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Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a technique that

combines temporal (largely from EEG) and spatial (largely from fMRI) indicators of brain

dynamics. It is useful for understanding neuronal activity during many different event

types, including spontaneous epileptic discharges, the activity of sleep stages, and

activity evoked by external stimuli and decision-making tasks. However, EEG recorded

during fMRI is subject to imaging, pulse, environment and motion artifact, causing noise

many times greater than the neuronal signals of interest. Therefore, artifact removal

methods are essential to ensure that artifacts are accurately removed, and EEG of interest

is retained. This paper presents a systematic review of methods for artifact reduction

in simultaneous EEG-fMRI from literature published since 1998, and an additional

systematic review of EEG-fMRI studies published since 2016. The aim of the first review

is to distill the literature into clear guidelines for use of simultaneous EEG-fMRI artifact

reduction methods, and the aim of the second review is to determine the prevalence

of artifact reduction method use in contemporary studies. We find that there are many

published artifact reduction techniques available, including hardware, model based, and

data-driven methods, but there are few studies published that adequately compare these

methods. In contrast, recent EEG-fMRI studies show overwhelming use of just one or two

artifact reduction methods based on literature published 15–20 years ago, with newer

methods rarely gaining use outside the group that developed them. Surprisingly, almost

15% of EEG-fMRI studies published since 2016 fail to adequately describe the methods

of artifact reduction utilized. We recommend minimum standards for reporting artifact

reduction techniques in simultaneous EEG-fMRI studies and suggest that more needs to

be done to make new artifact reduction techniques more accessible for the researchers

and clinicians using simultaneous EEG-fMRI.
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1. INTRODUCTION

Simultaneous electroencephalography (EEG) and functional MRI (fMRI) is a non-invasive imaging
method first described over 25 years ago, and early on was mostly used for characterizing seizure
location in epilepsy patients (1, 2). By combining the temporal resolution of scalp EEG with the
spatial resolution of fMRI, it is possible to gain more information about brain activity than is
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possible with either technique alone (3). While simultaneous
EEG-fMRI started out as a technique to locate epileptic activity,
it is now used much more widely in neuroscience research (4),
from studies looking at brain function in disease states such as
schizophrenia (5, 6), to those investigating brain dynamics during
behaviors such as decision making (7, 8) and sleep onset (9, 10).

A technical challenge with recording simultaneous EEG-fMRI
is that EEG recorded inside the MR environment is subject to
large sources of noise, which can obscure neuronal activity, or
induce artificial artifacts in the EEG recording (11). The four
main sources of noise in EEG recorded during fMRI are outlined
below, and some examples are shown visually in Figure 1.

• Gradient artifact (GA) is the largest source of noise in EEG-
fMRI, and is used for fMRI acquisition due to the magnetic
field gradients, which induce current in EEG electrodes up to
400 times larger than neural activity, therefore obscuring the
EEG information of interest (15).

• Motion artifact occurs when movement of the subject’s head
within the scanner creates artifacts on the EEG due to induced
current at electrodes when moved inside the magnetic field—
occurrence explained by Faraday’s law (16).

• Ballistocardiogram (BCG) artifact occurs due to the subject’s
cardio-respiratory patterns, specifically scalp pulse and
cardiac-related motion, as well as the changes in magnetic
properties of blood flow under the scalp (17).

• Environmental artifact occurring on the EEG recording is
mostly due to interference from power line noise, ventilation,
and lights in the MR room, as well as the vibration arising
from the helium cooling pump used to ensure stability of the
scanner’s magnet (18).

Given the many artifacts and their impact, methods to reduce all
artifacts are crucial to ensuring that the EEG recorded during
EEG-fMRI is an accurate representation of brain activity. The
earliest algorithm for artifact removal in EEG-fMRI was the
average artifact subtraction (AAS) method, which was adapted
to remove either BCG (19) or GA (15), and permitted the
first fully simultaneous EEG-fMRI. However, due to temporal
non-stationarities in template sampling, AAS-filtered EEG still
contains residual artifact (15). In the years since the publication
of the AAS method, many novel methods have been proposed
to improve accuracy of EEG-fMRI, and research in this area is
ongoing (20). An aim of this review is to distill the literature
from these 21 years and provide updated recommendations
about artifact reduction to those interested in practicing
EEG-fMRI.

Previous published reviews, such as a recent paper from
(20), have given a broad overview of the methods to reduce
artifact in EEG-fMRI, but have not systematically reviewed all
literature, nor given specific recommendations for researchers
not familiar with this field. Perhaps the best example of practical
recommendations is a visual article by Mullinger et al. (21),
which shows step-by-step optimization for specific EEG-fMRI
equipment. While these reviews are useful, there remains a
gap: a systematic review of artifact reduction methods in EEG
recorded during EEG-fMRI is provided to underpin a set
of clear recommendations that make it easier for researchers

to make informed decisions about reducing artifact in any
EEG-fMRI study.

We aim to:

1. Systematically review EEG-fMRI artifact reduction methods
and provide some clarity regarding a potential “gold standard”
approach;

2. Systematically review all papers published in the last 4 years
that have used EEG-fMRI to determine the artifact reduction
techniques used in contemporary practice.

The results of our review lead to guidelines for EEG-fMRI usage,
and recommendations to help ensure best practice techniques are
widely used.

2. METHODS

2.1. EEG-fMRI Artifact Reduction
Techniques
The objective of the first literature search was to identify novel
artifact reduction techniques for EEG-fMRI from literature
published since the first EEG-fMRI artifact reduction paper
appeared in 1998. This review has a specific focus on EEG-
informed fMRI, where results of EEG are used to inform the fMRI
analysis. Web of Science database was searched for papers related
to artifact reduction in EEG-fMRI, in English, from years 1998
to 2019 (January 17, 2020). Document types were categorized
into article, proceedings paper, review, data paper, early access, or
book chapter (exclusion of editorial material, meeting abstracts,
and corrections). The search terms are outlined as follows:

(TS = (((eeg OR electroencephalography) AND (“functional
mri” OR fmri OR “functional magnetic resonance imaging”))
AND (artifact OR artifact* red* OR filter* OR denois* OR
classif*))) AND LANGUAGE: (English)

The title, abstract, and, if required, methods sections of
resultant papers were then manually interrogated to include only
literature which fitted the following criteria: data from human
subjects, recorded using EEG and fMRI, where EEG and fMRI
are recorded simultaneously, i.e., EEG recorded inside the MR
environment, while fMRI scanning is occurring.

The final step was to determine which of the resultant papers
outlined novel artifact reduction techniques for the EEG data
recorded during EEG-fMRI. Artifact was defined as any source
of activity, which appears in the EEG dataset, but is not neuronal
in origin. Artifact reduction can include (1) methods to reduce
the raw recording of artifact during EEG-fMRI acquisition, and
(2) methods to filter out artifact during the post-processing of
EEG. A method was considered novel if there were no previous
publications outlining its use for reducing any artifact on EEG
data recorded during EEG-fMRI. By this definition, papers that
outline the use of an existing publishedmethod, but implemented
to reduce another type of artifact, are not considered novel.
Although this review focuses on methods that improve EEG
clarity, it is accepted that some techniques that improve EEG
quality may also impact fMRI quality, positively or negatively.
Other literature has covered the impact of the EEG system on
artifact in the fMRI recording: for most commercial EEG-fMRI

Frontiers in Neurology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 622719

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bullock et al. Artifact Reduction in Simultaneous EEG-fMRI

FIGURE 1 | Visual examples of (A) gradient; and (B) ballistocardiogram (shown by arrows) and motion (circled) artifact on EEG recorded during fMRI. For (B), GA has

been removed using an adaptive average artifact subtraction (AAS) method (12). EEG channel numbers are given on the left of each figure. Channels below the ECG

(mvmt 2–4) are recordings from carbon wire motion loops for measuring motion. The horizontal axis of each figure shows time in seconds. Environmental artifact is not

seen visually in this recording, and for visual examples of environmental artifact, we refer the reader to (13, 14).

systems, artifact from EEG is considered far lower than that
generated by fMRI (11, 22–24).

