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Abstract. This paper presents the comparison results on the perfor-
mance of the Artificial Bee Colony (ABC) algorithm for constrained op-
timization problems. The ABC algorithm has been firstly proposed for
unconstrained optimization problems and showed that it has superior
performance on these kind of problems. In this paper, the ABC algo-
rithm has been extended for solving constrained optimization problems
and applied to a set of constrained problems .

1 Introduction

Constrained Optimization problems are encountered in numerous applications.
Structural optimization, engineering design, VLSI design, economics, allocation
and location problems are just a few of the scientific fields in which CO problems
are frequently met [I]. The considered problem is reformulated so as to take the
form of optimizing two functions, the objective function and the constraint vio-
lation function [2]. General constrained optimization problem is to find & so as to

minimize f(z), x=(r1,...,2,) € R"

where « € F € S. The objective function f is defined on the search space S C R"
and the set F C S defines the feasible region. Usually, the search space S is de-
fined as a n-dimensional rectangle in ®" (domains of variables defined by their
lower and upper bounds):

I(0) <z(i)<u(i), 1<i<n

whereas the feasible region F C S is defined by a set of m additional constraints
(m > 0):

gj(x) <0,forj=1,...,q
hj(x) =0, for j=q+1,...,m.
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At any point & € F, the constraints g; that satisfy gi(x) = 0 are called
the active constraints at . By extension, equality constraints h; are also called
active at all points of S [3].

Different deterministic as well as stochastic algorithms have been developed
for tackling constrained optimization problems. Deterministic approaches such as
Feasible Direction and Generalized Gradient Descent make strong assumptions
on the continuity and differentiability of the objective function [J5]. Therefore
their applicability is limited since these characteristics are rarely met in prob-
lems that arise in real life applications. On the other hand, stochastic optimiza-
tion algorithms such as Genetic Algorithms, Evolution Strategies, Evolution-
ary Programming and Particle Swarm Optimization (PSO) do not make such
assumptions and they have been successfully applied for tackling constrained
optimization problems during the past few years [GI7ISIOUT6].

Karaboga has described an Artificial Bee Colony (ABC) algorithm based on
the foraging behaviour of honey bees for numerical optimization problems [IT].
Karaboga and Basturk have compared the performance of the ABC algorithm
with those of other well-known modern heuristic algorithms such as Genetic Al-
gorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO)
on unconstrained problems [I2]. In this work, ABC algorithm is extended for
solving constrained optimization (CO) problems. Extension of the algorithm de-
pends on replacing the selection mechanism of the simple ABC algorithm with
Deb’s [13] selection mechanism in order to cope with the constraints. The per-
formance of the algorithm has been tested on 13 well-known constrained opti-
mization problems taken from the literature and compared with Particle Swarm
Optimization (PSO) and Differential Evolution (DE) [I4]. The Particle Swarm
Optimization (PSO) algorithm was introduced by Eberhart and Kennedy in
1995 [15]. PSO is a population based stochastic optimization technique and well
adapted to the optimization of nonlinear functions in multidimensional space. It
models the social behaviour of bird flocking or fish schooling. The DE algorithm
is also a population based algorithm using crossover, mutation and selection
operators. Although DE uses crossover and mutation operators as in GA, the
main operation is based on the differences of randomly sampled pairs of solu-
tions in the population. Paper is organized as follows. In Section II, the ABC
algorithm and the ABC algorithm adapted for solving constrained optimization
problems are introduced. In Section III, a benchmark of 13 constrained func-
tions are tested. Results of the comparison with the PSO and DE algorithms are
presented and discussed. Finally, a conclusion is provided.

2 Artificial Bee Colony Algorithm

2.1 The ABC Algorithm Used for Unconstrained Optimization
Problems

In ABC algorithm [TTIT2], the colony of artificial bees consists of three groups
of bees: employed bees, onlookers and scouts. First half of the colony consists
of the employed artificial bees and the second half includes the onlookers. For
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every food source, there is only one employed bee. In other words, the number
of employed bees is equal to the number of food sources around the hive. The
employed bee whose the food source has been abandoned by the bees becomes
a scout.

