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Artifact-free Wavelet Denoising: Non-convex Sparse
Regularization, Convex Optimization

Yin Ding and Ivan W. Selesnick

Abstract—Algorithms for signal denoising that combine
wavelet-domain sparsity and total variation (TV) regularization
are relatively free of artifacts, such as pseudo-Gibbs oscillations,
normally introduced by pure wavelet thresholding. This paper
formulates wavelet-TV (WATV) denoising as a unified problem.
To strongly induce wavelet sparsity, the proposed approach uses
non-convex penalty functions. At the same time, in order to draw
on the advantages of convex optimization (unique minimum, re-
liable algorithms, simplified regularization parameter selection),
the non-convex penalties are chosen so as to ensure the convexity
of the total objective function. A computationally efficient, fast
converging algorithm is derived.

I. INTRODUCTION

Simple thresholding of wavelet coefficients is a reasonably
effective procedure for noise reduction when the signal of
interest possesses a sparse wavelet representation. However,
wavelet thresholding often introduces artifacts such as spurious
noise spikes and pseudo-Gibbs oscillations around discontinu-
ities [13]. In contrast, total variation (TV) denoising [34] does
not introduce such artifacts; but it often produces undesirable
staircase artifacts.

Roughly stated, noise spikes resulting from wavelet thresh-
olding are due to noisy wavelet coefficients exceeding the
threshold, whereas pseudo-Gibbs artifacts are due to non-
zero coefficients being erroneously set to zero. An approach
to alleviate pseudo-Gibbs artifacts is to estimate thresholded
coefficients by variational means [5], [14]. The use of TV
minimization as a way to recover thresholded coefficients is
particularly effective [10], [11], [18], [19]. In this approach,
thresholding is performed first. Those coefficients that sur-
vive thresholding (i.e., significant coefficients) are maintained.
Those coefficients that do not survive (i.e., insignificant coef-
ficients) are then optimized to minimize a TV objective func-
tion. TV regularization was subsequently used with wavelet
packets [26], curvelets [7], complex wavelets [25], shearlets
[21], tetrolets [23], [37], and generalized in [20]. Powerful
proximal algorithms have been developed for signal restoration
with general hybrid regularization (including wavelet-TV)
allowing constraints and non-Gaussian noise [32].

In this letter, we propose a unified wavelet-TV (WATV)
approach that estimates all wavelet coefficients (significant
and insignificant) simultaneously via the minimization of a
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single objective function. To induce wavelet-domain sparsity,
we employ non-convex penalties due to their strong sparsity-
inducing properties [29]–[31]. In general practice, when non-
convex penalties are used, the convexity of the objective func-
tion is usually sacrificed. However, in our approach, we restrict
the non-convex penalty so as to ensure the strict convexity
of the objective function; then, the minimizer is unique and
can be reliably obtained through convex optimization. The
proposed WATV denoising method is relatively resistant to
pseudo-Gibbs oscillations and spurious noise spikes. We de-
rive a computationally efficient, fast converging optimization
algorithm for the proposed objective function.

The formulation of convex optimization problems for linear
inverse problems, where a non-convex regularizer is designed
in such a way that the total objective function is convex, was
proposed by Blake and Zimmerman [4] and Nikolova [27],
[28], [31]. The use of semidefinite programming (SDP) to
attain such a regularizer has been considered [35]. Recently,
the concept has been applied to group-sparse denoising [12],
TV denoising [36], and non-convex fused-lasso [3].

II. PROBLEM FORMULATION

We consider the estimation of a signal x ∈ RN observed in
additive white Gaussian noise (AWGN),

yn = xn + vn, n = 0, 1, . . . , N − 1. (1)

We denote the wavelet transform by W and the wavelet
coefficients of signal x as w =Wx. We index the coefficients
as wj,k where j and k are the scale and time indices, respec-
tively. In this work, we use the translational-invariant (i.e.,
undecimated) wavelet transform [13], [24], which satisfies the
Parseval frame condition,

WTW = I. (2)

But the proposed WATV denoising algorithm can be used with
any transform W satisfying (2).

The total variation (TV) of signal x ∈ RN is defined as
TV(x) := ‖Dx‖1 where D is the first-order difference matrix,

D =


−1 1

−1 1
. . . . . .

