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Artifact Removal From Electroencephalograms Using
a Hybrid BSS-SVM Algorithm
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Abstract—Artifacts such as eye blinks and heart rhythm (ECG)
cause the main interfering signals within electroencephalogram
(EEG) measurements. Therefore, we propose a method for ar-
tifact removal based on exploitation of certain carefully chosen
statistical features of independent components extracted from
the EEGs, by fusing support vector machines (SVMs) and blind
source separation (BSS). We use the second-order blind identi-
fication (SOBI) algorithm to separate the EEG into statistically
independent sources and SVMs to identify the artifact components
and thereby to remove such signals. The remaining independent
components are remixed to reproduce the artifact-free EEGs. Ob-
jective and subjective assessment of the simulation results shows
that the algorithm is successful in mitigating the interference
within EEGs.

Index Terms—Artifact removal, blind source separation (BSS),
electroencephalogram (EEG), electrooculogram, support vector
machines (SVMs).

I. INTRODUCTION

I N electroencephalogram (EEG) measurements, ocular arti-
facts (OAs), such as eye blinks, remain a significant nuisance

to the clinician. For example, in event-related potential (ERP)
analysis, data segments containing OAs are rejected, resulting
in substantial data loss, which may lead to failure of a clinical
assessment.

Interfering eye blinks generate a signal within EEGs that is on
the order of ten times larger in amplitude than cortical signals and
can last between 200–400 ms. The eyeball can be considered as a
dipole rotating in a socket. This means that as the eye rotates, the
cornearemainsatapotential0.4–1mVpositivewithrespect to the
retina. Rotations of the eyeball in saccadic eye movements cause
large external field variations that can contaminate EEG readings
[1]. Due to the magnitude of the blinking artifacts and the high
resistance of the scalp, OAs can contaminate the majority of elec-
trodes, even those in the occipital area.

In previous attempts to remove OAs, some researchers have
tried to estimate the propagation factors, as discussed in [2],
based on regression techniques in both the time and frequency
domains. These methods are limited in their success, and
furthermore, all of the methods mentioned therein required a
measured reference electrooculogram (EOG) channel during
the measurement of the EEG. Principal component analysis
(PCA) and singular value decomposition (SVD) [3] have been
used in the past by some researchers to remove OAs. These
methods assume that the underlying sources within EEG data
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Fig. 1. Block diagram of the BSS and SVM system.

are algebraically orthogonal, which is an assumption that from
a physiological perspective is believed to be untrue. There-
fore, PCA-type methods will not completely remove the OAs.
Application of adaptive filtering has also been investigated
[4]. This, however, has limited success since it ignores the
mutual information between the electrodes. There are several
techniques that use independent component analysis (ICA) to
separate the EEG into its constituent independent components
(ICs) and then eliminate the ICs that are believed to contribute
to the artifact sources [5]. The authors in [5] used a graphical
user interface (GUI) to display and highlight the ICs that are
believed to correspond to such artifacts. The user would then
decide if the highlighted component should be discarded, and
the remaining ICs would be remixed.

An automated method for removing OAs from EEGs has been
described in [6]. The authors used a blind source separation
(BSS) algorithm based on second-order statistics, to separate the
EEG and measured EOG into statistically independent sources.
The separation is then performed a second time on the raw EEGs
but with a selection of EOG channels inverted. The ICs that have
been found after inversion are compared with the ICs of the pre-
vious separation, and those that invert are removed. In addition,
the ICs that are above a threshold of correlation with the mea-
sured reference are removed, as are the ICs with high power in
the low frequencies. The main drawback of this method is that it
is restricted to having the reference EOG channels, which may
not be available if one would like to process previously recorded
data.

In this letter, we, therefore, demonstrate the use of BSS to
extract the separated sources and use an SVM to identify and
thereby eliminate the sources contributing to the artifacts. We
focus on the eye blinking artifact in this letter, but the method
extends naturally to the removal of heart rhythm. A block di-
agram of the proposed system is shown in Fig. 1. In the first
stage of the block diagram, the EEGs are acquired and stored;
these are denoted in the diagram as , where

is the number of electrodes, and is the data block length.
Similarly, the intermediate signals within the figure are denoted
as , where is the number of the es-
timated sources. In the second stage of Fig. 1, we separate the
EEGs into statistically independent sources using BSS. Then,
features are extracted from the independent sources and used to
establish whether the source contains an eye blinking artifact.
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Finally, the sources that are not identified as artifact are used to
reconstruct the artifact-free EEGs through reprojection.