In ABC algorithm, the position of a food source represents a possible solution
to the optimization problem and the nectar amount of a food source corresponds
to the quality (fitness) of the associated solution. The number of the employed
bees or the onlooker bees is equal to the number of solutions in the population.
At the first step, the ABC generates a randomly distributed initial population
P(G = 0) of SN solutions (food source positions), where SN denotes the size of
population. Each solution z; (1 = 1,2,...,SN) is a D-dimensional vector. Here,
D is the number of optimization parameters. After initialization, the population
of the positions (solutions) is subjected to repeated cycles, C =1,2,..., MCN, of
the search processes of the employed bees, the onlooker bees and scout bees. An
employed bee produces a modification on the position (solution) in her memory
depending on the local information (visual information) and tests the nectar
amount (fitness value) of the new source (new solution). Provided that the nectar
amount of the new one is higher than that of the previous one, the bee memorizes
the new position and forgets the old one. Otherwise she keeps the position of
the previous one in her memory. After all employed bees complete the search
process, they share the nectar information of the food sources and their position
information with the onlooker bees on the dance area. An onlooker bee evaluates
the nectar information taken from all employed bees and chooses a food source
with a probability related to its nectar amount. As in the case of the employed
bee, she produces a modification on the position in her memory and checks the
nectar amount of the candidate source. Providing that its nectar is higher than
that of the previous one, the bee memorizes the new position and forgets the old
one.

An artificial onlooker bee chooses a food source depending on the probability
value associated with that food source, p; , calculated by the following expression

@):
fit;

SN )
> fity
n=1

where fit; is the fitness value of the solution ¢ which is proportional to the nec-
tar amount of the food source in the position ¢ and SN is the number of food
sources which is equal to the number of employed bees (BN).

(1)

Di =

In order to produce a candidate food position from the old one in memory,
the ABC uses the following expression (2):

vij = Tij + Gij(Tij — Thj) (2)



792 D. Karaboga and B. Basturk

where k € {1,2,..., SN} and j € {1,2,..., D} are randomly chosen indexes. Al-
though £ is determined randomly, it has to be different from 7. ¢; ; is a random
number between [-1, 1]. It controls the production of neighbour food sources
around x; ; and represents the comparison of two food positions visually by a
bee. As can be seen from (2]), as the difference between the parameters of the
x;; and x, ; decreases, the perturbation on the position x; ; gets decrease, too.
Thus, as the search approaches to the optimum solution in the search space, the
step length is adaptively reduced.

If a parameter value produced by this operation exceeds its predetermined
limit, the parameter can be set to an acceptable value. In this work, the value
of the parameter exceeding its limit is set to its limit value.

The food source of which the nectar is abandoned by the bees is replaced
with a new food source by the scouts. In ABC, this is simulated by producing
a position randomly and replacing it with the abandoned one. In ABC, pro-
viding that a position can not be improved further through a predetermined
number of cycles, then that food source is assumed to be abandoned. The value
of predetermined number of cycles is an important control parameter of the ABC
algorithm, which is called “limit” for abandonment. Assume that the abandoned
source is z; and j € {1,2,..., D} , then the scout discovers a new food source to
be replaced with x;. This operation can be defined as in (&)

) =l +rand(0,1)(al,, — 27 (3)

i min min

After each candidate source position v; ; is produced and then evaluated by
the artificial bee, its performance is compared with that of its old one. If the
new food has an equal or better nectar than the old source, it is replaced with
the old one in the memory. Otherwise, the old one is retained in the memory. In
other words, a greedy selection mechanism is employed as the selection operation
between the old and the candidate one.

It is clear from the above explanation that there are four control parameters
used in the ABC: The number of food sources which is equal to the number of
employed or onlooker bees (SN), the value of limit, the maximum cycle number
(MCN).

Detailed pseudo-code of the ABC algorithm is given below:

1: Initialize the population of solutions z; j,i =1...SN,j=1...D

2: Evaluate the population

3: cycle=1

4: repeat

5:  Produce new solutions v; ; for the employed bees by using ([2)) and evaluate
them

6:  Apply the greedy selection process

Calculate the probability values P; ; for the solutions x; ; by (I

8 Produce the new solutions v; ; for the onlookers from the solutions w; ;
selected depending on P; ; and evaluate them

9:  Apply the greedy selection process

=
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10:  Determine the abandoned solution for the scout, if exists, and replace it
with a new randomly produced solution x; jby ()

11:  Memorize the best solution achieved so far

12:  cycle=cycle+1

13: until cycle=MCN

2.2 The ABC Algorithm Used for Constrained Optimization
Problems

In order to adapt the ABC algorithm for solving constrained optimization prob-
lems, we adopted Deb’s constrained handling method [13] instead of the selec-
tion process (greedy selection) of the ABC algorithm described in the previous
section since Deb’s method consists of very simple three heuristic rules. Deb’s
method uses a tournament selection operator, where two solutions are compared
at a time, and the following criteria are always enforced: 1) Any feasible solu-
tion is preferred to any infeasible solution, 2) Among two feasible solutions, the
one having better objective function value is preferred, 3) Among two infeasible
solutions, the one having smaller constraint violation is preferred.

Because initialization with feasible solutions is very time consuming process
and in some cases it is impossible to produce a feasible solution randomly, the
ABC algorithm does not consider the initial population to be feasible. Structure
of the algorithm already directs the solutions to feasible region in running process
due to the Deb’s rules employed instead of greedy selection. Scout production
process of the algorithm provides a diversity mechanism that allows new and
probably infeasible individuals to be in the population.