2.2. Contemporary Use of Artifact
Reduction Techniques in EEG-fMRI Studies
The primary aim of the second review was to acquire information
about the setup and post-processing methods employed by
researchers for reducing artifact in contemporary EEG-fMRI
studies (2016–2019) (Aim 1). A secondary aimwas to understand
the level of diversity in recently published studies using EEG-
fMRI (Aim 2). Given these aims, there were three primary areas
of interest for the included studies: (1) Methods of EEG-fMRI

setup (pre-recording) for artifact reduction (Aim 1); (2) post-
processing (post-recording) methods for artifact reduction (Aim
1); and (3) measure of interest on EEG used to drive the EEG-
fMRI analysis (Aim 2).

The literature search covered the databases—Web of Science,
PubMed, and Scopus—and included all articles between January
1, 2016 and December 31, 2019, with the following terms: EEG-
fMRI, ERP-fMRI, EEG-BOLD, and their derivatives, including
long hand spelling, and words in alternate orders. Key search
fields were as follows: Title, Abstract, and Keywords. The
inclusion criteria for EEG-fMRI studies is fully simultaneous
EEG-fMRI in human population. The definition of simultaneous
EEG-fMRI and human population is the same as outlined in
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part 1, with EEG-fMRI studies using interleaved scanning not
considered fully simultaneous. Studies included in this review
must have a full methods section, and be either English language
publications, or have a translation readily available.

3. SEARCH RESULTS

3.1. EEG-fMRI Artifact Reduction
Techniques
The Web of Science search returned 894 articles (891 unique),
of which 457 fitted the criteria of simultaneous EEG-fMRI as
outlined in themethods, and of those, 136 described novel artifact
reduction methods (Figure 2). Many of the papers that did not
meet the criteria for simultaneous EEG-fMRI described either
only EEG or only fMRI data. Some papers described data from
bothmodalities, but these data were not simultaneously acquired.
Sixteen papers detailed imaging in animal models, without any
human imaging. When assessing whether the remaining papers
described novel artifact reduction techniques for EEG data, 273
were excluded, with the most common reasons being:

1. Applications of EEG-fMRI for answering a clinical,
neuroscience, or behavioral question, with no novel artifact
reduction technique shown;

2. Characterization of EEG artifact during EEG-fMRI, but no
method to remove it;

3. Other reasons, such as:

a. EEG-fMRI review articles;
b Methods for EEG-fMRI data fusion;
c. Methods for artifact reduction in fMRI data only;
d. Proposals of methods for improving EEG-fMRI

acquisition, but with no data validation.

The search also identified 48 papers that described comparisons
of EEG artifact reduction methods for EEG-fMRI, without
proposing any new method. While, these papers do not describe
novel methods, they were used to inform the discussion in the
following sections in order to provide an objective measure of
best practice in EEG-fMRI artifact reduction.

3.2. Contemporary Use of Artifact
Reduction Techniques in EEG-fMRI Studies
Figure 3 shows the search strategy used for finding literature
relating to artifact use in contemporary EEG-fMRI studies. The
original search returned 506 original articles, after excluding
duplicates from each of the databases. Screening of papers by
title and abstract excluded 132 papers, and full text screening of
papers excluded another 130 papers. The most common reasons
for exclusions were as follows: animal studies (n = 5), review
papers with no original data (n = 81), papers where data are not
from simultaneous EEG-fMRI (n = 121), and papers discussing
technical aspects of EEG-fMRI without original data in human
subjects (n = 49). After exclusion, the review includes 244 EEG-
fMRI papers for analysis.

4. ARTIFACT REDUCTION:
RECOMMENDATIONS AND
CONTEMPORARY USE

This section is divided into subsections based on the four main
EEG-fMRI artifact types [GA, BCG artifact, motion artifact, and
environmental artifact] and includes results from both reviews
in each section. For each artifact type, recommendations are
made for the best practice for reduction of that artifact, followed
by contemporary usage statistics to contrast best practice vs.
current practice. In the interests of space, not all 130 novel
artifact reduction techniques revealed in the literature search are
covered in detail in the following discussion. A comprehensive
list of all techniques is provided in additional tables in the
Supplementary Material..

A final subsection details the software toolboxes used to
reduce artifact in contemporary studies. Although we do not
evaluate software toolboxes in this review, understanding the
most commonly used software could help to identify the reasons
researchers are using a particular artifact reduction technique in
contemporary studies.

4.1. Gradient Artifact Reduction
GA, or imaging artifact, is the largest artifact seen on EEG
recorded during fMRI, and occurs due to the strong magnetic
field changes during fMRI scanning. GA amplitude can be over
400 times larger than the EEG of interest (15), making its removal
crucial for a successful EEG-fMRI study. Early EEG-fMRI studies
avoided GA by altering the time of scanning, so that fMRI
was acquired either in response to an EEG event such as an
epileptic spike (2), or by interleaving EEG and fMRI acquisition
(26). However, alternating fMRI and EEG acquisition cannot
be considered simultaneous, and useful neuronal information
is lost when data are acquired in this way. In order to be
simultaneous but still to avoid GA, a method known as Stepping
Stone Sampling (27) was developed, which avoids GA by altering
the fMRI pulse sequence so that EEG can be sampled during
times when GA is known to be negligible. However, Stepping
Stone Sampling has been largely superseded because newer
post-processing methods allow for equivalent or better (28)
recovery of neuronal activity from continuous scanning using
conventional fMRI pulse sequences.

4.1.1. EEG-fMRI Setup
If not avoiding GA using Stepping Stone Sampling or another
method, the EEG equipment must have sufficient dynamic
range to record both the GA and the underlying EEG to
facilitate subsequent post-processing to separate these signals.
Newer amplifiers that are wireless and can adapt amplification
depending on MR gradient sequences are in development (29)
but are not currently available. One problem with recording EEG
in the MR environment is that EEG leads can form large loops,
which increase the prominence of induced current from GA,
and may be dangerous if heating occurs (30). To reduce the size
of EEG cable loops in the MR environment and to reduce the
magnitude of GA being recorded, EEG cables should be twisted
(22, 30–32), as short as possible (32, 33), and located centrally
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FIGURE 2 | PRISMA chart (25), EEG-fMRI novel artifact reduction methods, 1998–2019.

on the EEG cap (34). Re-wiring the EEG cables based on scanner
specific artifact recordings may further reduce the amount of GA
recorded in the EEG (35). Also by optimizing the setup of EEG
equipment, positioning the subject with nasian 4 cm posterior to
isocenter (36) may reduce GA contamination of EEG.

4.1.2. Post-processing
Template methods, such as AAS can be used to remove GA, and
blind source separation (BSS) methods, as well as other filtering
methods, have been proposed as alternatives.

4.1.2.1. Template Methods
Template methods are techniques that create an estimate of
the artifact, which is removed from the noisy data, to obtain
clean EEG. GA is assumed to be repetitive and time-locked
to each repetition time (TR) during fMRI scanning, whereas
the neuronal EEG of interest is assumed to be random and
fluctuating without regard to TR. Template methods average
the signal over many TRs, leveraging the fact that the neuronal
EEG signal, which is not time locked to the TR, will average out
toward zero, leaving the GA signal, which can be subtracted from
the recording to give the cleaned EEG (37). Providing that the
assumption of GA stability and EEG fluctuation, with regard to

TR timing, throughout the recording is valid, template methods
can provide a relatively easy and reliable way to clean the EEG.

Temporal jitter of EEG and MRI scanner clocks leads to
slight differences in the calculation of templates, resulting in
residual GA contamination of EEG after artifact removal by
template methods. Therefore, to accurately sample the GA
and use template methods most effectively, MR and EEG
clocks should be synchronized (27, 38–40), preferably using
a synchronization hardware device (38). For studies where
synchronization hardware is not available, post-processing
methods, such as interpolation (41), auto-correlation (42),
time continuous cubic spline model (43), or least across
squares variance (44), can be used to realign EEG and
fMRI data. However, the use of synchronization hardware,
available with many commercial EEG-fMRI systems, remains the
optimal approach.

The template methods for GA removal described in the
literature differ from each other by the way that the template
is generated, as well as how the template is subtracted from
the recording. The earliest template method, AAS, considers
GA at each TR epoch in the temporal domain, and applies
a moving average filter (over some number of immediately
preceding TR epochs) to remove GA, leaving the cleaned EEG
data (15). Other template methods, such as template sets based
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FIGURE 3 | PRISMA chart (25), showing search strategy for recent EEG-fMRI papers, 2016–2019.

on cubic spline interpolation (45) and hierarchical clustering
(46) use templates derived from the whole recording rather than
temporally preceding, and filter data based on these clusters, or
sets, of templates.

