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ARTIFICIAL BOUNDARY CONDITIONS
FOR INCOMPRESSIBLE VISCOUS FLOWS*

LAURENCE HALPERNt AND MICHELLE SCHATZMAN*

Abstract. Artificial boundary conditions for the linearized incompressible Navier-Stokes equations are
designed by approximating the symbol of the transparent operator. The related initial boundary value
problems are well posed in the same spaces as the original Cauchy problem. Furthermore, error estimates
for small viscosity are proved.
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1. Introduction. Many problems arising in fluid mechanics lead to the resolution
of a partial differential equation in an unbounded domain. Depending on the applica-
tions, various strategies have been developed.

For stationary flows around a body, integral equations are often used (see for
instance [6]) or we can also bound the domain and prescribe on the artificial boundary
the so-called "transparent" boundary condition, i.e., the boundary condition which
simulates the missing part of the domain. This boundary condition is integral on the
boundary, and the associated initial boundary value problem is solved numerically
using either an eigenvalues expansion on the boundary [2], [22], [10] or a coupling
between finite elements in the interior and integral equations on the boundary 18], [26].

For time dependent problems, the "transparent" boundary condition is integral
in time and space and thus impractical in general. Tremendous research effort has
attempted to design useful boundary conditions for inviscid flows. Most of the studies
rely on a linearization of the equation near the boundary (for a nonlinear treatment
of the problem see [16] and [29]). Of course in the applications we solve the nonlinear
equations in the interior together with the linear boundary conditions.

There are two mathematical frames for these studies. On one hand, Engquist and
Majda in [8] and [9] designed absorbing boundary conditions with wave propagation
tools. On the other hand, Bayliss and Turkel in [4] and [5] used far field expansions.
Both works write sequences of boundary conditions that are local (i.e., differential) in
time and space on the boundary. This feature is due to the hyperbolicity or quasi-
hyperbolicity of the operators they handle.

The problem becomes less clear when it comes to viscous flows. Some numerical
answers have been given for compressible fluids (see Rudy and Strikwerda [25]). On
the other hand, calculations have been performed in [11], [12], and [19] on the case
of a parabolic equation. Moreover, the case of linear advection-diffusion has been
treated in [13]. For incompressible flows it is still, as far as we know, an open
mathematical question.

Our previous results were announced in [15].
We are concerned here with the incompressible Navier-Stokes equation,
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for N=2 or 3:

u,+(u’V)u-vAu+Vp=f inx]0,T[,
(1.1) div (u) 0 ins x ]0, T[,

u(0) u in

where u (Ul,. ", UN)-
It is important to set the artificial boundaries outside of turbulent regime,

suftieiently far for the flow to be considered as constant. We are then allowed to
linearize around the constant state and to consider the Oseen approximation as follows.

u,+(a.V)u-vAu+Vp=f inx]0, T[,
(1.2) div (u) 0 in x ]0, T[,

u(0) u in

The data f and u are supposed to be compactly supported.
All throughout this paper we study the model problem: writing artificial boundary

conditions on the hyperplane-, i.e., such that the Oseen equation in the half-space
R_ {(x,y)R, x <0} with the boundary condition prescribed on the hyperplane
x =0 is an approximation of the Oseen equation in . This enables us to use the
Fourier transform as an essential tool. The problem of designing artificial conditions
on a closed artificial boundary will be treated in a forthcoming paper.

In [13], as a first step, the linear advection diffusion equation has been studied.
This article concluded with a family of approximate boundary conditions that are local
in time and space. In contrast, here the divergence-free condition implies a coupling,
which makes the analysis more troublesome. In particular, the symbol of the operator
to be approximated contains Ikl, with k the dual variable of the tangential spatial
variable, and it does not seem easy to approximate this symbol by polynomials or
i,ational fractions of low degree in space. Thus, the approximate boundary conditions
will be local in time and global in the tangential space variables.

In the course of justifying our calculations precisely, we will prove a number of
interesting results on the spaces of divergence-free functions on a half space, without
a Dirichlet boundary condition.

The analysis is made in 2, but is valid in 3 with slight modifications (see 14]).
In 2, we define the spaces of divergence-free functions in 2 and prove trace

theorems on F {(x, y), x 0}. We then introduce the Oseen equation, give the formal-
ism necessary for a variational formulation, and state a well-posedness theorem for
the Cauchy problem in R2. We finish by specific trace results for the solution of Stokes
equation, which emphasize the regularity of u + u2( is the Hilbert transform along
the boundary), solution of a heat equation.

In 3 we compute the transparent boundary condition on F according to the
following principle: Problem (1.2) in2 is equivalent (in a sense we will make precise)
to the transmission problem in ll_ x fl+, where ll+/- {(x, y), +x > 0} and

+(a. V)u-vAu_+Vp_=f in fl_ x ]0, T[,
Ot

div (u_) 0 in l-l_ x ]0, T[,

OU++(a.V)u+-vAu++Vp+=O infl+x]0, T[,
dt

div (u+) 0 "in l’l+ x ]0, T[,
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with the initial data

and the transmission conditions

u_(O) u in f_,
u+(O) 0 in 1+,

where rn is the normal constraint.
We study the Oseen equation for u+ in fl+, with nonhomogeneous Dirichlet

boundary conditions, and prove the well-posedness in spaces where the partial Fourier-
Laplace transform in time and tangential space is permissible. We write then a
pseudodifferential relation between u+ and rn(u+) on F. Thanks to the transmission
conditions, it leads to the same pseudo-differential relation between u_ and
We call it the transparent boundary condition after proving the uniqueness for the
related initial boundary value problem in _.

In 4 we design a family of approximations to the transparent boundary condition
by approximating its symbol. These approximations are local in time and integral along
the boundary. Using the tools developed in the previous sections we prove them to be
well-posed with the same regularity as the solution of the Cauchy problem in 2. Even
at low order these boundary conditions appear to be good approximations for small
viscosity.

