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Abstract. Independent Component Analysis (ICA) has been widely used for
separating artifacts from Electroencephalographic (EEG) signals. Still, a few chal-
lenging problems remain.

First, in real-time applications, visual inspection of components should be re-
placed with an automatic identification method or a heuristic for artifacts detec-
tion. Second, as we will explain more in the paper, we expect to have a clear
order relationship between an electrode and a corresponding component. Third,
we need to minimize the EEG information loss during artifact removal while also
minimizing the residue of the artifact in the cleaned signal.

In this paper, we propose a decomposition of the independent components. This
decomposition separates each component into two vectors, one - we call local
vector - maintains maximum information from the unique EEG information en-
coded by an electrode, while the other - we call shared vector - absorbs over-
lapping artifact information. We present an explicit Pareto-based multi-objective
optimization formulation that trade-off similarity between the local vector and the
original vector on the one hand, and the uncorrelatedness of all local vectors from
all components on the other hand. We demonstrate that the proposed method can
automatically isolate artifacts from an EEG signal while preserving maximum
EEG information.

Key words: Electroencephalography, Independent Component Analysis, multi-
objective optimization

1 Introduction

Independent Component Analysis (ICA) is a common technique for the removal of
artifact. A study in [1] shows that eye movement, eye blinking, cardiac, myographic,
and respiratory artifacts can be isolated from Magnetoencephalographic (MEG) using
ICA.

Previous work on the removal of eye blinks and eye movements activities relied
on the substraction of the electrooculargraph (EOG) signal from the signals obtained
through EEG electrodes to correct for ocular artifacts. ICA has also been demonstrated
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to remove this type of artifact from EEG signals [2]. In both cases, however, certain
level of EEG activities will still be removed; the quantification of how much of these
activities have been removed and in which band remains unclear.

The wide adoption of ICA stems from the theoretical basis of the technique. How-
ever, a number of challenges remains. First, many brain computer interface (BCI) appli-
cations, such as augmented cognition applications [3, 4], require real-time, or at least
automatic, correction of the EEG signal. Most implementations of ICA are demon-
strated on off-line correction of the signal and those used ICA for real-time applications
relied on some heuristics that have not been fully validated.

A second problem is that there is no clear order on the components. In other words,
we may find that one component is represented using equal weights in the mixing equa-
tion. The distribution of the mixed signal across components make sense in classical
signal processing applications such as the famous cocktail party problem, which was
the original motivation for ICA. In EEG recording, while we do not aim in this paper to
localize the signal, it is biologically more plausible to expect more local information is
captured through each electrode than non-local information.

A third problem is that there is a trade-off level between the removal of artifacts and
removal of EEG information from the signal. ICA does not guarantee that all artifacts
are captured by one component. Instead, some components captures most of the arti-
facts, but in addition, they also capture real EEG information. The more components
we remove to correct the signal, the more EEG information we also remove. This level
of trade-off is very difficult to evaluate.

In [5], a cut-off threshold for ICA is proposed as a preprocessing step for artifact
components identification. This solves the first problem mentioned above. This paper
addresses the two remaining challenges.

In this paper, we propose a decomposition of the independent components that the-
oretically guarantees that the first part of the decomposition captures as much local
information as possible, while the second part captures joint information. Through this
decomposition, we demonstrate that we are able to generate a clean signal. We rely on
a multi-objective optimization approach to model this decomposition and present two
metrics to quantify the amount of EEG information lost during the cleaning process.
We use the pareto-based Multi-objective evolutionary optimization algorithm (NSGA-
II) [6] to solve the problem.

In the remaining of this paper, we first provide background information on ICA
Section 2, followed by the proposed method in Section 3, the methodology in Section 4,
results in Section 5, and conclusions in Section 6.

2 Independent Component Analysis (ICA)

ICA, a blind source separation technique, has been widely used to separate signals from
multiple sources. An example of a source separation problem is when multiple people
talk in a cocktail party; one may pay attention to voices in one discussion while ignoring
voices from other discussions. ICA can be used in such a party to separate the mixed
discussions and background noise by using multiple microphones. Similarly, in BCI
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research, multiple electrodes measure signals from multiple brain locations. ICA would
aim in this situation to separate the sources of the EEG signals.