II. METHODS

A. BSS

BSS generally relies on the fundamental assumption that the
source signals are statistically
independentandzeromean,where is thediscrete timeindex,and

is the number of sources. The mixtures can be modeled by

(1)

where is the full-column rank mixing ma-
trix, is the number of observed electrodes,

contains the linear mixtures ob-
served at the electrodes, and
is the additive zero-mean sensor noise. We assume that the
sensor noise is spatially uncorrelated with the sensor data,
i.e., , and temporally uncorrelated, i.e.,

and . The output of
the ICA system (i.e., the estimated sources) is given by

(2)

where is the vector of the
estimated sources, and is the separation matrix.

We used a gradient-based BSS algorithm that exploits the
temporal structure of the underlying EEG sources as in [7] to
process the EEGs. The goal of the proposed algorithm in [7] is to
jointly diagonalize a set of output covariance matrices

, where is the maximum
time lag. We employ multiple time lags instead of a single time
lag, as in the AMUSE algorithm [8], to minimize the chance of
the time-lagged covariance matrix having duplicate eigenvalues
[9] and, hence, the separation to fail. It is sufficient that only one
of the time-lagged covariance matrices has unique eigenvalues
for successful separation; hence, the algorithm is more robust at
the slight cost of increased computational complexity [9].

The output covariance matrix is given by

(3)

where is the time-lagged covariance matrix of the signal
mixtures and is diagonal when is a nonzero unmixing solu-
tion. A suitable practical cost function to find is, therefore,
defined based upon minimizing the off-diagonal elements for
multiple-lagged covariance matrices, as

(4)

and

diag (5)

where diag is an operator that zeros the off-diagonal elements
of a matrix, and the denotes the Frobenius norm. To imple-
ment this approach, we use a gradient decent algorithm to find

iteratively, which is given by

(6)

where is the iteration number, and

(7)

where is the learning rate, and is the gra-
dient of the cost function in (4) evaluated at . The
non-negative parameter is typically and . In re-
ality, the algorithm can only approximately jointly diagonalize
the matrices, as the linear model in (3) may not accurately de-
scribe the generation of the sources and due to the estimation
errors in the sample covariance matrices.

B. Feature Extraction

The four most effective features we have found that effi-
ciently discriminate the artifact signal from the normal EEG
are as follows.

Feature 1: A large ratio between the peak amplitude and the
variance of a signal suggests that there is an unusual value in
the data. This is a typical identifier for the eye blink because
it causes a large deflection on the EEG trace. The equation de-
scribing this feature is given by

(8)

where is one of the ICs, is a scalar valued function
that returns the maximum element in a vector, is the standard
deviation of , and is the absolutevalue applied element wise
in(8).ThenormalEEGactivityistightlydistributedaboutitsmean
value; therefore,alowratioisexpectedforit incontrast toICscon-
taining eye-blink sources where a high value is expected.

Feature 2: This feature corresponds to a third-order statistic
of the data. The normalized skewness for each IC is given by

(9)

for zero-mean data. An EEG containing eye blinks typically has
a positive or negative skewness since the eye blinking artifact in-
creases locally the asymmetry of the signal segment. Hence, we
take the absolute value of the skewness. The significance of this
feature in the overall classification is high since the eye-blink
signal has larger skewness than that of normal EEGs, which are
approximately symmetrically distributed.

Feature3: For the third feature, wefind the correlationbetween
theICandan independentdatasetcontainingeyeblinkingartifact
from six electrodes, including the frontal electrodes close to the
eyes and the electrodes on the occipital lobe

.Thereferencedataset, i.e., theEEGfromtheaforemen-
tioned electrodes, is distinct from the training and test data sets.
Thiswillmaketheclassificationmorerobustbyintroducingamea-
sure of the spatial location of the eye blinking artifact. We average
themaximumvalueofcross-correlationbetweeneachof theelec-
trode locations and the IC

(10)
where is the th independent component, and are
eye blinking reference signals, where indexes each of the
aforementioned electrode locations. The value of this feature
will be larger for ICs containing eye blinking artifact, since
they will have a larger correlation for a particular value of in
contrast to ICs containing normal EEG activity, the maximum