Finally in Appendix A, we give some information on Beppo-Levi spaces, and in
Appendix B, we show why we cannot use spaces of fast-decreasing functions at infinity
in the analysis of the present incompressible problems.

2..Definitions, notations and basic results. In this section, we describe a number
of functional spaces which are useful for our study of Stokes problem with an advection
term, otherwise called an Oseen system. We need spaces in which we are able to treat
nonhomogeneous boundary conditions, and thus transparent and artificial boundary
conditions. The typical space is the space of divergence-free functions, which are
square integrable, with a square integrable gradient, but without any boundary condi-
tion. We give density results relative to these spaces, and corresponding trace results.
Then we give rather classical results on the solution of the Oseen problem, in 2.
Finally, if u is the solution of this problem, and if is the Hilbert transform in the
direction x2, the function Ul + u2 has a number of special properties which will be
useful everywhere in the sequel. In particular, if the support of the data of the Oseen
problem is in the region {Xl--<-X d0), the restriction of Ul + u2 to the boundary
{X 0) X X is arbitrarily smooth.

2.1. Classical functional spaces. We use the formalism of [24] in many instances.
The domain W ofN has boundary F; the scalar product in L2(fl) is denoted (.,.),
with associated norm II. The classical Sobolev space Hm(fl) is the space of square
integrable functions, whose derivatives of order at most rn are square integrable; the
scalar product in Hm() is denoted (.,.), and the norm [[; the scalar product
in L"(fl) is denoted (.,.) with associated norm I1. The Fourier transform is defined
on the Schwarz space 5 by

(2.1) B(k) JN v(x) exp (-ik. x) dx,

where k. x klX + k2x2+...+ kNXN; it is extended to ’, and we will often write
(2.1) for temperate distributions by an abuse of notation.
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For any real s, the Sobolev space,of fractional order Hs(EN) is defined as

Hs("N) {v6 ’/I (l +,k[2)s[(k),2 dk <},
this space is a Hilbert space, equipped with the norm

Ilvll (1 / Ikl2)l3(/)l = dk

In particular, we will need the Sobolev spaces H1/2(F) and H-1/2(F), when F is
the norm of H/2(F) will be denoted ]. I1/=,, and the norm of H-/2(V)II,

We denote the right-hand side half-space as

O+=={x=(x,x,... x)/x>O}

and the left-hand side half-space as

O_=5={x=(x,x,. ,x)/Xl <O}.

A convenient characterization of H(O+) is given by

n(o+) {u (0,; n(a-))/ Vk 1, ,. ., m,

oku
ox (0,; n-(a-’))}.

Then the norm on H(O+) can be written as

oku

X2

Xl

FIG.
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We can define a partial Fourier transform operating on the tangential variables; for v
in 6e’(f+), it is defined formally as

x,-.k,V(Xl, k’) JN-, V(Xl, x’) exp (-ik. x’) dx’,

where x’= (x2,. ", IN) and k’- (k2,. ", ks).
The space Hm (f+) can be characterized too with the help of a partial Fourier transform.

We define the Sobolev spaces of vector-valued functions:

HS() (HS(f))N and H() (H(f)) N.
The scalar product and the associated norm will be denoted as for the scalar Sobolev
spaces.

We denote the gradient by V, and the divergence by V..
Finally, we will need the Beppo-Levi spaces, defined as follows.
DEFINITION 2.1. Let f be an open domain of R s. The Beppo-Levi space

BL(H(f)) constructed on H(I) is the space of distributions u such that Vu belongs
to H (fl).

I_/s+lThe space BL(H()) is a subspace of to (fl)f3 ’(fl); more information on
the Beppo-Levi spaces is given in Appendix A. Let it suffice here to observe that
BL(HS()) is a Hilbert space, with Hilbert seminorm ]lVu]l; the kernel of this
seminorm is the space of constant functions. Moreover, if fl is unbounded, BL(H())
contains unbounded elements. Examples of such behavior are given in Appendix A.

2.2. Spaces of divergence-free functions. Spaces of divergence-free functions are
an essential tool for the study of fluid motion in Eulerian coordinates. One classical
set of spaces is defined starting from

r(n)= {v (n)/v v=0}.
The respective closures of v in L2(fl) and Hl(fl) are denoted H0(fl) and V(fl); they
are very well adapted to the study of a problem with Dirichlet boundary conditions;
they admit the following characterization, when fl- R2.

V(t2) {v HI(2)/V v=O}
(2.2)

Ho(a2) { v L2(a2)/V v 0}
When fl is a domain with smooth boundary F, the characterization is modified as
follows.

V(n) {v H(n)/V v 0}
(2.3)

Ho(f)={vL(f)/V v=0 and v. n=0 on F},
where n is the exterior normal to F.
This last characterization makes sense because, on the space

E(n)={vL2(n)/V v6 L2(n)},
the normal trace v. n is defined, belongs to H/2(F), and the mapping

from E(f) to H1/2(F) is onto.
A convenient reference for the above classical results is [28]. Nevertheless, we

are interested in boundary conditions which are not Dirichlet boundary conditions,
and we introduce spaces which are not classical"

(2.4) /f(f_) (v z (n_)=/V v 0},
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where f/_ is the closed half-plane. Moreover, we introduce

(2.5) W(12_) (v H’(f_)/V v=0}

(2.6) H(D,_) {v L:(D,_)/V v=0}.

The relations between W’(I_), W(f_), and H(f/_) as well as the trace properties of
these spaces will be stated below. The results presented here differ from the standard
ones in two respects: first, we want to allow for nonzero boundary data; second, the
open set f/ contains points at an infinite distance from its boundary. The case with
zero boundary data can be found in [28]; the case where the points of I are at a
bounded distance from its boundary can be found in [1].