There have been few comparisons of template methods
available in the literature. However, even in the original
paper that describes it, cubic spline interpolation did not
outperform AAS, unless additional motion parameters from an
MR compatible camera (or, it was suggested head displacement
parameters from fMRI analysis could possibly be substituted)
were also incorporated into the algorithm (45). The addition of
head displacement parameters gives an additional information
to the cubic spline model, and it is unclear if using AAS with
this additional information would have produced comparable
results. Hierarchical clustering showed improved performance
compared with a pipeline of AAS and interpolation of EEG
and MR data, but was not implemented on a dataset where
EEG and MR timing were synchronized (46). It is therefore
questionable whether hierarchical clustering could improve the
performance of AAS if adequate synchronization was employed,
and it is difficult to suggest this method without appropriate
independent validation. The literature search showed that of the
three template methods described above, only AAS has been
independently scrutinized, and many papers have built on or
suggested additional factors for its implementation.

AAS, when used for removing GA, can be prone to residual
artifact due to fluctuations inGA over the course of the recording,
such as from head motion (47), drift in EEG sampling rates (12,
38), or from contamination due to BCG artifact (48). Methods
to reduce the resultant residual artifact present after AAS include
using extra steps such as pre-processing template data (49), or
improving the template estimation by weighting templates based
on proximity (50), linear regression (51), cross-correlation (52),
or adaptive filtering (53). However, these methods that describe
extra steps for removing residual artifact with AAS are dealing
with the residual artifact from non-synchronization of clocks,
and if they compare their method with AAS, it is AAS without
synchronization (49, 51, 53). One paper [cross-correlation (52)]
considered how synchronization of EEG and MRI would affect
their method, and stated that their method would likely provide
a similar magnitude of GA reduction compared to using AAS
with synchronization. Weighting templates based on proximity
(50) was tested using synchronized EEG and MRI data, but the
protocol for MR acquisition was Stepping Stone Sampling (27),
an uncommon MRI sequence. The paper was aimed toward
retaining high-frequency signatures of EEG, rather than reducing
GA (50), and therefore, the findings of this paper will be more
relevant to those working in the field of high-frequency EEG.

The biggest issue with using AAS to remove GA is that
BCG and motion artifact affect the accurate calculation of AAS
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templates (47), with these inaccurate templates often causing
the residual artifact seen in recordings (48). In 2009, two
groups independently published methods showing that motion
information, obtained from fMRI head displacement parameters,
can be added to the calculation of AAS templates to improve GA
removal (12, 54). The addition of head displacement parameters
to AAS is particularly suited to cohorts such as children where
motion is unavoidable, and is particularly beneficial when head
displacement during the time of the scan exceeds 1 mm. The
addition of motion parameters to AAS showed an experimental
increase event-related potential (ERP) power of 10–40%, (12), as
well as a reduction in residual GA of 20–50% (54). Recently, it
has been suggested that information from hardware that directly
records head motion, rather than fMRI head motion parameters,
could also be used to improve the calculation of AAS templates
(55, 56). A discussion of direct motion hardware is given later
in section 4.2.3. Finally, a recent study capitalized on the fact
that the GA is stable, and using a model of the GA and the
principles of Faraday’s law enable us to determine which volumes
were affected by head motion, and thus adjust the AAS templates
accordingly (47).

4.1.2.2. Blind Source Separation Methods
BSS techniques are a group of data-driven methods that aim to
decompose a mixed signal (input signal) into its multiple original
sources (57). In EEG-fMRI, the noisy signal (EEG and artifact)
is the input, with output components ideally being separated into
components representing neuronal signal or sources of noise. BSS
typically uses statistical properties, such as Gaussianity, variance,
or correlation to identify these sources, even when no prior
information is given (58). As such, BSSmethods can be preferable
to template methods when information about the signal, such as
MR slice timing, is unknown.

Popular BSS methods employed to reduce GA in EEG-
fMRI studies include independent components analysis (ICA)
(59), principal components analysis (PCA) (60), canonical
correlation analysis (CCA) (61), and blind source extraction
(BSE) (62). Variations of these main methods for GA reduction
include the optimal basis set (OBS) method (63), which
uses template methods alongside PCA, independent vector
analysis (IVA) (64), which employs ICA over multiple EEG
channels, and single value decomposition (SVD) (65), a subset
of PCA.

Of the BSS methods described, ICA and OBS have been
independently compared for removal of GA from EEG-fMRI
data, with ICA showing good results in simulated data, but OBS
outperforming ICA in experimental data (66). A difficulty with
using BSS methods is the challenge of correctly choosing the
components that represent artifact and those which represent
neuronal activity, especially if no prior knowledge about the
signal is available. There is a chance that by rejecting too
many components, neuronal signal, as well as artifact, is
removed from the recording and important information is
lost (67).

4.1.2.3. Other Methods
4.1.2.3.1. Frequency Filtering. Frequency filtering uses algorithms
such as the Fourier transform (FT) to represent the EEG signal
in the frequency domain, where frequencies corresponding
to GA can be removed (26). However, given that some GA
occurs at frequencies corresponding to neural activity, frequency
filtering is not suitable for accurately reducing GA without
losing important neuronal information (26). Frequency filtering
using the FT has been suggested as an option for real-time
removal of GA, where computational speed of the algorithm
is more important than a potential loss of neuronal signal
(68). The Taylor–Fourier transform expands the FT by allowing
for fluctuations in harmonics during each temporal segment
of data, regardless of how small, (69), allowing it to capture
amplitude and phase variations that would not be possible with
the FT alone. For EEG-fMRI, the Taylor–Fourier transform
method creates a dynamic template at each individual TR,
and was shown to improve removal of residual artifact, but
was not validated against AAS or any other GA removal
technique (70).

4.1.2.3.2. Dictionary Learning. Another approach to GA
reduction, dictionary learning, is a computationally expensive
way of separating the GA and EEG, which has shown an ability
to remove GA from contaminated EEG, but has not been tested
against other commonly used GA removal methods, either in
the original paper or independently (71). Therefore, we cannot
recommend the dictionary learning model for removing GA
until further validation of the method is available.

4.1.2.4. Comparison of Methods
Few papers independently compare GA removal methods for
post-processing of EEG-fMRI data. In 2007, Grouiller et al.
(66) published a study that compared AAS, OBS, ICA, and FT
in both simulated and experimental EEG-fMRI data. Results
showed that while ICA performed well for simulated data under
30 Hz, AAS and OBS performed better in experimental data,
and FT had the poorest results. Other studies have compared
AAS and OBS only, especially in their commonly used software,
with AAS often being implemented from commercial software
Brain Vision Analyser, and OBS implemented by an open source
plug in through EEGLAB (63). Comparisons of AAS and OBS
suggest that OBS may be more adept at removing artifact (67,
72), although it has been suggested that the increase in artifact
removal seen from OBS is due to additional BCG removal
as well as GA removal, and which may have been removed
during other post-processing steps for removing BCG later
(72, 73). Overall, the methods of AAS and OBS appear similar
for cleaning of GA from EEG-fMRI, provided that adequate
synchronization of MR and EEG clocks occur. OBS may clean
additional BCG from the data during the GA cleaning step,
and therefore should conservative artifact removal be required,
AAS with synchronization may be preferred. Future studies
that independently compare some of the less known methods,
such as dictionary learning, and template methods (not AAS),

Frontiers in Neurology | www.frontiersin.org 7 March 2021 | Volume 12 | Article 622719

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bullock et al. Artifact Reduction in Simultaneous EEG-fMRI

would help to improve guidance for GA removal from EEG-
fMRI studies.

4.1.3. Recommendations for Removing Gradient

Artifact

Recommendations for Removing Gradient Artifact from

EEG-fMRI:

• EEG cable length (from cap to amplifier) as short as
possible.

• EEG cables (cap and cable bundle to amplifier) twisted to
reduce loop areas, minimizing magnetic field effects.