In order to produce a candidate food position from the old one in memory,
the adapted ABC algorithm uses the following expression:

U‘_{xij+¢ij($ij_1’kj)vif Rj<MR (4)
N P otherwise
ij 5

where k € {1,2,..., SN} is randomly chosen index. Although k is determined
randomly, it has to be different from ¢. R; is randomly chosen real number in
the range [0,1] and j € {1, 2,..., D}. MR, modification rate, is a control parameter
that controls whether the parameter x;; will be modified or not. In the version
of the ABC algorithm proposed for constrained optimization problems, artificial
scouts are produced at a predetermined period of cycles for discovering new
food sources randomly. This period is another control parameter called scout
production period (SPP) of the algorithm. At each SPP cycle, it is controlled
if there is an abandoned food source or not. If there is, a scout production process
is carried out.
Pseudo-code of the ABC algorithm proposed for solving constrained problems

is given below:

1: Initialize the population of solutions x; j,i =1...SN,j=1...D

2: Evaluate the population

3: cycle=1
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4: repeat
5:  Produce new solutions v; ; for the employed bees by using (@) and evaluate
them

6:  Apply selection process based on Deb’s method
Calculate the probability values P; ; for the solutions x; ; by ()
8 Produce the new solutions v; ; for the onlookers from the solutions w; ;
selected depending on P; ; and evaluate them
9:  Apply selection process based on Deb’s method
10:  Determine the abandoned solution for the scout, if exists, and replace it
with a new randomly produced solution x; jby ()
11:  Memorize the best solution achieved so far
12:  cycle=cycle+1
13: until cycle=MCN

I

3 Experimental Study and Discussion

In order to evaluate the performance of the ABC algorithm, we used a set of
13 benchmark problems can be found in [16]. This set includes various forms of
objective function such as linear, nonlinear and quadratic. The performance of
the ABC algorithm is compared with that of the differential evolution (DE) and
particle swarm optimization (PSO) algorithms.

3.1 Settings

PSO employs Deb’s rules for constraint handling. The swarm size is 50 and the
generation number is 7000. Hence, PSO performs 350 000 objective function
evaluations. Cognitive and social components are both set to 1. Inertia weight
is uniform random real number in the range [0.5,1]. All equality constraints are
converted into inequality constraints, |h;| < e with e=0.001 [16].

In DE, F is a real constant which affects the differential variation between
two solutions and set to 0.5 in our experiments. Value of crossover rate, which
controls the change of the diversity of the population, is chosen to be 0.9 as
recommended in [I7]. Population size is 40 , maximum generation number is
6000 and it uses Deb’s rules.

In ABC, the value of modification rate (M R) is 0.8, colony size (2 SN) is 40
and the maximum cycle number (M CN) is 6000. So, the total objective function
evaluation number is 240 000 as in DE. The value of limit” is equal to SN x D
where D is the dimension of the problem and SPP is also SNxD. Experiments
were repeated 30 times each starting from a random population with different
seeds.

3.2 Results and Discussion

The results of the experiments for the ABC algorithm are given in Table [T
Comparative results of the best, mean and worst solutions of the investigated
algorithms are presented in Table 2] Table ] and Table [ respectively.
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Table 1. Statistical Results Obtained by the ABC algorithm for 13 test functions over
30 independent runs using 240.000 objective function evaluations

Problem Optimal Best Mean Worst Std. Dev.

g01 -15.000 -15.000 -15.000 -15.000 0.000
g02 0.803619 0.803598 0.792412  0.749797 0.012
g03 1.000 1.000 1.000 1.000 0.000

g04  -30665.539 -30665.539 -30665.539 -30665.539  0.000
g05 5126.498 5126.484 5185.714 5438.387 75.358
g06 -6961.814 -6961.814 -6961.813 -6961.805 0.002
g07 24.306 24.330 24.473 25.190 0.186
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.634  680.640  680.653 0.004
gl0 7049.25  7053.904 7224.407 7604.132  133.870

gll 0.75 0.750 0.750 0.750 0.000
gl2 1.000 1.000 1.000 1.000 0.000
gl3 0.053950 0.760 0.968 1.000 0.055

Table 2. The Best Solutions Obtained by DE, PSO and ABC algorithms for 13 test
functions over 30 independent runs. — Means That No Feasible Solutions Were Found.
Na = Not Available.