PROPOSITION 2.2. The closure of W’(f_) in Hl(f_) is precisely W(II_).
Proof. To prove this result, we consider an element orthogonal to the closure of

W’(f_) in W(2_). The potential of this element u satisfies a homogeneous partial
differential equation; as u is in a Sobolev space, it is a temperate distribution. This
enables us to deduce estimates on the traces of u on the boundary, and, in the same
time, the nullity of u.

Let W be the closure of /4/’(1-/_) in HI(’_); clearly, W is included in W(f_).
To prove that W is precisely W(I_), let u be an element of W(f/_) that is orthogonal
to W, or equivalently to W(f_); then, for any v in o/(f_),

As v belongs to W(I_), there is a C function o such that

(2.8) Vl v2
OX2 OX

v vanishes outside of a compact set of f/_. Conversely, any 0 in @(f_) defines a v
in //V(f_), with the help of (2.4). Similarly, the theory of Beppo-Levi spaces shows
that there exists @ in Loc(O-)c 6e’(f/_) such that

(2.9) ul u2

If we substitute u and v in (2.7) with their expressions in terms of o and @, we obtain"

(2.10)

Therefore, in the sense of distributions, satisfies the equation

(2.11) -A +A2 0 in

If we perform a Fourier transform in the tangential variable x2, which is sent to k, it
is not difficult to see that the general solution of (2.11) is of the form

(Xl, k)=a exp (IklXl)+ fl exp ((1 +lkl2)l/2xl)+y exp (-IklXl)
+ 8 exp (-(1 +lk12)l/2xl).

For to be a temperate distribution, the coefficients 3’ and 8 must v.anish, because
the corresponding modes increase exponentially at xl -oo. Therefore, , is of the form

(2.12) (Xl, k)
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We will prove that a and /3 vanish identically. For this purpose, we need some
regularity. We integrate Ik(xl, k)l= lall 2 on f_, and we obtain an estimate on a and
/3.

f { 2 a(k)fl(k) }(2.13) Ikl 2 la(k)]2+ ]fl(k)--+4 Re dk <+.
k] l+k 2 k+l+k[ 2

We compute the smallest eigenvalue of the quadratic form that appears in (2.13). This
shows that there is a positive weight h(k) such that

f tlt 2 dk dx J tkt2h(k)[l12+ [t2](k) dk,

the weight h satisfies the estimates"

h(k) in a neighborhood of k 0

1
h (k)

16[kl
in a neighborhood of kl +.

Therefore,

(2.14) ika and ikfl belong to the space H -5/2.

If we return to formulation (2.10), written in Fourier variables, we obtain the
variational problem

(2.15)

According to (2.14) and (2.12), ag/ax,, aa/ax and a6/ax have a trace on F,
even if it is in a very weak sense. Accordingly, we can perform several integrations by
pas on (2.15), and we obtain the relations

ax ax axJ r

 Sl
ox J

substituting (2.12), we obtain a linear system:

k12 + +1/I 2) 0.

This system is not singular, thus a and vanish identically, and so does the potential
6 thanks to (2.12). This proves that u is zero, and that the ohogonal of the closure
of (a_) in W(a_) is zero.

We have an analogous result for the space H(fl_).
PROPOSITION 2.3. e closure of(_) in L2(_) is precisely H(fl_).
Proo The technique of proof is absolutely identical to the technique employed

for the previous proposition. It is in fact easier; the main steps begins with an analogue
of equation (2.11)"

6=0 infl_.

Then the Fourier transform of the potential y is of the form

(Xl, k)= exp (Iklxl),
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and it is very easy to prove that ax/- is square integrable; the remainder of the
proof is left to the reader.

Let us consider now the trace spaces of W(_) and H(f_). The main result we
need is as follows.

PROPOSITION 2.4. For any u (u, u2) T in W(f_), the trace ofu on F is in H1/2(F)
and satisfies

(2.16)

IfW1/2 is the space offunctions that satisfy (2.16), then the trace mapping u Ul[r from
W(f_) to W1/2 is onto.

Proof Let u belong to /4/’(f_); we may write

ox, Iki -1 Re Ul(Xl, k)
OXl

2
Re (Ul(X1, k) ik/,2(X1, k)),

since u is divergence free. The function u vanishes for xl small enough, because the
support of u is compact. Thus we obtain

(2.17) f lal(Xl, k)l 2

dk<= ilull 2

The trace space of W(f_) is included in H1/2(F); together with (2.17), we obtain the
first statement of the proposition, because W(I)_) is dense in W(12_). To see that
the trace mapping is onto, take the ohogonal of the image of W(O_) in W/ by the
normal trace mapping. For all in (_), we have

Re I/1=+ aikdk =0,

and this shows immediately that the mapping is onto.
From the proof of Proposition 2.4, we deduce

COROLLARY 2.5. For any u in H(I_), the trace of u on F exists and satisfies

k
dk < +oo.

Moreover, the expression

(2.18) s(u, v) (u, v)-- IN l(Xl’ k) 31(Xl
k[

k)
dk

is a scalar product on H(O_), which is equivalent to the scalar product (.,.) induced by
L2(-_).

Proof. It is clear that

x(u, u)e (llu IIo)=;
the inequality

s(u, u) 2(llullo)
follows from (2.17).
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The dual space of W1/2 will be denoted W-1/2 and is the space of functions which
satisfy

(2.19) u W-1/2C: fa ll(O, k)l(Ik,+l)
l/

dk < +o.

Remark 2.6. The space W1/2 is included inH1/ because the weight (Ikl:+ 1/[kl) 1/
satisfies the inequality

(1 k’2+ 1[2)
’/2

--1-i-kl22 k *.

Dually, W-/:z contains H-/2.
This completes our review of divergence-free functional spaces.

2.3. Oseen system in full space. Consider the Navier-Stokes system inx +:
(2.20) u+(u. V)u- vAu+Vp =0; V u=0.

Here V is the gradient operator, A is the Laplacian operator; v. V denotes the differential
operator Vl O/OXl + v2 0/Ox:z.