−1 1

 , (3)

and ‖x‖1 denotes the `1 norm of x, i.e., ‖x‖1 =
∑
n |xn|. We

also denote ‖x‖22 :=
∑
n |xn|

2. For a set of doubly-indexed
wavelet coefficients, we denote ‖w‖22 :=

∑
j,k |wj,k|

2.
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The proposed WATV denoising method finds wavelet coef-
ficients w by solving the optimization problem,

ŵ = argmin
w

{
F (w) =

1

2
‖Wy − w‖22

+
∑
j,k

λjφ(wj,k; aj) + β‖DWTw‖1
}
. (4)

The estimate of the signal x is then given by the inverse
wavelet transform of ŵ, i.e., x̂ = WTŵ. The penalty term
‖DWTw‖1 is the total variation of the signal estimate x̂. The
regularization parameters are λj > 0 and β > 0. We allow the
wavelet regularization and penalty parameters (λj and aj) to
vary with scale j.

A. Parameterized Penalty Function

In the proposed approach, the function φ( · ; a) : R→ R is a
non-convex sparsity-inducing penalty function with parameter
a > 0. We assume φ satisfies the following conditions:

1) φ is continuous on R
2) φ is twice continuously differentiable, increasing, and

concave on R+

3) φ(x; 0) = |x|
4) φ(0; a) = 0
5) φ(−x; a) = φ(x; a)
6) φ′(0+; a) = 1
7) φ′′(x; a) > −a for all x 6= 0

The following proposition indicates a suitable range of values
for the parameter a. This proposition combines Propositions
1 and 2 of [12].

Proposition 1. Suppose the parameterized penalty function φ
satisfies the above-listed properties and λ > 0. If

0 6 a <
1

λ
, (5)

then the function f : R→ R,

f(x) =
1

2
(y − x)2 + λφ(x; a), (6)

is strictly convex and the function θ : R→ R,

θ(y;λ, a) = argmin
x∈R

{
1

2
(y − x)2 + λφ(x; a)

}
, (7)

is a continuous nonlinear threshold function with threshold
value λ. That is, θ(y;λ, a) = 0 for all |y| < λ.

Note that (7) is the definition of the proximity operator, or
proximal mapping, of φ [2], [15].

Several common penalties satisfy the above-listed proper-
ties, for example, the logarithmic and arctangent penalties
(when suitably normalized), both of which have been advo-
cated for sparse regularization [8], [29]. We use the arctangent
penalty as it induces sparsity more strongly [12], [35],

φ(x; a) =


2

a
√
3

(
atan

(
1+2a|x|√

3

)
− π

6

)
, a > 0

|x| , a = 0.
(8)

Figure 1 illustrates this penalty and its corresponding threshold
function θ, which is given by the solution to a cubic polyno-
mial; see Eqn. (21) in [35].
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Fig. 1. (a) Non-convex penalty. (b) Threshold function (λ = 1, a = 0.95).

The parameter a (with 0 6 a < 1/λ) controls the non-
convexity of the penalty φ; specifically, φ′′(0+; a) = −a. This
parameter also controls the shape of the threshold function
θ; namely, the right-sided derivative at the threshold λ, is
θ′(λ+) = 1/(1− aλ). If a = 0, then θ′(λ+) = 1 and θ is the
soft-threshold function. If a ≈ 1/λ (and a < 1/λ), then θ is a
continuous approximation of the hard-threshold function. But,
if a > 1/λ, then f in (6) is not convex, the associated threshold
function is not continuous, and the threshold value is not λ.
As discussed in [35], the value a = 1/λ is the critical value
that maximizes the sparsity-inducing behavior of the penalty
while ensuring convexity of f .

B. Convexity of the Objective Function

In the WATV denoising problem (4), we use the non-convex
penalty φ to strongly promote sparsity, but we seek to ensure
the strict convexity of the objective function F .

Proposition 2. Suppose the parameterized penalty function
φ satisfies the properties listed in Sec. II-A. The objective
function (4) is strictly convex if

0 6 aj <
1

λj
(9)

for each scale j.

Proof. We write the objective function in (4) as

F (w) =
∑
j,k

{1
2
([Wy]j,k − wj,k)2 + λj φ(wj,k; aj)

}
+ β ‖DWTw‖1. (10)

By Proposition 1, condition (9) ensures each term in the curly
braces is strictly convex. Also, the `1 norm term is convex. It
follows that F , being the sum of strictly convex and convex
functions, is strictly convex.

When β = 0 in (4) and aj < 1/λj for all j, then ŵj,k =
θ([Wy]j,k;λj , aj). That is, the solution is obtained by wavelet-
domain thresholding.