P Optimal PSO [16] DE ABC
g01 -15.000 15.000 -15.000 -15.000
g02 0.803619 0.669158 0.472 0.803598
g03  1.000 0.993930 1.000 1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5126.484 5126.484 5126.484
g06 -6961.814 -6161.814 -6954.434 -6961.814
g07 24306 24.370153  24.306 24.330
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.630  680.630  680.634
gl0 7049.25 7049.381 7049.248 7053.904

gll 0.75 0.749 0.752 0.750
gl2  1.000 1.000 1.00 1.000
gl3 0.053950 0.085655 0.385 0.760

As seen from Table Bl the ABC algorithm has found the global minimum
of the seven of thirteen problems (g01, g03, g04, g06, g08, gll1, g12) through
240 000 cycles. On five functions (g02, g04, g05, g07, g10), the ABC algorithm
produced results quite close to the global optima. On one problem, g13, the ABC
algorithm could not find the optima in the specified maximum number of cycles.

As seen from Table Pl PSO algorithm is better than ABC on three problems
(£09,g10,g13) while the ABC algorithm shows better performance than PSO on
four problems (g02, g03, g07, g12). Compared to DE, it is better than ABC on
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Table 3. The Worst Solutions Obtained by DE, PSO and ABC algorithms for 13 test
functions over 30 runs. — Means That No Feasible Solutions Were Found. Na = Not
Available.

P Optimal PSO [16] DE ABC
g01 -15.000 -13.000 -11.828 -15.000
g02 0.803619 0.299426 0.472 0.749797
g03  1.000 0.464 1.000 1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5249.825 5534.610 5438.387
g06 -6961.814 -6961.814 -6954.434 -6961.805
g07  24.306 56.055 24.330 25.190
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.631 680.631  680.653
gl0 7049.25 7894.812 9264.886 7604.132

gll 0.75 0.749 1 0.750
gl2  1.000 0.994 1.000 1.000
gl3 0.053950 1.793361 0.990 1.000

Table 4. The Mean Solutions Results Obtained by DE, PSO and ABC algorithms for
13 test functions over 30 independent runs and total success numbers of algorithms. A
Result In Boldface Indicates A Better Result Or That The Global Optimum (Or Best
Known Solution) Was Reached. — Means That No Feasible Solutions Were Found.

P Optimal PSO [16] DE ABC
g01 -15.000 -14.710 -14.555 -15.000
g02 0.803619  0.419960 0.665 0.792412
g03  1.000 0.764813 1.000 1.000

g04 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5135.973  5264.270 5185.714
g06 -6961.814 -6961.814 - -6961.813
g07  24.306 32.407 24.310 24.473
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.630 680.630 680.640
gl0 7049.25 7205.5 7147.334  7224.407

gll 0.75 0.749 0.901 0.750
gl2  1.000 0.998875 1.000 1.000
gl3 0.053950 0.569358 0.872 0.968

four functions (g07, g09, g10, g13) as the ABC algorithm is better than DE on
three problems (g02, g06, gl1) with respect to the best results.

From the worst results given in Table Bl PSO is better than ABC on three
problems (g05, g06, g09) while ABC outperforms PSO on eight problems (g01,
202, g03, g07, g10, g11, g12, g13). DE show better performance on two problems
with respect to the ABC algorithm on three problems (g07, g09,g13) while ABC
is better on six problems (g01, g02, g05, g06, g10, g11).
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Similarly, with respect to the mean solutions in Table @, PSO shows better
performance with respect to the ABC algorithm on five problems (g05, g06, g09,
¢10, g13) and ABC algorithm is better than PSO on six problems (g01, g02, g03,
207, gl1, g12). DE has better performance than ABC on four problems (g07,
209, g10, g13) while ABC is better than DE on five problems (g01, g02, g05,
206, gl1).

From the mean results presented in Table [ it can be concluded that the
ABC algorithm performs better than DE and PSO.

Consequently, the ABC algorithm using Deb’s rules can not find the optimum
solution for g05, g10 and gl3 for each run. g05 and g13 are nonlinear problems
and the value of p (p = |F|/|S|, F:Feasible Space, S:Search Space) for g05 and
¢13 is %0.000. Also, these problems have nonlinear equality constraints. g10 is
linear and the value of p is %0.0020 for this problem. However, g10 has no linear
equality and nonlinear equality constraints. Therefore, it is not possible to make
any generalization for the ABC algorithm such that it is better or not for a
specific set of problems. In other words, it is not clear what characteristics of
the test problems make it difficult for ABC.

4 Conclusion

A modified version of the ABC algorithm for constrained optimization problems
has been introduced and its performance has been compared with that of the
state-of-art algorithms. It has been concluded that the ABC algorithm can be
efficiently used for solving constrained optimization problems. The performance
of the ABC algorithm can be also tested for real engineering problems existing
in the literature and compared with that of other algorithms. Also, the effect of
constraint handling methods on the performance of the ABC algorithm can be
investigated in future works.
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