We linearize this system around a constant state a (a, a), with al positive, and
we obtain a Stokes system with an advection term or Oseen system:

(2.21) u+(a. V)u- uAu +Vp 0;

(2.22) V. u 0.

A differential operator M is defined by

(2.23) M(u,p)= ut+(a" V)u- vAu+Vp.

For functional analysis reasons, it will be convenient to study the differential operator
M, defined, for/x > 0, by

(2.23), M, (u, p) ut + la,u + (a V)u- vAu + Vp.

We define a bilinear form a on H(f) by

(2.24) a(u, v) ((a V)u, v)+ v(Vu, 7v),

where

(V u, V v) (Vu, Vv) + (V uz, V v).

Clearly, a is continuous on H(f); moreover, we have

((a-V)u, u)= a. V(lul) dx= a. nlul dr.

If f 2, this expression vanishes; if f I_, this expression is greater than or equal
to zero. Therefore,

a(u, u)-> (llVullo)=;
there exists a positive constant a such that

(2.25) (llullo)=/a(u, u)>_-(llull)-, Vu in H(f).
We will need a partially antisymmetrized form of a, in order to uncouple the

boundary part of Green’s formula; let

(2.26) (u, v) =1/2 [((a. V)u, v)-((a. V)v, u)]/ u(Vu, Vv).
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As a is constant, a and can differ only by a boundary term; if ll R2, there is no
such term; if

(2.27) (u, v)-a(u, v)= - alu.v dr.

In particular, in the full space case,

(2.28) a(u, u)-(u, u)- IVul2 dx.

Consider now the linearized Navier-Stokes system in the plane"

(2.29) M,(u,p) =f in R2xR+;
(2.30) V.u=0 inR2xR/"

(2.31) u(., 0) u in R2.
This system is well posed, if we take u and f in adequate functional spaces.

PROPOSITION 2.7. For all u in H(2), and all f in L2(0, 00; L2(R2)), and for all
nonnegative tz, there exists a unique u and a p unique up to an additive constant such
that (2.29)-(2.31) hold and

u ,(E0, ); H()),
v, Ho(E0, ); L()),
u, Loc([0, 00); V’(2)),

OP
P Loc([0, 00). BL(H-I(R))).P=ot’

Here V’() is the dual of V(R) and BL(HI(Z)) is the Beppo-Levi space offunctions
whose gradient is in Ha( ). The function u belongs to Loc ([0, 00); X) if any restriction

of u to a finite time interval [0, T] belongs to LP([0, T]; X).
Moreover, for any strictly positive Ix, the following global estimates hold:

u L([0, 00); H(2)),
Vu L([0, 00); L)-(I2)),
u, L([O, 00); V’(I2)),

OP
P =-, P L([0, 00); BL(H-I(R))).

Remark 2.8. If f were a bounded open set with smooth enough boundary, it
would be an exercise to extend the existence proof in [28] for the Stokes problem to
the present situation. Though the forthcoming proof is quite classical, it does not
appear to be written with all the necessary details in the literature of which we know.

Proof We know from [24] that for every positive and finite T, there exists a unique
u in L2(0, T; V(2)) with Ou/Ot in L(0, T; V’()) such that

(2.32), (ut, v)+a(u, V)+la,(u, v)=(f, v) Vv V(2);
(2.33) u(0) u

Let us first consider the case/z 0. Relation (2.28) implies an energy estimate

ld
2 dt

Ilull/ llVullg -< IIf(t)llollullo.
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From this inequality we make a classical Gronwall estimate and deduce the estimates
on u and Vu, using the coerciveness; the variational formulation (2.32) gives the
estimate on ut. Precisely, we get the following estimates

[lu( t)llo =< u[Io -f- x/[[f[[ :<[o,

ds

These two estimates show polynomial growth in time. In order to have an estimate on
p, we proceed as in [28]. Let

U( t) u(s) ds, F( t) f(s) ds.

Then V U belongs to L2(0, T; L2(2)). If we integrate (2.21) in time, we obtain

(u(t)-u+(a V)U-vAU, v)=(F, v) Vv in V(2).
The expression u( t) u + (a V) U- vAU- F is orthogonal to divergence-free vectors,
and belongs to L(0, T; H(I2))+ L2(0, T; H-1(2)), which is included in
L2(0, T; H-1(2)). Therefore, there exists P in L2(0, T; BL(H-I(R2)) such that

u(t)-u+(a V)U-vAU+TP=F.

If we define p =OP/Ot, we obtain the announced estimate.
For the last statement, we observe that (u, p) is a solution of (2.32)0 if and only

if (w, q)= (ue-’, pe-’’) is solution of (2.32).
Thus, the polynomial growth estimates for u ensure the global estimates for w.

There is a regularity result which will be useful in what follows; denote

(2.34) H(lt2) f-) n"([2);
m__>0

this is a Frechet space, with an obvious topology. The regularity result is as follows:
LEMMA 2.9. Let u belong to H(2), andf to C(+; H(2)). Then, the solution

(u, p) of (2.29)-(2.31) belongs to C(+; H(2)).
Proof The spatial derivatives of u are divergence free, and satisfy (2.24); if we

apply the estimates of Proposition 2.7 to the differentiated equation, we obtain the
desired estimates. In order to differentiate in time, we check that the time derivative
Ut(. t) is in H(2); from (2.29), ut(., t) is the projection of vAu-(a. V)u onto H(2);
u, satisfies (2.29), (2.30), and thus Proposition 2.6 is applicable. By induction,

U E Hm(O, T; Hm(2)), ’ m in .
Leaving all details to the reader, this ends the proof.

Remark 2.10. For/x strictly positive, it is possible to prove that if u belongs to
H(2), and f belongs to ([0, ); H(R2)), then u belongs to ([0, oo); H(2)).
This result will be proved indeed for the case of the half-plane in the next section.
The reader is referred to Proposition 3.1, whose proof can be completely copied to
obtain this result. In any case, it is a question of estimating solutions of linear equations
with a nice exponentially decreasing behavior, and the proof is an easy application of
semigroup theory.

