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ABSTRACT

Recent years have seen the development of signal denois-
ing algorithms based on wavelet transform. It has been
shown that thresholding the wavelet coefficients of a noisy
signal allows to restore the smoothness of the original sig-
nal. However, wavelet denoising suffers of a main draw-
back : around discontinuities the reconstructed signal is
smoothed, exhibiting pseudo-Gibbs phenomenon. We con-
sider the problem of denoising piecewise smooth signals
with sharp discontinuities. We propose to apply a traditional
wavelet denoising method and to restore the denoised signal
using a total variation minimization approach. This second
step allows to remove the Gibbs phenomena and therefore
to restore sharp discontinuities, while the other structures
are preserved. The main innovation of our algorithm is to
constrain the total variation minimization by the knowledge
of the remaining wavelet coefficients. In this way, we make
sure that the restoration process does not deteriorate the in-
formation that has been considered as significant in the de-
noising step. With this approach we substantially improve
the performance of classical wavelet denoising algorithms,
both in terms of SNR and in terms of visual artifacts.

1. INTRODUCTION AND BACKGROUND

Since the beginning of wavelet transforms in signal process-
ing, it has been noticed that wavelet thresholding is of con-
siderable interest for removing noise from signals and im-
ages. The method consists to decompose the noisy data into
an orthogonal wavelet basis, to suppress the wavelet coef-
ficients smaller than a given amplitude (using a so-called
soft or hard thresholding), and to transform the data back
into the original domain. Such non-linear thresholding esti-
mator can be computed in any orthogonal basis (as Fourier
or cosine), and Donoho and Johnstone have proved that its
performance is close to an ideal coefficient selection and
attenuation [1]. And since the efficiency of the estimator
depends on the rate of decay of the sorted decomposition

coefficients, it is well known that the choice of Wavelet se-
ries outperforms the choice of Fourier or cosine series in
the representation of piecewise-smooth signals (see e.g.[2,
3]) : thanks to the wavelets time-localization, the decay of
wavelet coefficients in the neighborhood of discontinuities
is faster that the decay of Fourier coefficients. However,
wavelet thresholding method is still a regularization pro-
cess and the estimator presents oscillations in the vicinity
of signal’s discontinuities. Such oscillations are very close
to the Gibbs phenomena exhibited by Fourier thresholding,
although they are more local and of smaller amplitude. They
are called pseudo-Gibbs phenomena.

To partially reduce these artifacts, a workaround has
been proposed by Coifman and Donoho [4] : their trans-
lation invariant thresholding algorithm consists in applying
the thresholding process to translated versions of the orig-
inal signal, and in averaging them. It comes down to ap-
ply the classical threshold process on a frame wavelet ex-
pansion, the dyadic wavelets [5], instead of an orthogonal
wavelet basis. If the resulting procedure, called SpinCycle
by Coifman and Donoho, really reduces the pseudo-Gibbs
phenomena compared to the original VisuShrink procedure,
they are still highly visible. The method we are present-
ing in this paper performs a far better artifact reduction,
so that in most cases the pseudo-Gibbs phenomena simply
vanish. Let us mention another approach of artifact free
wavelet denoising recently introduced by Dragotti and Vet-
terli in [6]. These authors propose to apply a vector thresh-
olding in place of the classical scalar thresholding, and to
replace remaining vectors by the closest footprint obtained
as the significant wavelet coefficients generated by singu-
larities of piecewise polynomial functions. In this way, they
ensure a denoising free of pseudo-Gibbs phenomena. How-
ever the computation and the recording of all footprints are
pretty heavy, and the extension of this method to signals of
higher dimensions, such as images, a challenging program.
The method we are introducing keeps a low complexity and
can be easily extended to image denoising.
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Since classical wavelet thresholding does not introduce
artifacts in regular parts of a signal, we focus our attention
on denoising piecewise smooth signals with sharp disconti-
nuities. The method we are introducing is working in two
steps :

• Apply a traditional wavelet denoising method, such
as a hard thresholding, and record the location of the
remaining coefficients in a map M . Donoho recom-
mends to use the soft thresholding VisuShrink instead
of the hard one in order to reduce the artifacts [7].
Although the algorithm we are presented can be used
with VisuShrink, it is mathematically relevant with a
hard thresholding only.