The blind source separation problem is classically formulated as X = AS, Where
X is the measured mixed signals, A is the mixing matrix, and S is the Sources. Math-
ematically, ICA performs linear transformation on mixed signals to components such
that the components are statistically independent and distributed non-gaussian . Once
we have A and the estimated sources S, we can find W such that S = W X . The cleaner
signals can be reconstructed from only the useful components. X =w-18.

The fast ICA algorithm (FastICA) [7] implements the fast fixed-point algorithm for
Independent Component Analysis. Two preprocessing steps of centering and whiten-
ing are implemented in the fastiICA matlab package. FastICA provides a mathematical
proof for the convergence of the algorithm to discover independent sources. However,
it does not address any of the three problems we discussed in the introduction.

3 Proposed Method

In EEG analysis, each electrode senses local information as well as overlapping in-
formation from the rest of the scalp. If we use ICA, we will most likely obtain one
component capturing the background noise. We can simply eliminate this component
and reconstruct the signals. Each reconstructed signal will have the local signal with-
out noise. However, it won’t separate the local information from the other signals. The
reason for this is simple, after removing the components with the noise, we are left
with three components only. When we project these three components back to the four
electrodes, it is not mathematically possible that we isolate the local signal of each
electrode.

Now, let us assume we can isolate the local signal. This signal will be different
from the local signal captured by each electrode in two aspects. First, it will exclude the
background noise. Second, it will exclude the overlapping information from the other
electrodes.

Let us recall the mixing equation X = W—1S. Remember that we used X to denote
the estimated mixed signal after cleaning. Here, we use X since we do not delete any
component from S, therefore, it is guaranteed that we get back the original signal. Let
us now rewrite this mixing equation as follows:

X=w1l8=w (s +5%) =wls y w152
Here, we decompose the independent components into two component matrices.
Let us define C as the covariance matrix between X and S?!; therefore,

covar (X, S*)
o(X) x a(S1)

In this decomposition, our aim is to make the matrix C' a diagonal matrix and max-
imize the values on the main diagonal. This can be formulated as

Lh=xY0

C:
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At the same time, we would like to minimize the correlation between each variables
in X and all components S! except the one on the main diagonal corresponding to that
variable.

1
V=22
i g

When values on the main diagonal are non-zero and all other off diagonal values
are zeros, we have a bijective relation between the original signal and each component
in St In fact, since we maximize the correlations on the main diagonal, we guarantee
that the matrix S' captures as maximum uncorrelated (notice that S! is a diagonal
matrix with non-zero elements on the main diagonal; therefore, it has a complete rank)
information as possible from the original data.

For convenience reasons, we can now formulate our multi objective optimization
problem as

min[f; fo]
fi= %Z(l - Cyi)?

1
o=t 22
i g

In this paper, we use the pareto-based multi-objective evolutionary optimization
algorithm (NSGA-II) [6]. However, the dimension of the problem is very large. Imagine
a 10-20 standard EEG cap with 19 sensors with a sampling frequency 128Hz and an
epoch of 2 seconds, the genetic algorithm will attempt to optimize 19 vectors, each of
them is of length 256; that is, 4864 variables. This is a very large scale optimization
problem.

To overcome the dimensionality of the problem, we do the optimization in the fre-
quency domain instead of the time domain. By using a Fast Fourier Transform (FFT)
on the principal components, we at least half the dimensionality of the problem if we
use a resolution of 1Hz and work with the magnitude of each spectrum. Since some
bands will have close to zero values, they can also be removed from the optimization.
This reduces the dimensionality even further.

More importantly, the signal in the time domain generates a sequence of interdepen-
dent values. This level of interdependency creates extensive level of linkages among the
variables that makes the optimization problem very difficult. By transforming the signal
to the frequency domains, amplitudes within one epoch can be assumed to be indepen-
dent variables.

4 Methodology

A synthetic data set proposed by [5] will be used in this work. It assumes 6 sources of
signals. Two of the sources are assumed to be EMG operating at high amplitude and
high frequencies overlapping with High Beta and Gamma bands. Each source operates
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Table 1. The synthesis of the six signal sources.