Remark 2.11. The solution of (2.29)-(2.31) does not decrease fast at infinity in
space, in general; the trouble is with the pressure. Assume that f vanishes for large x;
by taking the divergence of (2.29), in the smooth case, one can see that Ap V. f, so
that the pressure is harmonic; if p decreased rapidly at infinity in space to a constant,
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it would be identically equal to this constant (see Appendix B for a proof of this
result); this is not a general situation. If 7p decays like some power of x, at infinity,
then, once Vp is known, u is essentially a solution of the heat equation with source
Vp+f, and it cannot, in general, decrease rapidly at infinity in space.

2.4. On specific trace results for the solution of Oseen system. Consider the solution
u of (2.29)-(2.31). Extend u and p by 0 for t-<0, and denote the extended functions
still by u and p. Then,

(2.35) M,(u, p)= u(R)5 +f in R2xR; V. u =0.

We cannot expect that u restricted to {(0, xl, t)/(Xl, t)R:} will be smooth
in time, even if we assume that
(2.36) The support of u is compact and included in f_,
(2.37) The support off is in the product of a compact subset of f_ with /.

Remark 2.12. We explain why smoothness in time cannot be expected in general,
and give sufficient conditions to have it. Denote by II the projection in L:(R2) onto
H(:); assume that u is smooth enough for the foregoing computations. Then,
interpreting the pressure as a Lagrange multiplier, we can take a limit as decreases
to zero"

u,(’, O+)=IIf+u(R)5’-(a V)u+ vAu-ixu.
In this relation all the terms containing u vanish on Y fl { 0}, thanks to assumption
(2.36). Nevertheless, there is no reason why 1-If should vanish there, since II is not a
local operator. Thus, in order to have some smoothness in time, we should ask that f,
and a number of its time derivatives vanish at time 0. This assumption is not reasonable,
and we shall not make it because it turns out that we are interested in less than the
regularity of u.

More precisely, let r sgn (k) and let denote the Hilbert transform on F [27,
Chap. V and VII"
(2.38) u )^(k) -irt(k).

In physical variables, the Hilbert transform is defined as the convolution with the
principal value v.p. (1! rx:). We shall see later that we are interested only in the trace
of ul + u: on 5;. It turns out that this trace is very regular in and x_, under the
support conditions (2.36), (2.37).

A sequence of lemmas will describe the precise regularity of the trace of u +
LEMMA 2.13. Let Uo belong to H(2), and f to L-(0, oo; H(I:)), and let u be the

solution of (2.29)-(2.31). Assume (2.36) and (2.37). Let

(2.39) z Ul + u2.
Then z belongs to L2o([0, oo); H(2)) (’l LI([0, oo); L2(2)) and satisfies a heat equation
of the form

(2.40) z + tzu + a V u vAu g,

with an initial condition

(2.41) z(., 0)= u,(., 0)+ u2( ", 0)

belonging to L2(2). Here, g has support in (-,-X) R+, and X is some strictly
positive number
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Proof The function z is well defined as a function of xl, x2, and t, because Y( is
an isometry from L2(R) to itself. Moreover, z belongs to the spaces mentioned in the
lemma, because Y( commutes with the differentiations, so that if w is in Hi(R2), so is
Ygw. If we compute the right-hand side of (2.40) in the sense of distributions, we obtain

g fl + Ygf2- 0___p_p_ y( 0___p_p
OXl

It remains to show that Op/Ox+ ff((Op/Ox2) has its support in {x <--X}, because
assumption (2.37) shows that f has its support in this set. If we take the divergence
of (2.29) in the sense of distributions, we have

Ap=V .f
Therefore, p is harmonic in the region {x => -X} x x +. By partial Fourier transform
in x,

ox Ikl- "
As p is temperate in xl, x2, p is necessarily of the form, for x =>-X,

=/(0, k,. e-I,
and therefore,

O___p_p+ (yg Op) (_lk + ik(-icr))fi 0 for Xl-->
OXl \ OX2l

This proves that the support of g is indeed in the region {xl =<-X}.
LEMMA 2.14 Let w be a solution of

wt+a2Ow/Ox2-,Aw=g forx2, t,

w=0 fort=< T,

where the support of the distribution g is included in (-,-X] x R x R+. Ifg belongs to
HS(R2x), then the trace of w on Z={0}xx belongs toH( [0, T]),for all T.

Proof Among the many possible ways of proving this result, we choose the one
which is the closest to the spirit of this article; namely, we consider the problem with
respect to the variable x, instead of a problem in time. We will perform a Fourier
transform in time and in the partial space variable x2 and perform a Fourier analysis
of the ordinary differential equation obtained in this fashion. For a correct argument,
we multiply w by e -’t, where Ix is a strictly positive number. Then v w e-"t satisfies
the equation

Ov
(2.42) vt + Ixv +a Av g e-" h,

Ox2

where h has the same support properties and smoothness properties as g. This amounts
to performing a Fourier-Laplace transform in time instead of a Fourier transform. If
to denotes the dual variable of t, and k the dual variable of x2, the partial Fourier
transform of (2.42) is

023
(2.43) (ito + tx + ia2k + ,1 kl)3 ’Ox f"
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Let p be the root of vp2-(i(w+a2k)+lz + lkl-)-- 0 which has positive real part. An
elementary computation shows that the unique solution of (2.43) which is temperate
is given by

(x, , o= o sh (o(-x)h(y, , ay

+ exp (O(x-y))h(y, k, ) dy.