• EEG cable position central to the bore and patient cap.
• Patient nasian 4 cm from isocenter.
• Synchronization of EEG and MR clocks, preferably using

hardware rather than interpolation methods.
• Post-processing removal of GA with either AAS

(conservative, possible residual artifact) or OBS (rigorous,
possible loss of neuronal information).

• Additions to these algorithms (e.g., including head
motion parameters) may remove GA more accurately.

4.1.4. Contemporary Use of GA Removal Methods
The results of the review of contemporary EEG-fMRI studies
show that AAS (15) is still overwhelmingly the most widely
used technique for removing GA from EEG acquired during
fMRI studies (61%, Figure 4). The OBS method [48] is used
in only 10% of studies, while filtering, hardware and all other
methods make up only 7% of GA removal methods. Despite
there being a number of published papers outlining extensions
to the AAS method to make it more accurate (for a full list, see
the Supplementary Material), 6% of papers published between
2016 and 2019 report using an extended AAS method. In 17% of
papers, the GA removal method was either unclear (9%), or there
was no indication of GA removal at all (8%). GA removal method
was considered “unclear” if the paper mentioned removing GA
but did not state a specific method, or the paper commented
on the commercial software used to remove artifact but did not
outline method or steps taken within that software.

A surprising result from this review is that despite the many
reported benefits of synchronizing EEG and MR clocks for
later artifact removal (38, 39), less than 50% of the EEG-fMRI
papers included in this review reported using synchronization
hardware (for full data, see the Supplementary Material).
The low percentage of synchronization hardware use may be
partially due to the inadequate reporting of methods in the
literature. Regardless, the low number of papers reporting use of
synchronization is concerning given that effective GA removal
using template methods such as AAS (the most commonly used
method) relies heavily on adequate synchronization (38). We
recommend that synchronization hardware be used in all EEG-
fMRI studies so that GA can be accurately removed from EEG,
and also recommend that authors include synchronization use in
their methodology when publishing research.

FIGURE 4 | Gradient artifact removal in EEG-fMRI papers, published between

2016 and 2019 (n = 244). AAS, average artifact subtraction; OBS, optimal

basis set.

4.2. Ballistocardiogram Artifact
The BCG, pulse, or cardio-ballistic artifact, refers to
contamination of the EEG due to pulsatile motion associated
with cardiac output (65). BCG voltage has been measured at
around 50 µV, which is in the physiological range of typical
EEG signals of interest (19), and therefore is a considerable
confound that cannot easily be avoided. A technique known as
pulse triggered scanning (74) has been proposed as a way to
avoid the main source of BCG artifact, but is only practical for
task-based fMRI and requires specific technical expertise to set
up. Therefore, most studies opt to use standard fMRI sequences,
and rely on accurate recording of pulse and physiological signals
during EEG-fMRI to estimate and remove BCG artifact during
post-processing of EEG data.

4.2.1. Measurement of BCG
Monitoring physiological signals such as heart and breathing rate
can give a baseline estimate of BCG artifact and enable better
removal during post-processing of EEG. Common methods
to measure physiological signals include using an additional
electrode to measure ECG (19, 30), as well as the use of
photoplethysmography (PPG) or a respiratory band, which is
sometimes included with the MRI scanner setup (39). Choice
of measurement may depend on the post-processing methods
chosen, and the researcher needs to ensure that any additional
signals measured can be accurately synchronized with EEG and
MR timings.

4.2.2. Post-processing
From a post-processing perspective, BCG artifact removal is
arguably more difficult than GA removal because BCG varies
throughout the recording (46, 75, 76). BCG artifact differs across
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scalp electrodes, and may be contributed to by pulsation motion
of the scalp, electromagnetic effects of blood flow under the scalp
(Hall voltage), and movement related to respiration (17). BCG
can be removed with various post-processing methods including
template methods and BSS methods. Many of the methods
outlined for GA removal in the previous section (section 4.1.2)
have been adapted for BCG removal.

4.2.2.1. Template Methods
Template methods can be used to remove BCG artifact
from EEG-fMRI data in a similar way to GA methods
described in section 4.1.2. However, unlike for GA, where the
beginning of each template is defined by MR trigger events
at the beginning of each TR, the beginning of each BCG
template is usually determined based on the peaks seen during
simultaneous recording of physiological signals, such as ECG,
alongside EEG-fMRI.

BCG removal from EEG recorded inside the MR environment
was first proposed by Allen et al. (19) in 1998, using the AAS
template method with QRS complexes from ECG used to mark
the beginning of each BCG template. An issue with using AAS
method for removing BCG artifact is that it assumes that all
BCG will be of the same or similar shape, and only slowly vary
across the whole recording, whereas evidence from literature
has shown that BCG is highly variable across the recording and
has many different shapes (46, 77). Because of this problem,
adaptations of AAS for BCG removal have been proposed,
including using exponential weights for previous BCG instances
to account for the variability of BCG artifact (30), data warping
the AAS template to account for shape differences (77), as well as
additional steps such as wavelet decomposition to help remove
residual BCG artifact left by inaccurate BCG templates (78).
These methods, while shown to improve the correlation of EEG
from outside scanner with filtered inside scanner recordings
compared to AAS alone (77, 78), still do not account for all the
dynamic changes that occur in BCG between subsequent heart
beats. The dynamic time warping approach goes some way to
account for shape changes that occur between BCG instances,
but still uses previous iterations of BCG to determine the general
shape of the waveform (77).

One of the problems associated with AAS is that BCG artifact
can continue longer than a single heartbeat event, and therefore
might overlap with the next BCG event in the recording. In
fact, a study showed that when recorded at 3T, BCG artifact
that overlapped into the next BCG template accounted for
up to 30% of all recorded BCG (46). Several methods to
overcome this overlapping of BCG artifacts has been proposed:
the moving General Linear Model (mGLM) (79) and hierarchical
clustering (46). The mGLM method uses a Fourier series to
model each BCG template, and therefore does not cut off the
template at the beginning of the following heartbeat. The mGLM
model is similar to AAS in that the BCG template is updated
temporally and relies on information from previous templates in
its generation. In fact, if there is no overlapping of BCG, then
mGLM will act identically to AAS (79). Clustering algorithms,
such as hierarchical clustering (41, 46) and k-means clustering

(80), account for overlapping BCG components by dividing all
BCG instances from the entire recording into groups of similar
templates, which can then be removed. Hierarchical clustering
was tested on EEG-fMRI data from a sample of 29 healthy people
at 1.5 T, as well as 15 epilepsy patients and one healthy person at
3 T. Results showed that BCG template duration was longer for
higher magnetic field MRI (3 T) compared with 1.5 T recordings,
and that the BCG templates not only vary between subjects,
but within the recording, with clusters not ordered throughout
the recording (46). This implies that techniques such as AAS-
based methods and even mGLM may work sub-optimally, due
to relying on information from previous BCG for determining
the shape of the BCG template. By using the whole recording
and clustering all BCG instances, the hierarchical clustering
method is able to overcome the limitations of overlapping BCG
as well as the variability of BCG. When compared to AAS
and OBS, k-means clustering has showed slightly less BCG
attenuation, but better neuronal preservation, compared with
OBS—and vice versa compared with AAS—during an EEG-fMRI
visual task at 7 T (80). Therefore, it has been suggested that
clustering algorithmsmay be a good trade off for both attenuating
BCG and preserving neuronal activity, compared with AAS and
OBS (80).

Template methods for BCG removal typically require an
accurate recording of physiological signals, particularly QRS
complexes from ECG, that are used to generate BCG templates.
While the AAS method uses amplitude information to detect
the R peak of the QRS complex, other algorithms have been
described for detecting R peaks. These algorithms include a
modified Pan–Tompkins algorithm, which uses width and slope
measurements as well as amplitude to detect R peaks (81), and
k-Teager Energy Operator algorithm, which determines the total
energy of the signal in a particular frequency range to identify R
peaks (63, 78, 82, 83). Other methods for detecting R peaks have
also been suggested, such as using the amplitude of the difference
between the positive R peak and negative peak between S and T
waves to determine the location of the R peak, as well as using a
window of intervals based on expected heart rates to determine
approximate location of peaks (84). We did not find any direct
comparisons of themethods for R peak detection for BCG artifact
recorded during EEG-fMRI. The most commonly cited R peak
detector, k-Teager Energy Operator, was proposed for the specific
purpose of finding peaks for BCG that occurs during EEG-fMRI
(78), and therefore may be a better fit than older algorithms
such as Pan–Thompkins, which was initially developed with
the purpose of identifying peaks during ambulatory ECG (85).
A potential issue with using the k-Teager Energy Operator is
identifying the best value of k (the expected frequency of peaks).
The default value, which is calculated based on the sampling
rate of data, may identify too many false positive peaks (83),
so heuristic customization may be required. An incentive for
using k-Teager Energy Operator is that it can be used with other
physiological recordings of BCG, such as from electrooculogram
(EOG) electrodes attached to the side of the head, rather than
using an ECG electrode (78). In this way, motion aspects of BCG
may be better represented in EOG electrodes, without requiring
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direct motion recording from additional hardware, and without
lag between QRS complexes recorded in ECG leads and BCG
artifact seen on the head.