C. Parameters

The proposed formulation (4) requires parameters λj , aj ,
and β. We suggest using aj = 1/λj or slightly less (e.g.,
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0.95/λj) to maximally induce sparsity while keeping F con-
vex. To set λj and β, we consider separately the special
cases of (i) β = 0 and (ii) λj = 0 for all j. In case (i),
problem (4) reduces to pure wavelet denoising, for which
we presume suitable parameters, denoted λWj , are known. In
case (ii), problem (4) reduces to pure TV denoising, for which
we presume a suitable parameter, denoted βTV, is known. We
suggest setting

λj = η λWj , β = (1− η)βTV, (11)

where 0 < η < 1 controls the relative weight of wavelet and
TV regularization. We further suggest the smaller range of
0.9 < η < 1.0, so that TV regularization makes a relatively
minor adjustment of the wavelet solution, to reduce spurious
noise spikes and pseudo-Gibbs’ phenomena.

In this work, we set the wavelet thresholds λWj = 2.5σj ,
where σ2

j denotes the noise variance in wavelet scale j. For an
undecimated wavelet transform satisfying (2), we have σj =
σ/2j/2 where σ2 is the noise variance in the signal domain.
For pure TV denoising, we use βTV =

√
Nσ/4 in accordance

with [17]. Therefore, we suggest using

λj = 2.5 η σ/2j/2, β = (1− η)
√
Nσ/4, (12)

with a nominal value of η = 0.95. Additionally, we omit
regularization of low-pass wavelet coefficients.

III. OPTIMIZATION ALGORITHM

To solve the WATV denoising problem (4) we use the
split augmented Lagrangian shrinkage algorithm (SALSA) [1]
which in turn is based on the alternating direction method
of multipliers (ADMM) [6], [22]. Proximal methods (e.g.,
Douglas-Rachford) could also be used [15]. We assume that
aj satisfies (9) for each j, so that F is strictly convex.

With variable splitting, problem (4) is expressed as a con-
strained problem,

argmin
u,w

g1(w) + g2(u)

subject to u = w,
(13)

where

g1(w) =
1

2
‖Wy − w‖22 +

∑
j,k

λj φ(wj,k; aj) (14a)

g2(u) = β‖DWTu‖1. (14b)

Both g1 and g2 are strictly convex, hence we may utilize the
convergence theory of [22]. Even though φ is non-convex, the
function g1 is strictly convex because aj satisfies (9).

The augmented Lagrangian is given by

L(w, u, µ) = g1(w) + g2(u) +
µ

2
‖u− w − d‖22. (15)

The solution of (13) can be found by iteratively minimizing
with respect to w and u alternately, as proven in [22]. Thereby,
we obtain an iterative algorithm to solve (4), where each
iteration consists of three steps:

w = argmin
w

{
g1(w) +

µ

2
‖u− d− w‖22

}
, (16a)

u = argmin
u

{
g2(u) +

µ

2
‖u− d− w‖22

}
, (16b)

d = d− (u− w), (16c)

for some µ > 0. We initialize u = Wy and d = 0. Note that
both (16a) and (16b) are strictly convex. (Sub-problem (16a)
is strictly convex because aj satisfies (9).)

Sub-problem (16a) can be solved exactly and explicitly.
Combining the quadratic terms, (16a) may be expressed as

w = argmin
w

∑
j,k

{
1

2
(pj,k − wj,k)2 +

λj
µ+ 1

φ(wj,k; aj)

}
,

where p = (Wy + µ(u − d))/(µ + 1). Since this problem is
separable, it can be further written as

wj,k = argmin
v∈R

{
1

2
(pj,k − v)2 +

λj
µ+ 1

φ(v; aj)

}
, (17)

for each j and k. This is the same form as (6). Consequently,
the solution to sub-problem (16a) is given by

wj,k = θ

(
pj,k;

λj
µ+ 1

, aj

)
(18)

where θ is the threshold function (7).
Sub-problem (16b) can also be solved exactly. We use

properties of proximity operators to express (16b) in terms
of a TV denoising problem [15]. In turn, the TV denoising
problem can be solved exactly by a fast finite-time algorithm
[16]. Define function q as

q(v) = argmin
u

{
β‖DWTu‖1 +

µ

2
‖u− v‖22

}
(19)

= argmin
u

{
ψ(WTu) +

1

2
‖u− v‖22

}
(20)

= argmin
u

{
h(u) +

1

2
‖u− v‖22

}
(21)

= proxh(v) (22)

= v +W
(
proxψ(W

Tv)−WTv
)