Thus, we can write

1
2 sh (py)f(y, k, w) dy+ exp(-py)f(y, k, to) dy(0, k, to)=

2pv

1 feOyf(y,k,w) dy"
2pv

We can see that

(2.44) Re (p)-> C(1 + Ikl +vq-GJ),
for some constant C strictly positive, and thus, it is possible to estimate

1 + Ikl:+ I,o1:)"1(0, k, w) 2 dkdw

_<- ( +lkl2+la, l:) le"f(x,, k, o)) dyl 2 dkdw

<= f (l+lkl-+lwl:)"{fX_oo le:’y dy}{f I#(x, k, ,.o)1 = dx} dk&o.

If we first strengthen somewhat the hypotheses by assuming that, for some n,

(1 + Ikl 2+ k, to)l 2 dx dk dto< oo,

then, the result we look for can be easily deduced:

-x e-2X Re (p)

le2py] dy= 2 Re (p)

and thanks to (2.24), this quantity is dominated by all powers of k and to, and the
result is proved. To get rid of the extra assumption we made, we observe that an h in
HS(R2x R) is a finite sum of x derivatives of some functions hi, and the hj can be
taken with the same support property as h, and each hj satisfies

(1 + Ikl 2+ 10.,12)" Ihj(x, k, )1 : dx dk dto< c.

We treat the terms

eoy Nhj(y, k, to)
o dy
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by performing an integration by parts, which will amount to a multiplication by some
extra powers of p; these powers will be nevertheless dominated by exp (2X Re (p)), and

(1 + Ikl=+ Io 1=) e,y o(Xl, k, o)
OY

dy dkd

is finite for all real m.
Going back to w, we obtain the required result.
To conclude this sequence of results, we can state now the
LEMMA 2.15. Let z be as in Lemma 2.13. en, the trace ofz on belongs to H(E).
Proo Consider the new variables

t’ t, X X1 alt, x
In these new variables, the equation satisfied by z becomes

Oz
Zt’+ a2-- pA’z g,

Ox

and the suppo of g is included in the set

{(x’, t’)/t’O and x+at’-X}.

As a is strictly positive, at’ is less than or equal to zero, and we are in the case of
Lemma 2.14.

3. Analysis of the transparent bounda condition.
3.1. Introduction. Let (u,p) be the solution of (2.29)-(2.31) with initial data

satisfying (2.36)-(2.37). The normal constraint g, is defined by

OUl(3.1) ,:(,); :-p; :.
OXl OXl

We will show in this section that the restrictions to E {0} x x+ of u and the normal
constraint g, satisfy a linear pseudo-differential relation. This relation will be computed
by Fourier techniques, working on the problem

in+xN;
(3.2) V.u=0 ina+xN;

u(O, x, t) g(x, t) in

We assume here that g is given in (N; H(N)). The choice of H(N) is justified by
Remark 2.11. On the other hand, there is no such constraint in time, and it is permissible
to have a solution with values in H (N) which decreases fast in time for all nonnegative
m. Moreover, we ask that

1

Under these assumptions, we will show at Proposition 3.1 that for all such g, (3.2)
admits a unique solution u in C(+ x N).

The mapping

can be completely described in Fourier variables:

(3.3) g)(k, )= N(k, m)(k, ),
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where E is a two-by-two matrix that will be given explicitly in terms of k and to at
Corollary 3.3.

From this operator , we will define another operator , which is a nice pseudo-
differential operator, such that the restriction of the solution of Oseen system to the
left half-plane f_ satisfies the variational equation

(3.4) s(ut, v)+(u, v)+(g,

where s is the scalar product defined at (2.18) and is defined with the help of an
explicit matrix L by

(g)^(k, to)= L(k, to)(k, to).

The next step is to study the properties of. This operator is causal, which means
that if g vanishes for t-< 0, so does g. This property plus some estimates will enable
us to extend to much larger spaces.

In view of well-posedness results, we shall prove that has some useful positivity
properties; in particular, the symmetrized matrix (L+ L*)/2 is positive semidefinite.

With this detailed study of , we prove an existence and uniqueness result for
the solution of

(3.5) M(u,p) =0 in f_x,
(3.6) V. u=0 in f_x,

(3.7) U(Xl, x2, 0) u(xl, x2) in f_,

(3.8) 1= (ul.).

This problem is written in variational form, and, with very smooth data, it admits a
solution that is simply the restriction ofthe full-space problem with initial data extended
by zero in f+; the uniqueness will be a consequence of the positivity of the operators.
Once we have the uniqueness, we can extend the class of solutions for which we have
a solution, and, then, conditions (3.8) may be called transparent.

Most of the time, it will be convenient to replace (3.5) by (3.5), where

(3.5) (u, v)= (u, p)+u;

here, /x is a positive number. This amounts to considering the system solved by
(u, p)e -"t, or, in other words, to extend the frequency to to the half plane Im(to)< O.
This is permissible because we work with causal operators, and we can apply the
Paley-Wiener-Schwarz theorem.

3.2. The boundary problem for Oseen system. In this section, we consider the
problem

(3.9)

where

(3.10)

sg,(u,p)=O in f+ ,
7.u=0 inf+,
u(O, x_ t) g(xe, t) in ,

.(u,p)=Ou/Ot+txu+(a. V)u- vAu+Vp

and
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If g vanishes for t=< to, and if (u,p) is a solution of (3.9) for/z>0, then (ue"t, pe’)
is a solution of (3.9) for/x =0, with data g,(x2, t)= g(x2, t) e".

We first prove a result of existence and regularity.
PgoPosITION 3.1. Let Z be the subspace of’(R) defined by

(3.11)

Assume that

gZ iffgH(R)and o’-1(’)) H(R).

(3.12) g 9(I; Z).

Then (3.9) possesses a unique solution u, p) such that,

(3.13) u L(; H(I)+)),

(3.14) Vu L2(; LE(f/+)),

(3.15)
Ou--(; w’(a/)),
ot

(3.16) Vp L(; L2(I+))+ L2(R; H-I(I)+)).
Moreover, u is infinitely differentiable, and ifi > O,

(3.17) u, p 6e(R; H(f/)).