4.2.2.2. Blind Source Separation Methods
Blind source separation techniques, ICA, PCA, CCA, as well
as OBS, have also been applied to removing BCG artifact from
EEG-fMRI (for all methods, see Supplementary Material). BSS
techniques offer a data-driven way to remove BCG, regardless of
the variability of the BCG artifact, and without the necessity of
measuring physiological signals.

4.2.2.2.1. Principal Components Analysis. PCA was first
described alongside ICA, for BCG removal by (86). While, PCA
was shown to be capable of removing BCG and improving
the detection of epileptic spikes, it was concluded that ICA
performed better (86). Since then, research into blind source
separation methods for BCG removal in EEG-fMRI has focused
on ICA rather than PCA, unless some extension or modification
of the PCA algorithm was used.

One such algorithm that builds on PCA is the maximum noise
fraction, which uses similar processes to PCA, but differs in that
it derives two matrices—one for the signal (which is assumed
to have a degree of smoothness) and one for estimated noise
(which is assumed orthogonal to the signal). For the purpose
of separating BCG from neuronal electrical activity, the BCG is
assumed the temporally smoother “signal” and neuronal activity
the “noise.” The algorithm generates output components based
onmaximizing signal to noise ratio (SNR) between thesematrices
(87). In this way, the maximum noise fraction approach can be
considered superior to ICA or PCA, because the components
generated from the maximum noise fraction are automatically
sorted into BCG and likely neuronal activity components (87).
In a test of four subjects, with BCG removal compared between
ICA and maximum noise fraction, the maximum noise fraction
components chosen to represent BCG were more specific to
the actual BCG artifact in comparison with the independent
components from ICA (87).

Another method that builds on PCA is to precede it with
empirical mode decomposition (EMD) (88, 89). Empirical mode
decomposition first decomposes the signal into intrinsic mode
functions with various frequencies and amplitudes, and then
PCA is undertaken on each of the intrinsic mode functions (89).
The combination of EMD and PCA is more sensitive to temporal
variation that occurs in BCG, compared to application of PCA or
ICA alone (89). EMD-PCA has been tested for many different
EEG-fMRI paradigms, and has shown better removal of BCG
from ERP task EEG-fMRI compared with OBS and AAS (88–90).
In resting state EEG-fMRI, EMD-PCA removal of BCG improved
the detection of most parameters measured from the EEG and
was shown to be a useful technique when a reference signal such
as ECG is not available to estimate BCG onset (91).

4.2.2.2.2. Optimal Basis Set. The OBS method (63), section
4.1.2, uses PCA in conjunction with a template method to
remove artifact. Like AAS, OBS for BCG removal relies on
accurate generation of templates and can benefit from techniques

to precisely identify QRS complexes from physiological data.
Adaptations of OBS include real-time monitoring of EEG data
during fMRI (92) and correlation between PCA components
and ECG signal, which helps to reduce the issues with temporal
variation of BCG (93). The original OBS method used three
main principal components (PCs) to represent the BCG from a
recording. However, independent studies have shown conflicting
data, with some suggesting that altering PC number for each
individual dataset alters the outcome (73), whilst others show
that OBS is relatively stable regardless of PC number chosen
(76). A study using high-field 9.4 T MRI showed that OBS
was not successful in extracting ERPs, unless ICA, with specific
methods for choosing ICs, was used alongside it (94). Therefore,
the evidence suggests that for removing BCG artifact, OBS is
best used in conjunction with ICA, provided that IC selection is
carefully monitored.

4.2.2.2.3. Independent Components Analysis. The main
advantage of ICA, compared with template methods, is the
ability to combine spatial and temporal information about BCG,
without the need to record physiological signals, in a process
which is fully data driven (95). However, there is a risk one may
remove independent components (ICs), which relate to neuronal
activity rather than artifact. Common methods for sorting BCG
ICs include correlation (95, 96) variance (97), auto-correlation,
frequency sorting, or peak to peak measures, all of which rely on
the ECG channel as a reference [for a full overview, see review
in (76)]. More recent methods of sorting BCG ICs include using
Mutual Information algorithm (65, 98), clustering the results of
multiple ICA runs (99), using a Magnitude Squared Coherence
Function (100), and finally using a projection of QRS complexes
from ECG into the IC space, followed by k-means clustering of
all ICs (101). In addition, a variation of ICA, constrained ICA
(cICA), may improve on ICA alone by using a prior estimation of
BCG artifact to help derive ICs which are likely to closely match
the BCG artifact (102–105). A comparison study of common IC
sorting methods showed that peak to peak sorting of BCG ICs
outperformed sorting by variance measures (76). However, this
is in contrast to a second comparison study that showed that
depending on the weight given to artifact removal or neuronal
activity retention, the effectiveness of each of the IC sorting
method differed (101). In this second study, sorting ICs by
frequency showed the best overall reduction of BCG regardless
of neuronal activity loss, while sorting ICs using auto-correlation
showed the best outcomes for preserving neuronal activity and
removing BCG, tested on 7 T data (101). When taken together,
these results suggest that sorting of ICs is difficult, and may
be confounded by scanner setup, magnetic field, as well as the
study requirements that prioritize either full BCG removal, or
neuronal activity preservation.

4.2.2.2.4. Canonical Correlation Analysis. CCA is a technique
that takes two sets of basis vectors and computes linear sets of
vectors from each set (106). CCA was adapted for removing
BCG from EEG-fMRI by temporally segmenting the data
based on BCG artifact timing, followed by employing CCA
on consecutive epochs of BCG instances, to determine the
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underlying sources responsible for common signal between the
segmented epochs (106). It was argued that CCA would be
superior to ICA or PCA, as it is able to take into account temporal
(periodicity) and spatial (topography) aspects of the BCG due to
taking consecutive BCG instances into account (106). Originally
requiring manual identification of BCG artifacts on EEG (106),
later implementations of CCA used ECG and R peak detection
for determining BCG onset (107). CCA performance has been
observed to be better than AAS for some subjects, whereas for
others the performance can be quite similar to AAS (108). In
ERP studies, CCA appears to perform similarly to OBS or AAS
when trial number is high, and better when trial number is
relatively low (107). Results of these studies suggest that CCA
may be a useful post-processing technique for studies where BCG
variability within a subject is high, and recording time of the
EEG-fMRI study is short.

4.2.2.3. Other Methods
Other methods for BCG removal include techniques that filter
BCG based on some of its characteristics such as its spatial
(109), spectral (110, 111), or morphological (112, 113) features.
In addition, several papers outline the application of advanced
filters such as Kalman filtering (114, 115), for BCG removal
during EEG-fMRI. Finally, Abolghasemi and Ferdowsi (116)
used dictionary learning for removal of BCG from EEG data,
where a sparse dictionary is able to model the BCG data from
EEG-fMRI data.

