.  We therefore want to advocate the importance of the presentation aspect of a HIP system.  

Even if the problems themselves are hard, but if there is no good way to present them to users, e.g., the cases of 

Bongo and Animal Pix, they are not good HIP tests. Today’s HIP researchers have not given enough attentions to 

this presentation aspect of HIP design.  

7. Conclusions 

In this paper, we have proposed a set of HIP design guidelines which are important to ensure the security and 

usability of a HIP system. Furthermore, we have developed a new HIP algorithm ARTiFACIAL based on human 

face and facial feature detection. Because human face is the most familiar object to all human users, 

ARTiFACIAL is possibly the most universal HIP system so far. We used three state-of-the-art face detectors and 

one facial feature detector to attack our system, and their success rate are all very low. We also conducted user 

studies on 34 human users with diverse background. The results have shown that our system is robust to machine 

attacks and easy for human users. 
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