Proof. Let us first construct a function z such that

z e 6e(; H(O+)),
(3.18) V.z=0,

zl g.

the function z will be a sum of two functions defined by different means. We first
extend gl; let " be defined by

(x, k, g(k, ,o exp (-Ikl,
’2(Xl, k, o9)=-icrffl(k o) exp

where

cr sign (k).

We have used the Hilbert transform, of symbol -icr, mentioned in 2, and defined at
(2.38):

2(xl, ", t)= fflO’l(X1, ", t).

Moreover,

V. ’=0; ’1(0, x2, t)= gl(x2, t).

Now, in order to compensate for the bad boundary condition of the second component,
we define a function h by

h(Xl, x2, t)= d/(Xl)[g2(x2, t)-(gl)(X2, t)],

where q belongs to (1)+), (0)=0, q/(0)= 1, and finally, we let

Oh oh
Z2 2 -JC"Zl =’1

OX2 OX
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Clearly h satisfies the boundary conditions. If (3.12) holds, then an integration in xl
shows that

Similarly,

(1 +lk[2)ml,(x, k, w)12dx,dk do

I.f ( + Ikl)(21kl)-’lff’(k’ )l= dkdoa <.

aml(X,, , o9)
dx, dkdw Ikl=l,(x,, k, co)l 2 dx, dk&o

=-d Ikl2("-’/2)lff"(k’ 60)12 dkdo < oo.

This shows that ’1 belongs to L2(R; H"(fL)), for all m. We look at time derivatives
multiplied by polynomials in t, and we show by induction that ’ belongs to
6e(R; H(f+)). A similar argument shows that ’2 belongs to 6e(R; H(f+)). By
construction, g and g2 belong to (R; H*()); the Hilbert transform in the variable
x2 leaves this space invariant; therefore, gl belongs to it, and so h and its gradient
belong to 9(; H(O+)). The function z we obtain finally satisfies (3.18).

Let now

u=v+z;

then (u, p) solves (3.9) if and only if (v, p) solves

M(v,p)=-M,(z,O) inlI+xN,
(3.19) V.v=0 inlI+xN,

v(O, x2, t)=O inNxN.

The existence of a solution of (3.19) is obtained by many classical methods; for instance,
define the generator Ao of the Stokes semigroup (without advection) by

D(Ao) {u e Ho(a+)/v- f Vu. Vvdx is continuous}

and

(3.20) (Aou, v)m u J V u" V v dx.

The operator Ao is defined starting from a quadratic form on the Hilbert space Ho;
therefore, according to Phillips’ theorem, it generates a contraction semigroup in Ho.
Its domain can be computed explicitly and is equal to

D(Ao)={uHo(l-+)f"lH2(+)/(O, x2)=O}.
Let A be defined by

(3.21)

D(A)=D(Ao);

(Au, V),o= f [(a. V)u. v+ ,Vu. Vv] dx.
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Then A is obtained from Ao by adding a strongly relatively bounded perturbation to
Ao; this is because we have the inequality for all e

IlVullo--< Ilaullo/ c()llu IIo.
Therefore, A generates a strongly continuous semigroup 3-(t); this semigroup turns
out to satisfy the estimate,

-(t)II --< e-"’, for all -> 0,

because, for all u in D(A), (Au, u)>-#x(l[U[[o)2. The solution of (3.20) is given by

v(.,t)= [’ 3-(t-s)(-sg(z,O)(s))ds,

and it is clear that v(., t) is bounded uniformly on R, with values in Ho, and that, if

# is positive, it decreases fast to zero as tends to +oo. All the other estimates are
easy to obtain by differentiation and semigroups estimates, and they are global on R.
Details are left to the reader. E1

We now perform the Fourier analysis of (3.9). For simplicity of notation, the
frequency variable o) can be real, or complex with negative imaginary part; if needed,
it will be denoted r o)- ilz when this negative imaginary part is present. We need a
few notations; the differential operator C is given by

O2f+ Of(3.22) Cf=-,Ox a’+(’ikl2+’i’+ox a2ik)f;

its associated characteristic polynomial is given by

(3.23) P(k, ’;h)=-,h2+a,+,lkl2+iz+a2ik.
The discriminant of P is given by:

(3.24) a k) + lkl =)+41’(i(’+a
The real part of (3.24) is positive for all aJ and k, and for all #z => 0, because we

assumed al > 0. We denote by p the determination of the square root of (3.24) with
positive real part:

(3.25) p= a+4,(i(-+ ak)+ l, lk[2), Re p >0.

Then, the roots of P(k, r,. are given by

al-p a+p
2, 2,

and it is not difficult to check that

(3.26) Re A < 0 except if k r 0.

Moreover, we have immediately the following important estimate; there exists a strictly
positive constant 3’ such that

1
(3.27) (1 + Ik{ +4T) -<-Ip[ -< -),(1 + Ik[ + 4]-).

The first result pertaining to the Fourier analysis of (3.9) is as follows.
PROPOSITION 3.2. Let (u,p) be the solution of (3.9). Then, there exist locally

integrable functions a and such that

(3.28) /(Xl, k, r) exp (-Ik]x,)a(k, r) +exp (Ax1)/(a ,t’),
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where

c,= ,/3,
A+lklX+lkl
=k

(3.29)
Affl d- ikff, 2 0",1- i,2

ce2 =-icr /32 iA.
X+lkl A+lkl

Moreover, any couple of distributions (a’, ’) which satisfies (3.27) is equal to (a, ),
up to the addition of (1,- l)S, where S is an arbitrary distribution with values in 2 and
support in {0}k,o.

Proof. We perform a partial Fourier transform on u and p; the transformed
quantities are denoted a (a,) and/; they satisfy a system of ordinary differential
equations, with respect to the variable x, with k and r as parameters; this system can
be written

(3.30) Ca,+ 0/
=0,

(3.31) Ca2+ ik O,

(3.32) 0al + tku2 O.
OXl

If we eliminate the pressure from this system, by multiplying (3.30) by -ik, differentiat-
ing (3.31) with respect to x, and adding the two resulting inequalities, we obtain

(3.33) C ik + O.