Removal of BCG by its spatial characteristics (109) was shown
to be adequate compared with AAS, but only improved on AAS
in the instance when BCG effects were temporally and spatially
locked with EEG events of interest. Source Extraction (CSE),
based on the spectral components of BCG, has been shown to
be able to remove BCG from signals and result in good SNR and
visual evoked potential (VEP) recovery, in comparison to AAS
and OBS (110). Harmonic regression (111), another technique
which is based on removing the spectral features of BCG, has
shown similar or better results compared with AAS and OBS
in experimental data. Morphological BCG removal (112, 113),
which uses a Discrete Hermite Transform to model BCG shape,
was shown to be superior to AAS and comparable to ICA, in
the original paper in which it is described. Kalman filtering has
been shown to be comparable to AAS, and may be preferred for
real-time monitoring (114), but is unlikely to supersede AAS for
post-processing, due to its computational complexity. Dictionary
learning is able to model BCG well, but experimental data show
that BCG removal was not significantly improved compared to
the more common methods of AAS and OBS (116). Of all other
methods for BCG removal, spectral and morphological methods
appear to carry the most promise; however, all these approaches
have not been validated independently outside of the group that
first described them, making it difficult to recommend them
given the current evidence.

4.2.2.4. Comparisons of Post-processing Methods
The most commonly compared processes are AAS, OBS, and
ICA, and to a lesser extent, clustering and CCA methods.
Individual comparisons of OBS and AAS have shown conflicting

results, with some favoring AAS (66, 107, 117), and others
favoring OBS (28, 73), although the consensus is that it may
depend on the research question or EEG correlate of interest, as
to which method will provide the best reduction in BCG artifact,
without losing possible EEG information of interest (118). A
recent 7 T study showed that a k-means clustering algorithm
may be a good trade-off between neuronal preservation and BCG
attenuation compared with AAS and OBS (80), but no other
studies have independently compared clustering algorithms.
Considering that AAS is OBS with a PC number of 1, altering
the number of PCs chosen as BCG artifact has been a source of
investigation, with one study showing that OBS with a default
PC number of 3 provides better BCG removal compared with
AAS (76), while a later study showed no significant differences
between AAS and OBS (PC = 3), unless the PC number chosen
was optimized for each individual participant, case in which OBS
outperformed AAS (73). Research has shown that for task-based
EEG-fMRI studies involving high numbers of trials, use of AAS,
OBS, or CCA is adequate for removing BCG (107), while for
studies looking at fewer trials, or when EEG correlates are small
and difficult to detect, BSS methods such as OBS (28) or CCA
(107) may improve removal of BCG, and thus, detection of the
underlying EEG correlate. Most studies show that ICA is best
used after either AAS or OBS, because the difficulty of correctly
choosing the number of components and ensuring stability of
the algorithm means that the outcome might otherwise be more
likely to involve erroneous results for little gain in BCG removal
(76, 94, 119). Other methods, such as spatial, morphological,
wavelet, dictionary, and spectral methods for reducing BCG
have not been independently compared with OBS, AAS, or ICA
outside of the original papers that introduced them, making it
impossible to judge the quality and reliability of these methods.

4.2.3. Direct Artifact Recording
There is evidence that the biggest contributor to BCG is pulse
driven head motion, which obviously cannot be avoided during
EEG-fMRI in human subjects (17, 75, 97). Options for measuring
this physiological head motion artifact include methods to
directly measure artifact at the head, such as altering the EEG cap,
or using additional hardware connected to the cap. The benefits
of these systems is that they are able to directly record any artifact
occurring at the head, including small and large head motion, as
well asmonitoring environmental artifact such as vibration (120).
However, higher costs and technical skill is required to ensure
that any new andmodified hardware is used safely and accurately.

Alterations to the EEG cap can include isolating some
electrodes from the scalp using plastic (121–123), artificially
joining electrodes using a gel bridge (124), or altering the position
of some electrodes and bundling cables so that neuronal signals
and motion can be adequately distinguished (125). The above
options, however, result in sacrificing some electrodes for motion
detection purposes, and may not be suitable for all EEG-fMRI
setups, especially where electrode number is small or electrode
number is important for the study outcome. Another method
is to increase the number of EEG leads to provide an over-
complete set of measurements that can be subsequently analyzed
to distinguish between voltages arising from neuronal activity

Frontiers in Neurology | www.frontiersin.org 11 March 2021 | Volume 12 | Article 622719

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bullock et al. Artifact Reduction in Simultaneous EEG-fMRI

and those arising from motion of the sensors in a magnetic field
(126). Further methods for alteration of the EEG cap include
the creation of an entirely new electrode reference layer, isolated
from scalp potentials, and located either underneath the EEG cap
(127), on top of the EEG cap (128), or between EEG electrodes
(129). For researchers not wanting to alter the EEG cap itself,
additional sensors, such as extra electrodes (130), motion sensors
(131), and carbon wire loops (55, 132–134), can be used to
directly measure artifact from any sources including motion,
without requiring alterations to the EEG cap itself. Signals
obtained from direct artifact sensors can be successfully removed
from the EEG with the aid of, for example, a multi-channel least
squares fitting algorithm (55).

A study comparing the reference layer cap, wire loops, and
AAS showed that while all methods adequately reduced BCG,
using additional hardware (loops or reference cap) to filter
data acquired during periods of deliberate motion, led to lower
RMS values compared to AAS (120). This study suggested that
the reference layer cap may be preferable to wire loops, but
this was not shown definitively, as data obtained from the two
methods were measured at different time points (120). While
direct recording of artifact is preferable for all EEG-fMRI studies,
implementation of this will depend on the research group’s
preferences and technical skill level.

4.2.4. Recommendations for Removing

Ballistocardiogram Artifact

Recommendations for Reducing Ballistocardiogram

Artifact in EEG-fMRI:

• Additional hardware, such as carbon wire loops, additional
sensors, or a reference layer cap, to directly measure BCG
and motion:

• Adaptive filtering to remove BCG based on direct
recordings.

• Where additional hardware is not available, use of AAS,
OBS or CCA or clustering methods with:

• Recording of physiological signals (ECG, PPG, or
respiration).

• Precise recording and detection of QRS complexes using
k Teager Energy Operator or Pan-Tompkins algorithm.

• ICA post-processing of data to remove residual BCG if
using AAS or OBS.

4.2.5. Contemporary Use of BCG Removal Methods
The main methods used to remove BCG artifact from EEG-fMRI
studies between 2016 and 2019 consisted of AAS, OBS, ICA and
PCA, as well as hardware methods such as direct recording of
BCG by wire loops or modified EEG cap (Figure 5). Like GA
removal, the most common method of reducing BCG was AAS,
with around one-third of studies using AAS alone for removing
BCG, compared to almost two-thirds using AAS for removing
GA. Use of OBS was the second most common BCG removal
technique, with 14% of studies, a slightly higher percentage than

FIGURE 5 | Ballistocardiogram (BCG) artifact removal method in literature

using EEG-fMRI published between 2016 and 2019 (n = 244). AAS, average

artifact subtraction; OBS, optimal basis set; ICA, independent components

analysis; PCA, principle components analysis.

for GA removal (10%). ICA rivaled OBS as a popular form of
BCG removal at 13%, with a further 2% of studies using either
ICA and OBS, or ICA and another technique. Hardware (4%),
PCA (5%), and other methods (4%) were less frequently adopted.
BCG removal method was either unclear, or not stated, in 18%
of studies.

The biggest difference seen between the methods for GA and
BCG removal is the large uptake of BSS methods, particularly
ICA and to a lesser extent PCA, for BCG removal (Figure 5).
When ICA was used in conjunction with another method, total
reported use of ICA was over 15%. Our guidelines recommend
use of ICA only in conjunction with, and after, another method,
due to the likelihood of either under- or over-removal of BCG
(76, 94, 119).

BCG artifact is most commonly measured by separate ECG
channel, with around two-thirds of studies included in the review
reporting collection of ECG data (see Supplementary Material).
In comparison, only 11% of studies reported using physiological
monitoring such as a respiratory band or pulse. Nine percent of
studies used external hardware, such as modified EEG caps, wire
loops, and/or external sensors such as cameras, for measuring
artifact occurring at the head (see Supplementary Material),
yet of those, only 5% of studies reported using hardware for
removing BCG (Figure 5). These results show that easy to
implement techniques such as measuring ECG are more widely
adopted than unique measures such as physiological monitoring
and external hardware, despite the benefits of using external
hardware. The technical expertise, money, time or skill in
implementing additional artifact reduction hardware may be
beyond the capacity of many researchers using EEG-fMRI.

Incorrectly removing artifact can lead to erroneous reporting
of EEG results, incorrect mark-up of EEG events, and inaccurate
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EEG-fMRI outcomes (135). Eighteen percent of studies are
unclear or do not state the BCG reduction method used.
Considering the importance of reproducibility in science and the
need to be able to replicate studies, it is important that artifact
reduction methods are implemented and fully described in the
Methods section.