(23)

where
ψ(x) =

β

µ
‖Dx‖1, h(u) = ψ(WTu), (24)

and where we have used the ‘semi-orthogonal linear transform’
property of proximity operators to obtain (23) from (22),
which depends on (2). See Table 1.1 and Example 1.7.4 in
[15], and see [9], [33] for details. Note that

proxψ(W
Tv) = argmin

x

{
ψ(x) +

1

2
‖x−WTv‖22

}
(25)

= argmin
x

{β
µ
‖Dx‖1 +

1

2
‖x−WTv‖22

}
= tvd

(
WTv, β/µ

)
(26)

is total variation denoising. We use the fast finite-time exact
software of [16]. Hence, (16b) can be implemented as

v = d+ w (27)

u = v +W
(
tvd(WTv, β/µ)−WTv

)
. (28)

Hence, solving problem (4) by (16a)-(16c), consists of
iteratively thresholding (18) [to solve (16a)] and perform-
ing total variation denoising (28) [to solve (16b)]. Table I
summarizes the whole algorithm. Each iteration involves one
wavelet transform, one inverse wavelet transform, and one total
variation denoising problem. (The term Wy in the algorithm
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TABLE I
ITERATIVE ALGORITHM FOR WATV DENOISING (4).

Input: y, λj , β, µ
Initialization: u =Wy, d = 0

aj = 1/λj

Repeat:
p = (Wy + µ(u− d))/(µ+ 1)

wj,k = θ(pj,k;λj/(µ+ 1), aj) for all j, k
v = d+ w

u = v +W
(
tvd(WTv, β/µ)−WTv

)
d = d− (u− w)

Until convergence

Return: x =WTw

TABLE II
AVERAGE RMSE FOR DENOISING EXAMPLE

σ Thresholding Two-step WATV Proposed WATV

1.0 0.44 0.39 0.37
2.0 0.81 0.69 0.67
4.0 1.54 1.44 1.28
8.0 2.90 2.75 2.46

16.0 5.25 4.77 4.19

may be precomputed.) Since both minimization problems,
(16a) and (16b), are solved exactly, the algorithm is guaranteed
to converge to the unique global minimizer according to the
convergence theory of [22].

IV. EXAMPLE

We illustrate the proposed WATV denoising algorithm using
noisy data of length 1024 (Fig. 2a), generated by Wavelab
(http://www-stat.stanford.edu/%7Ewavelab/), with AWGN of
σ = 4.0. We use a 5-scale undecimated wavelet transform with
two vanishing moments. Hard-thresholding (with λWj = 2.5σj)
results in noise spikes due to wavelet coefficients exceeding the
threshold (Fig. 2b). Two-step WATV denoising [19] (wavelet
hard-thresholding followed by TV optimization of coefficients
thresholded to zero) does not correct noise spikes due to
noisy coefficients that exceed the threshold, so we use higher
thresholds of σj

√
2 logN to avoid noise spikes from occurring

in the first step. The result (Fig. 2c) is relatively free of noise
spikes and psuedo-Gibbs oscillations.

The proposed WATV algorithm [with parameters (12), η =
0.95, and aj = 1/λj] is resistant to spurious noise spikes,
preserves sharp discontinuities, and results in a lower root-
mean-square-error (RMSE) (Fig. 2d). The proposed algorithm
was run for 20 iterations in a time of 0.15 seconds using
Matlab 7.14 on a MacBook Air (1.3 GHz CPU).

Table II shows the RMSE for several values of the noise
standard deviation (σ) for each method. Each RMSE value is
obtained by averaging 20 independent realizations. The higher
RMSE of two-step WATV appears to be due to distortion
induced by the greater threshold value.
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Fig. 2. (a) Simulated data. (b) Wavelet denoising (hard-thresholding). (c)
Two-step WATV denoising [19]. (d) Proposed WATV denoising.

V. CONCLUSION

Inspired by [18], [19], this paper describes a wavelet-
TV (WATV) denoising method that is relatively free of ar-
tifacts (pseudo-Gibbs oscillations and noise spikes) normally
introduced by simple wavelet thresholding. The method is
formulated as an optimization problem incorporating both
wavelet sparsity and TV regularization. To strongly induce
wavelet sparsity, the approach uses parameterized non-convex
penalty functions. Proposition 2 gives the critical parameter
value to maximally promote wavelet sparsity while ensuring
convexity of the objective function as a whole. A fast iterative
implementation is derived. We expect the approach to be useful
with transforms other than the wavelet transform, provided
they satisfy the Parseval frame property (2).
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