Source ID| Band Amplitude Frequency| Band Amplitude Frequency

81 Delta 14 4 Beta 52 22
ED Theta 23 7 Beta 70 19
S3 Delta 16 5 Alpha 43 11
S4 Alpha 44 9 Gamma 56 47
S5 EMG 144 31 EMG 337 51
S6 EMG 282 28 EMG 246 49

with a mixture of two frequencies representative of classic EEG bands as shown in
Table 1.
The six sources are mixed into four signals, @1, 2, 3, T4, as follows:

x1 =81 +0.9%s;5

o = 89 + 0.9 % 84
T3 = 83 + S5
Ty = S4+ Sg

The signals are sampled at 256Hz. Besides, the fifth source was activated in the last
250ms of every second, and the sixth source was activated in the last 500ms of every
second. All other sources were activated from time 0. The reason for delayed activation
of the EMG signals is that in real-world dataset, there is no guarantee that the artifacts
are synchronized with the actual sampling window. The signals are shown in Figure 3.

Given the problem structure above, the independent components contained a total
of 28 unique frequencies with non-zero amplitudes. The chromosome had 60 variables
in total for all components; a significantly smaller search space than the original 1024
dimensions in the time domain.

The problem in this work is a bi-objective optimization problem with a decision
vector of size 60. Despite the average dimensionality, the level of non-linearity is high.
Differential evolution (DE) is used in the NSGA-II framework. The following parame-
ters are used: population size = 50, mutation rate = 0.0167, F = 0.5, Crossover Rate =
1. Generation = 1000

5 Results

The result of this work is presented by showing the Pareto front of the solutions (Fig-
ure 1).

As shown in Figure 1, the Pareto front is evenly distributed along the two objectives.
It provides good tradeoffs between the two objective functions. Those Pareto solutions
labelled in the figure are those solutions that were chosen for further analysis. They
include the two extreme solutions and another 4 solutions selected uniformly across the
Pareto frontier.
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Fig. 1. The evolution of the Pareto Front From NSGA-II over selected generations (left) and the
final Pareto front (right).
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Fig. 2. Information loss and residual calculated for the 6 selecting Pareto solutions selected from
the first Formulation. The blue line corresponds to artifact residue, the red line corresponds to
information loss. The best solution is clearly P2.

The results as shown in Figure 2 demonstrates that as we move from P1 to P6 on
the Pareto front, the reconstructed signals improve in terms of their EEG contents, but
level of artifact also increases. P2 is found to be a good tradeoff between information
loss and artifact residue.

In Figure 3, the resulting signals of the proposed method is compared to the fastiCA
algorithm. The information loss and residue for fastICA are 0.0103 and 0.00155 which
are much higher than all solutions. The top row of the figure shows the mixed signal on
the left, and the clean signal with local information alone on the right. It is evident in
these plots the EMG impact at the end of the one second data.

The second row shows the output of the fastICA algorithm. The components are
visualized on the left, while the reconstructed signal is visualized on the right. A closer
look at the fourth variable would show that the cleaned signal carries no similarities
with the original signal. This is also the case in all other signals, although the scale may
mislead the eye.

The last two rows show the solutions obtained from the multi-objective optimization
approach. P1-P4 are shown. The results match what we have in Figure 2. Although there
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Fig. 3. First Row are the mixed signals(left) and clean signals(Right); Second Row are the in-
dependent components from ICA(left) and reconstructed signals from ICA(Right); Components
from P1 (left) and Components from P2 (right) (third row); Components from P3 (left) and
Components from P4 (right) (fourth row), respectively.
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are some distortions in the signals, the proposed method maintains the signal order,
while reducing the amplitude of the artifacts.

6 Conclusion

In this paper, we presented a multi-objective formulation of the independent compo-
nents analysis problem. The first objective attempts to maximize the main diagonal
elements in the correlation matrix between each variable in the original mixed signal
and and the corresponding components. The second objective minimizes the off diag-
onal elements in the same matrix; thus forcing a conflict to create a trade-off between
local and joint information. Results indicate that the proposed formulation discovers
components that are closer to the original clean signal with more EEG information and
less artifact residual than the classical ICA.

This work raises two challenges that we will address in our future work. First, the
vast amount of data in EEG experiments (big data) creates very large scale optimization
problems. We will investigate efficient ways to design optimization problems for big
data. Second, the role of the components is not to duplicate the original data. The mixing
matrix needs to be maintained to mix the components. In this work, we discovered
components that are close to the original matrix. In our future work, we will address
second concern by conditioning the optimization problem with the mixing matrix.
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