4.3. Motion Artifact
Gross head motion is that which involves potentially large,
sudden head movements as well as slow changes to head
position. Reducing gross head motion can be achieved by using
restraints such as foam padding or a vacuum cushion around
the subject’s head (86). Foam padding or vacuum cushions are
readily available with most MR systems and should be used
when available.

In subject populations where gross head motion is expected
(such as children), the use of additional monitors for motion
could be useful. During post-processing, these measurements of
head motion can be used to filter out motion artifact or exclude
periods of data if motion is considerable. Motion monitoring
can be in the form of an Optical Motion Tracking system for
whole head movement (45, 136) or indirect measurement of
motion using an MR compatible camera (137). In addition,
techniques used to directly measure BCG-related artifact (as
outlined in section 4.2.3) can also be used to filter out gross
head motion. A recent study (138) compared an Optical Motion
Tracking system (MPT) (139) and two direct artifact recording
methods: a reference layer cap (129) and isolation of electrodes
from the scalp (123). The direct artifact recording measures
both outperformed the MPT in reducing artifact during different
tasks and different types of motion (138). Therefore, hardware
to directly record artifact may be a good investment, as it is
able to reduce both BCG and gross head motion artifact with
greater accuracy than many data-driven methods (132, 136), and
it may provide more accurate artifact estimation compared with
motion detection hardware such as Optical Motion Tracking
systems (138).

For studies where the subject has their eyes open, recording
the EOG may be helpful for measuring eye movement (137).
In the literature search conducted, no papers specifically dealt
with removal techniques for EOG artifact from EEG-fMRI
datasets. There are, however, many papers that describe removal
techniques for EOG artifact from datasets recorded outside the
MRI environment [for a recent review, see (138)]. These methods
are likely also suitable for within-MRI recording, provided that
GA and BCG artifact are adequately removed in previous steps.
In theMRI scanner, the electrodes positioned near the orbits may
exhibit additional localized motion artifact due to eye movement,
as well as the concomitant EOG signal, potentially aiding in
detection of such events.

4.3.1. Recommendations for Reducing Motion

Artifact

Recommendations for Reducing Motion Artifact in EEG-

fMRI:

• Use of head restraints such as foam pads or vacuum
cushion for all studies

• Additional hardware to measure motion should be
considered:

• In eyes open studies, use of EOG electrode to measure
eye blink movement.

• In all studies, direct artifact measurements, such as EEG
cap alterations or additional sensors such as carbon fiber
loops (see section 4.2.3), are recommended as they can
deal with head motion, BCG, and residual GA. Indirect
methods such as MR-compatible camera recordings or
Optical Motion Tracking may also be useful for dealing
with motion-related artifact.

4.3.2. Contemporary Use of Motion Artifact Removal

Methods
Almost 70% of contemporary studies mentioned removal of
motion, or residual artifact that might be still present in
EEG, even after GA and BCG removal (for all data, see
Supplementary Material). Residual artifact, including motion,
was dealt with by using some form of ICA, in around one-third
of studies, while other data-driven post-processing methods for
reducing motion were used in 15 % of studies. For reducing
motion artifact exclusively, the most reported method, as seen in
23% of studies, was using head restraints such as foam pillows or
a vacuum cushion. Also popular was the technique of removing
artifact from studies by visual inspection of motion-related time
points and excluding data during post-processing, which was
reported in 16% of studies. The most common form of additional
hardware reported was MR compatible cameras or video systems
(4%), followed by motion loops and modified EEG caps (5%
combined). A small percentage of studies used an external
calibration of eye blinks to reduce artifact from eye movement
in their studies. It is also worth noting that 5 studies, or 2%,
reported that the subjects were sedated during the EEG-fMRI
study, and therefore did not record motion. However, sedation
does not remove BCG artifact or potential environmental sources
of motion (see section 4.4), so we would recommend direct
recording of headmotion artifact even when subjects are sedated.

Compared with our recommendations, less than a quarter of
studies have reported reducing motion through simple measures
such as head restraints, for example, foam padding or vacuum
cushions. Additionally, the uptake of hardware such as motion
loops or modified EEG caps for recording motion are very
limited, at only 5% of all studies. While a camera or video
monitoring system (4% of all studies) can be good for indirectly
measuring motion and therefore excluding periods of high
motion, direct motion monitoring systems allow the user to
directly record, and remove artifact directly occurring at the
head. A greater uptake of direct recording systems in the future
could allow an improvement in EEG-fMRI studies through
reduction of motion artifact.
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TABLE 1 | Examples of commonly cited toolboxes for removing artifact from EEG recorded during fMRI.

Toolbox Manufacturer Cost Web link Notes

Brain Vision Analyzer Brain Products Paid software, requires

license

https://www.brainproducts.

com/analyzer2_release.php

Standalone software for processing EEG. Typically purchased

together with BrainProducts hardware.

Netstation Magstim EGI Paid software, requires

license

https://www.egi.com/

research-division/net-

station-eeg-software

Standalone software for processing EEG. Typically purchased

together with Magstim EGI hardware.

Curry Compumedics Neuroscan Paid Software, requires

license

https://www.compumedics.

com.au/en/products/curry/

Standalone software for processing EEG. Typically purchased

together with Compumedics hardware.

EEGLAB Swartz Center for

Computational

Neuroscience, University of

California

Free and open source,

requires Matlab (see

below)

https://sccn.ucsd.edu/

eeglab

Free toolbox for MATLAB, contains many useful

EEG filtering tools, as well as additional plug

ins specific to filtering fMRI artifact from EEG.

Toolboxes include:

• FMRIB plug in (http://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/)

• BERGEN (may no longer be supported, still listed on the

EEGLAB plug-in site).

MATLAB Mathworks Paid software, requires

license

https://au.mathworks.com/

products/matlab.html

General analysis software environment. User can write their own

code for filtering the EEG, or combine custom code with the

output from EEGLAB toolbox (see above).

4.4. Environmental Artifact
While the noise from gradient, cardio-ballistic, and subject
motion are the main sources of artifact in EEG-fMRI, noise
from the MRI environment such as power line noise, lights,
and ventilation are also a problem that few studies have
addressed (18). Of all the possible environmental sources of
noise, the ventilation system and helium cooling pump have
been shown produce the most noise (33), which is thought
to be mainly due to small vibrations that induce motion, and

therefore voltage, in EEG electrodes. Environmental artifact
can be avoided by turning off electrical equipment which is

unnecessary during scanning, if possible and safe to do so

(18). Artifacts can also be reduced by altering the setup of
some equipment, specifically by reducing the vibration artifact

on EEG cabling. EEG leads and amplifiers should be isolated

from the scanner bore in order to reduce direct transfer of
vibration, and methods such as using sand or rice bags (86,

140), or a cantilever beam (141), will improve stability and

restrict the motion of the EEG cables connecting the EEG cap
and amplifiers.

For setups where the helium pump and ventilation cannot

be turned off for the duration of the study (e.g., due to
safety concerns or the length of the scan), and environmental

artifact is shown to negatively affect the quality of the EEG,
the use of direct artifact recording, or post-processing methods

for removing environmental artifact should be considered.

Template measures such as AAS have been shown to reduce

ventilation and helium cooling pump noise compared with
no intervention (142), while another study has shown that

a BSS algorithm, recursive, Segmented PCA (rsPCA), is
able to reduce MRI helium pump noise (14). Alternatively,
direct artifact recording measures, such as carbon wire loops
(section 4.2.3), have also been shown to adequately remove
helium pump artifacts, with filtering using carbon wire loops
showing less residual helium pump artifact in comparison
to AAS, OBS, or OBS-ICA artifact reduction pipelines (132).

While altering the setup of the EEG-fMRI study to reduce
vibrational artifact is relatively easy to implement, the choice
to include additional hardware or post-processing steps for
reducing MR helium pump and ventilation noise will depend
on the residual artifact seen in the individual scanner setup,
and whether it is likely to adversely affect the outcome of
the study.