• Restore the denoised signal using a total variation min-
imization approach, subject to the constraint that the
restored signal has the same remaining wavelet coef-
ficients than the denoised one. This step removes the
pseudo-Gibbs phenomena and restores sharp discon-
tinuities, while the other structures are preserved.

The idea of using a total variation minimization method
to restore a noisy signal has been introduced for the first
time by Rudin, Osher and Fatemi in [8], in the context of
image denoising. They propose to minimize the total vari-
ation of the signal subject to a fidelity constraint, so that
the restored signal has a lower total variation while it re-
mains close to the original one. The noise is reduced while
discontinuities are preserved, in contrast with classical reg-
ularization techniques where discontinuities are smoothed.
Following this work, several constraints and functionals to
minimize have been proposed (see e.g. [9, 10]).

We do not propose to use the total variation in order to
remove the noise : the first step of our method, the wavelet
denoising, performs this task very well and even better than
the total variation approach. We propose to reconstruct a
signal with minimal total variation such that its wavelet co-
efficients are the same than the remaining wavelet coeffi-
cients of the denoising signal. This main idea results simply
in the following remark : if step one is correctly performed,
the unknown original noiseless signal has the same wavelet
coefficients than the denoised one in the location given by
the map M . Traditional wavelet denoising algorithm makes
the choice of setting the coefficients outsideM to 0, leading
oscillations in the vicinity of discontinuities. Because of the
strong dependency between wavelet coefficients in the orig-
inal noiseless signal, this is far from an optimal choice. We
propose to set the coefficients outside M to the values that
minimize the total variation of the reconstructed signal, so
that occurence of oscillations is discouraged.

The following details steps one and two of our method.
Then, we present the algorithm used to minimize the total
variation. We end with some experimental results which
show that our approach allows, in addition to the artifact

removal, a great SNR enhancement. Let us mention that the
theory developed here is valid with any orthogonal bases,
thought we are presenting it in the framework of wavelet
bases.

2. WAVELET DENOISING

Let (ψj,k)j,k∈K be an orthogonal basis of wavelets on the
interval I = [a, b] as described by Cohen, Daubechies and
Vial [11], so that we can write any signal u ∈ L2(I) as the
sum of the serie

u =
∑

j,k∈K
< u,ψj,k > ψj,k (1)

where

< u,ψj,k >=

∫

I

u(x)ψj,k(x)dx. (2)

Let us define the hard thresholding operator τ to be

τ(x) =

{
x if |x| ≥ λ,
0 if |x| < λ.

(3)

In the case of soft thresholding, the operator τ is

τ(x) =

{
x− sgn(x)λ if |x| ≥ λ,
0 if |x| < λ.

(4)

The denoised signal using wavelet thresholding is simply

u0 =
∑

j,k∈K
τ(< u,ψj,k >)ψj,k. (5)

The map M is defined by

M = {(j, k) ∈ K : | < u,ψj,k > | ≥ λ}. (6)

If the noisy signal can be written u = ũ + w, with ũ the
noiseless signal to estimate andw an additive Gaussian white
noise of standard deviation σ, the threshold λ is often set to
σ
√

2 logN , N being the number of samples of the digital
signal : in that case the estimator is the best in the min-max
sense as N tends to infinity [1].