.
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Feature 4: The fourth feature is the statistical distance be-
tween the probability density function (PDF) of an IC and the
PDF of a reference IC known to contain OA. The OA reference
IC is taken from a data set that is also distinct from the training
and test data sets. Here, we assume that the PDF of the IC con-
taining the artifact will be identical to that of the reference signal
containing the artifact. To measure the statistical distance be-
tween the two PDFs, we used the Kullback–Leibler (KL) dis-
tance, given by

(11)

where and are the PDFs of one of the ICs and
a previously measured artifact, respectively. When the IC con-
tains OAs, the KL distance between its PDF and the PDF of the
reference IC will be approximately zero, whereas the distance
to the PDF of a normal EEG signal will be larger. Since the KL
distance is related to the mutual information, it reflects effec-
tively the information shared between the IC and the reference.

C. Classification

We use an SVM as our classification method, due to its gen-
eralization performance, and its established empirical perfor-
mance [10]. The goal of an SVM is to find an optimal separating
hyperplane (OSH) for a given feature set. The OSH is found by
solving the following constrained optimization:

(12)

where is the number of training vectors, and are
the output targets, is the squared Euclidean norm,
and is the dot product. The parameter determines the
orientation of the separating hyperplane, is the th positive
slack parameter, and is a vector containing the features

. The non-negative parameter
is the (misclassification) penalty term and can be considered

as the regularization parameter and is selected by the user.
A larger is equivalent to assigning a higher penalty to the
training errors. The parameter is set to a value that yields the
lowest cross-validation (CV) test error. Support vectors (SVs)
are the points from the data set that fall closest to the separating
hyperplane. Any vector that corresponds to a nonzero
is an SV of the optimal hyperplane. It is desirable to have the
number of SVs small to have a more compact and parsimonious
classifier. The OSH (generally nonlinear) is then computed as
a decision surface of the form

sgn (13)

where sgn , are SVs, is the nonlinear
kernel function (if the SVM is linear), and
is the number of support vectors. A Kernel for a nonlinear SVM
projects the samples to a feature space of higher dimension via
a nonlinear mapping function. Among nonlinear kernels, the ra-
dial-based function (RBF) defined as

TABLE I
PERFORMANCE OF THE CLASSIFIER BASED ON THE AVERAGE NUMBER OF

CORRECTLY CLASSIFIED POINTS. THREE KERNELS ARE COMPARED IN

THE CLASSIFICATION

, where the adjustable parameter governs the vari-
ance of the function, is widely used due to having quasi-Gaussian
distribution for data sets with a large number of samples.

III. EXPERIMENTS

A. Data Set for Analysis

The data were provided by King’s College Hospital, London,
U.K., and are available from our website [11]. The data repre-
sent a wide range of patients and, therefore, gives a comprehen-
sive set of data for the evaluation of our method. The scalp EEG
was obtained using Silver/Silver-Chloride electrodes placed at
locations defined by the 10–20 system. The data were acquired
using a Beekeeper Telefactor EEG amplifier, sampled at 200 Hz
and bandpass filtered with cutoff frequencies of 0.3 Hz and 70
Hz. We obtained the independent components by applying BSS
to blocks of data, 10 s in length. We assumed that the number of
sources is the same as the number of electrodes (i.e., ).
Then, we extracted the features from each of the ICs. The clas-
sifier was trained using the ICs from different patients.

B. Testing the Features

In our study, we tested the features using 200 ICs: 100 ICs con-
taining eye blinks and 100 free of artifact. The classifier [12] was
testedusing a variety ofkernels. For each kernel, the averageerror
values were estimated with four-fold cross-validation, i.e., using
75% of the data as training examples and 25% for testing with no
overlapping. The cross-validation was performed ten times, each
time the data were randomly rearranged, in order to yield a better
estimate of the error. To find the value of parameter , we calcu-
lated the average CV test error for a range of values for . The op-
timum value of was found to be 64 in the case of the linear and
cubic polynomial. For the RBF kernel, we adjusted and and
foundtheoptimumvaluesfortheRBFkernelas and .
The CV error results are shown in Table I.

The average number of support vectors found when using the
RBF kernel was 7% of the training data set size. In the case of
the cubic polynomial and linear kernels, the number of support
vectors found were 18% and 3.3%, respectively, of the training
data set size.