4.4.1. Recommendations for Reducing Environmental

Artifact

Recommendations for Reducing Environmental Artifact in

EEG-fMRI:

• EEG leads and amplifiers should be secured along the
center of the bore using one of:

• Sand or rice bags, or
• Cantilever beam (141)

• If safe to do so, MR helium cooling pump and scanner
ventilation could be turned off for the duration of the scan.

• If environmental artifact is expected to interfere with
the EEG of interest, using carbon wire loops (55, 132)
will directly record this artifact, enabling its removal via
adaptive filtering.

• If carbon wire loops are not available, using AAS or
PCA methods during post-processing may help reduce
residual environmental artifact.

4.4.2. Contemporary Use of Environmental Artifact

Reduction Methods
In contemporary literature of EEG-fMRI studies, consideration
of environmental artifact was reported in only 22% of studies
(see Supplementary Material), with the few studies reporting
mitigation of environmental artifact using methods to reduce
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FIGURE 6 | Use of software toolboxes for filtering artifact from EEG collected

during fMRI, papers published 2016–2019 (n = 244).

EEG cable vibrations (7 %) and either: optimizing amplifier
placement, or turning off lights during the experiment (11%).
Despite literature suggesting that the helium cooling pump and
scanner ventilation systemmay affect EEG-fMRI recordings (18),
only around 5% of studies report taking steps to turn off,measure,
or reduce, the effects of these artifacts, respectively. Only one
study in the cohort reported use of a post-processingmethod (13)
for removing helium pump artifact. Although environmental
artifact may be reduced during other post-processing methods
for removal of GA and BCG, and environmental artifact may not
interfere with the EEG correlate of interest in the study, there
appears to be a lack of awareness of this potential artifact within
the wider research community.

4.5. Artifact Removal Toolboxes:
Contemporary Usage
Commercial EEG-fMRI systems may influence the choice of
artifact reduction method used in any particular study. An
overview of common toolboxes, and where to find them, is
presented inTable 1. Brain VisionAnalyser, fromBrain Products,
was the most widely used single toolbox for removal of artifact
in EEG-informed fMRI (Figure 6), with over half of studies
published using the software for at least part of the filtering.
EEGLAB, a toolbox requiring MATLAB, was the second most
used software, with over 20% of all studies reporting its use in
some part of their processing. Given that Brain Vision Analyzer
as standard employs AAS for gradient and BCG correction, and
that OBS is available as a plug in for EEGLAB (FMRIB plug
in), the results of toolbox use show a similarity between the
use of methods and their software. Given that most researchers
are time poor and may not have the technical expertise to test
different artifact reduction methods, the most commonly used
methods are the ones that are readily available and easy to access.
Therefore, it is crucial that developers of new EEG-fMRI artifact

removal algorithms consider the functionality and ease of use for
the end users of any new software or algorithms.

4.6. Overall Recommendations for Artifact
Reduction in EEG-fMRI
Figure 7 provides an overview of the recommendations for
EEG-fMRI artifact removal based on the current literature
review. These recommendations include steps that all EEG-
fMRI users should take to avoid artifacts in the recording,
as well as 3–4 questions that users can ask to make the
best possible decisions for removing artifact during post-
processing, depending on the study design and hardware
available. These recommendations represent the combination
of all recommendations from previous sections of this review
(gradient, BCG, motion, and environmental artifact).

A limitation of the current study is that there is no distinction
between the so-called “online” and “offline” artifact reduction
techniques. Online artifact reduction refers to the filtering of
artifact from EEG recording during fMRI in as close to real time
as possible, whereas offline artifact removal undertaken at the
conclusion of the data collection. For this review, it is assumed
that the EEG-fMRI study is designed in such a way that the
researcher has ample time to filter and interpret EEG (offline
artifact removal), gaining results from the study well after the
subject has left the room. However, for certain study designs,
such as neurofeedback studies (143), clean EEG is required with
as little lag time as possible, so that data are available during the
study, and therefore, online reduction is required. Several studies
have adapted common artifact reduction methods for real-time
use, including AAS (144, 145), OBS (92), and FT (68). Online
artifact reduction prioritizes computational efficiency and speed
over accuracy of the artifact reduction on EEG, and therefore,
some recommendations given in this review will not be relevant
for studies of this design.

Another aspect of the current review not yet discussed is that
the EEG measure of interest varies between different studies.
In our survey of contemporary EEG-fMRI literature, the most
popular EEG measurements were epilepsy-related EEG events,
event-related potentials, and EEG power bands (see section 6.5
in Supplementary Material for more detailed information). This
creates a question as to whether there is a need for high level
artifact removal in all studies, or whether basic removal of
artifacts may be enough to see the EEGmeasure of interest. There
is, however, always a risk that using sub-optimal artifact removal
will result in false positive EEG features being reported. Evidence
from literature shows, for example, that marking motion in EEG
as though it is an effect of interest may lead to plausible looking
networks in the subsequent fMRI analysis (135). We recommend
that EEG-fMRI users should employ the best possible EEG setup
and artifact removal possible to reduce the chances of false
positive EEG features being reported. While not all scientists will
have access to the hardware components mentioned in Figure 7,
we have endeavored to include alternative methods, so that
all users of EEG-fMRI can have the best chance of producing
accurate and reproducible results.
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FIGURE 7 | Recommendations for Removal of artifact in EEG-fMRI studies. Top: Recommendations for all EEG-fMRI setups; Bottom: Recommendations based on

hardware available and study design.

5. CONCLUSIONS

There are many published artifact removal methods for EEG-

fMRI, however, uptake of newer methods in contemporary
studies is limited. In addition, many novel methods have been
proposed that have not been adequately compared with the

currently available methods on independent datasets. Our review
provides a comprehensive overview of all artifact reduction
methods available since 1998 (see Supplementary Material),
and there is an opportunity for future studies to compare

these different methods in one comprehensive data set to
independently validate the best pipeline for artifact reduction in
EEG-fMRI.

Best practice EEG-fMRI artifact reduction relies largely on
using additional hardware to synchronize clocks, and to directly
record artifact at the head, including motion, vibration, and eye
blinks. Without monitoring from hardware during EEG-fMRI
studies, the researcher is making assumptions as to which aspects
of the recording represent artifact, and which represent plausible
neuronal activity. However, our review of the contemporary
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literature showed that reported use of synchronization hardware
cited in less than 50% of studies, and reported use of hardware to
directly measure artifact was even less frequently cited (less than
10% of studies, see Supplementary Material). Actual use may be
higher in practice, but cannot be included in these statistics due
to lack of reporting in the literature. Software used for filtering
EEG showed a preference for BrainVisionAnalyser and EEGLAB,
and it is likely that the ease of use of these packages played a
role in their wide use. Therefore, it can be hypothesized that
the lack of accessibility of direct artifact recording measures is
hampering their use in contemporary studies, despite literature
showing that their use may result in more accurate EEG-fMRI
studies (120). Compared with synchronization hardware, which
is included in some commercial EEG-fMRI setups, direct artifact
recording has not been available commercially, leaving it up to
researchers to bear the cost should they wish to directly record
artifact using hardware.

Overall, there appears to be a basic understanding in
contemporary EEG-fMRI studies about the importance of
reducing artifact, especially for gradient and BCG artifacts.
However, there was almost 15% of contemporary studies that
did not adequately report artifact reduction methods for GA
and BCG, and very few studies reported methods to avoid or
reduce motion and environmental artifacts at all. A review such
as this, and indeed reproducible science, is limited by the extent
to which researchers accurately and completely report their
methods. We would encourage authors publishing EEG-fMRI
results to fully report all measures taken to reduce artifact to help
make their research as reproducible as possible. We recommend
authors consider the recommendations from the Organization
for Human Brain Mapping’s Committee on Best Practices in
Data Analysis and Sharing (COBIDAS) for reproducible EEG
and MEG research (146). If a journal word-count limit makes
this difficult in a main manuscript, then authors should consider
including detailed methods in Supplementary Information.

This review provides recommendations for artifact reduction
in EEG-fMRI in an easy to understand way for all users

of EEG-fMRI (see Figure 7). We suggest that wider use of

hardware methods such as clock synchronization and direct
artifact recording is the easiest way to improve data accuracy
in EEG-fMRI studies, but seeing adoption of hardware methods
requires input from all EEG-fMRI stakeholders—from methods
developers, vendors, and end users.
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