3. CONSTRAINED TOTAL VARIATION
MINIMIZATION

The total variation of any unidimensional signal v in I is

J(v) = sup
(xl)

L∑

l=1

|v(xl)− v(xl−1)| (7)

where the supremum is on all sequences (xl) such that a ≤
x1 < x2 < . . . < xL ≤ b. Let U be the constraint space

U = {v : ∀(j, k) ∈M,< v, ψj,k >=< u,ψj,k >}. (8)



This is an affine space with direction given by the linear
space

U0 = {v : ∀(j, k) ∈M,< v, ψj,k >= 0}. (9)

We have to solve the variational problem

find u∗ ∈ U such that J(u∗) = inf
v∈U

J(v). (10)

Since J is a convex function and U a convex set, any solu-
tion u∗ of (10) is given by

∀t > 0, u∗ = P

(
u∗ − t∂J

∂v
(u∗)

)
, (11)

for P the affine projector onto U that minimizes the dis-
tance.

4. ALGORITHM

The algorithm is a straightforward discrete approximation
of the previous equations. Wavelet denoising is a simple
process which involves a FWT (Fast Wavelet Transform)
followed by thresholding and by an inverse FWT.

We numerically solve the variational problem using a
well-known gradient descent algorithm combining a projec-
tion on the constraint :

uk+1 = P

(
uk − tk

∂J

∂v
(uk)

)
, (12)

where u0 ∈ U is the denoised signal by wavelet threshold-
ing and tk > 0 is the step chosen in order to obtain the
convergence. Let P0 be the orthogonal projection onto U0.
Since we have

P (v) = u+ P0(v − u), (13)

we can write

uk+1 = uk − tkP0

(
∂J

∂v
(uk)

)
(14)

and this equation can be easily computed : the signal
∂J

∂v
(uk)

is projected onto U0 using the FWT, followed by the can-
cellation of coefficients belonging to M and by an inverse
FWT.

The overall complexity of the algorithm remains of the
same order than the FWT, that isO(N), which is lower than
the SpinCycle complexity (O(N logN)). However, because
of the fixed number of iterations needed by the gradient de-
scent, the effective computational time is greater than the
one associated to SpinCycle, at least for signals of reason-
able size.

5. EXPERIMENTAL RESULTS

We have implemented the algorithm using the tools given
by the free MegaWave2 software [12].

We present two experiments. The first one consists in
denoising a synthetic signal containing a sharp discontinu-
ity (a step) and two discontinuities of second order (a ramp).
A Gaussian white noise has been added following the model
u = ũ + w. Figure 1 displays the signal ũ, Figure 2 the
signal u, Figure 3 the wavelet-denoised signal u0 and Fig-
ure 4 the restored signal uk for k = 10000. The estimator
uk is far better than u0, either in terms of SNR or visually.
Fair results are still obtained with much lower k (as low as
k ' 10). The second experiment is obtained from a natural
noisy signal u, which follows our assumption of a piecewise
smooth noiseless signal ũ. The signal u in Figure 5 corre-
sponds to a line of a digital image, which is a snapshot of an
office. Figure 6 shows the signal u0 and Figure 7 the signal
uk. Once again, the visual aspect of uk is far better than u0.
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Fig. 1. Original step-ramp function ũ.
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Fig. 2. Noised step-ramp function u, obtained by adding to
ũ a Gaussian white noise of σ = 0.05. SNR=18.9 db.

6. CONCLUSION

We have presented a general framework to perform artifact-
free denoising with wavelets. The method was explained
and illustrated in the case of unidimensional signals, but it
can be easily extended to signals of higher dimensions, and
in particular to images for which the piecewise-smooth as-
sumption is highly relevant. A slight modification of the
constraint may also be performed in order to achieve restora-
tion of signals and images that have been compressed within
an orthogonal basis.
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Fig. 3. Denoised step-ramp function u0 , obtained by
wavelet hard thresholding. SNR=31.0 db. Normalized Total
Variation NTV=0.0023.
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Fig. 4. Denoised step-ramp function uk, obtained by our
method. SNR=37.8 db. NTV=0.0010.
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Fig. 5. Real signal u extracted from a line of a digital image
(view of an office).
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Fig. 6. Denoised line of the image, obtained by wavelet hard
thresholding. NTV=3.244.
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Fig. 7. Denoised line of the image, obtained by our method.
NTV=2.365.
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