The training error was found by using the training data to test
the SVM. The training error was found to be 0.5% (av) and the
test error was 0.7% (av). This avoids any overfitting since the
training error is close to the training error.

The classifier was further evaluated by plotting the distribu-
tion of the classifier output of the training data. It is calculated
by applying the classification function in (13) without the sgn
function. The result from the training data using the linear kernel
is shown in Fig. 2(b). The ICs containing eye blinks are clustered
around and above the 1 value and the ICs containing normal
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Fig. 2. (a) Plot of the two largest principal components of the feature space.
There are 200 feature vectors: 100 from normal EEG (+) and 100 from EEG
containing eye blinks (�). (b) Histogram plot showing the output of the classifier
pre sgn(�) using the linear kernel.

Fig. 3. Selection of eight electrodes from a 16-electrode EEG recording. The
OAs are clear in (a) between samples 400–600, 900–1400, and 1700–1900. They
are more prominent on the frontal electrodes (FP1, FP2, etc.). (b) Same segment
of EEGs after being corrected for eye-blinking artifacts by using the proposed
BSS-SVM algorithm.

EEG activity around and below the 1 value. There is minimal
overlap in the classifier output, indicating that the proposed fea-
tures are significant to the detection of eye-blinking artifacts for
the test data sets.

For our data set, there is only 0.5% difference in the overall
classification rate between the linear kernel and the RBF kernel.
The cubic polynomial had the lowest overall classification rate.
The largest difference in classification performance was be-
tween the RBF and cubic polynomial kernel when classifying
normal EEGs—there was a difference of 7.1%. The reason
for the close overall classification rates is mainly due to the
separability of the feature space. Since the linear kernel requires
fewer SVs in calculating the OSH and due to its computational
simplicity, the linear kernel will be used to classify eye blinks
in the following experiments. In order to test the significance of
the proposed features, we evaluated the principal components.
We found the values of the components as 2.97, 0.68, 0.66, and
0.25; this testifies that the proposed features are significant to
the detection of eye blinks in EEGs. A plot of the two largest
principal components is shown in Fig. 2(a). From Fig. 2(a),
it can be verified that the multidimensional feature space is
nonseparable due to the overlapping region.

We applied the BSS-SVM algorithm to ten real EEG data sets,
each being 7 min long. The performance of the algorithm can be
seen by comparing the EEG data obtained at the electrodes [see
Fig. 3(a)] and the same segment of data after being processed by
the proposed algorithm [see Fig. 3(b)]. The significance of our re-
sults was justified by clinicians at King’s College Hospital. The
proposed algorithm was compared to a manual artifact rejection,
i.e.,manually identifyingandcanceling theartifactbycalculating
thecross-correlationbetween theBSS-SVMandthemanually re-
constructed EEG. The average value of cross-correlation is 0.92

(s.d. 0.02). In a number of trials, the effect of ECG has been auto-
matically detected and removed, whereas the complete removal
hasnot beenachieved with the method based on the manual selec-
tion.Thishadadetrimentaleffectonthecross-correlationmeasure
since the BSS-SVM output will be less correlated with the man-
ually reconstructed outputs but has a positive effect on the output
since there is less artifact present in the output.

As a second criterion for measuring the performance of
the overall system, we selected a segment of EEG
and the reconstructed EEG , which does not con-
tain any artifact, and measured the waveform similarity

.
When the value of is zero, the original and reconstructed
waveforms are identical. From ten sets of EEGs, the average
waveform similarity was dB (standard deviation

dB). These results suggest that the observations have
been faithfully reconstructed, both in terms of subjective visual
inspection and objective performance metrics.

IV. CONCLUSION

We have presented a robust method for removing OAs from
EEGs by fusing BSS and SVM methods. The results show that
the proposed algorithm identifies and removes the effect of
eye-blinking artifacts. The experiments herein demonstrate that
for the test data set, the signals are effectively classified by using
the introduced features, especially when the linear kernel is used
for the SVM. The EEGs are separated using the time-lagged
SOBI algorithm, and the identified artifacts are autonomously
canceled; then, the EEG is reconstructed from the remaining ICs.
Based on our experimental data, the BSS-SVM algorithm consis-
tently removes the effect of eye-blinking artifacts from the EEGs,
whereas, in comparison, the removal by eye generally fails.
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