With the help of (3.32), we eliminate ; then 1 satisfies

This is an ordinary differential equation of the fouh order in Xl parameterized by k
and r; its general solution is of the form

(k, ) exp (-Iklx,)+(k, ) exp (Ax)+r(k, ) exp (Iklx,)+(k, ) exp (A’x).

From Proposition 3.1, u belongs to L2(+x x) if g >0, and so does a; thus, for
almost every k and r, a(., k, r) is square integrable. Therefore, and vanish for
almost every k and r; thus,

(3.34) a (k, ) exp (-Iklx) + ,(k, ) exp (Axe).

Similarly, eliminating a from (3.33) and (3.34), we obtain

With the same argument as above,

(3.35) a2= =(k, ) exp (-Iklx) / =(k, ) exp (Axe).

The divergence-free relation (3.32) implies immediately that

(3.36) -[klc + ika2= O, A + ik2 O.
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If we take into account the boundary conditions,

(3.37) , O -I’- ll, ,2 O2 "" f12,

we will now express al, a2,/31, and/32 in terms of 1 and 2. To obtain al and ill.
we have to divide by A + Ikl, which vanishes only for k -- 0. In order to obtain a2
and fl, we have to divide moreover by k. In order to obtain locally integrable functions
a and , we have to show that A/A + kl is bounded in a neighborhood of zero. But,

i(+ak)+kl
a+p

and

7"+a2kA + Ik -2
a+p+2’lkl’

which shows immediately the desired estimate. Eliminating between (3.36) and (3.37),
we can write

i1 "{- ikff,2 A (ffl- icr2) + icr(A + Ikl)
 +lkl x+lkl

and there is a locally integrable function a which is almost everywhere equal to the
expression given by the first of formulae (3.29). The second of these formulae gives a
locally integrable 131, because/31 - al. From the first formula of (3.36) divided by
k, a2 is locally integrable. From the second formula of (3.36) and the expression of
13, a division by k gives the formula for/32. If a’ and fl’ are distributions which satisfy
(3.28), they differ from a and/3 by distributions S and T with support in R x {0},o.
We must have

S exp (-]klxl)+ T exp (Axl)= 0, for all

This is possible only if S and T have their support in {0}k.o, and T+ S 0. Therefore,
we can say that a and/3 are respectively determined up to the addition of S and -S,
with S a distribution with support in {0},,.

The most important consequence of the previous proposition is the following
result on the operator, which assigns to the boundary value of u the normal constraint
at the boundary.

COROLLARY 3.3. Let (u, p) be the solution of (3.9). Let E be the two-by-two matrix
given by

(3.38) E(k, ’)= -( (i’/[kl)+ ia2cr+ u(JkJ-A) icr(,A -al))-icruA u(] k A)

Then the normal constraint (-p+ , OUl/OX, , au2/Ox)lz or, is given by

or, g,
or equivalently

G(k, E(k,

Proof. From (3.29), we compute aa/axl and ca2/aXl on the boundary:

a ( Al+ik2 )
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We observe that the distribution S does not contribute, because -(Ikl / A)S--0. The
above formula proves that

(3.39) Oa -ik2,

(3.40) iAog /(A -Ikl),.

To obtain an expression for the pressure, we observe that, from (3.31), we can write

ik
The second term of this expression vanishes by definition of A; in the first term,

P(k, ; Ikl)= -alkl + i(+ a=k).

Thus,

i(A + ik)(-alk[ + i(r+ ak))

This expression can be simplified by algebraic manipulations: let y A +lk; then

P(k, , y-lkl) 0

so that

-y+ 2lkly + aly allk[ + i(+ a2k) O.

Hence,

y(-y+ 2{k{ + a)= allkl- i(r+ ak),
that is

alkl-i(r+a:k)
A +lkl

If we substitute this in the above expression of ik, we obtain

ik= -i(al + kl- A)(A + kl2).

Using once again the equation which defines A, we have

aA + lklA A== lklA lkl=- i(+ a=k),

and from here, we obtain

ik=ik 1 (Ik-a)+i a+ +i{(a-lkl)-a}.

If we divide both sides of this equation by k, we obtain, with the help of (3.39) the
unique locally integrable function equal to ; thus

u ff ff (u(Ikl- A) + a+ + ff2i(uA al).
Ox

Putting together this last expression and (3.40), we obtain the matrix E. A distribution
which is solution of our equations is equal to the expression l {(Ikl-x)+

i(a2+ Ikl-r)} +:i{ (x-Ikl)- al} up to the addition of a distribution with suppo
in {k 0}. This corresponds to the addition of a space independent constant to p,
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which is natural because p is defined only via its gradient. But, as our problem was
obtained through linearization, around a constant velocity field and a constant pressure,
this constant is equal to zero.

3.2. Variational formulation for the problem with transparent condition. To obtain
a tractable formulation for the Oseen problem and "transparent" boundary conditions,
we will write a variational formulation. The existence of a solution of the variational
problem will be ensured by simply taking the restriction of a full-space problem. A
functional problem has to be settled in order to justify this formulation; a certain
pseudo-differential operator acts on the trace of u on . Originally is defined
only on very smooth functions, and it has to be extended to a larger functional class.
After this is done, we have a clean presentation of the problem with "transparent"
condition. The quotes will be removed only after uniqueness is proved.

Let/x be strictly positive, let f satisfy the assumptions of Lemma 2.9, and let u
equal zero. According to Lemma 2.9, the solution (u, p) of (2.29)-(2.31) belongs to
C(R+; H(’)). Assume that f satisfies (2.37). We assume moreover that:

(3.41) f ((0, ); H(l:Z)).
In particular, f vanishes of infinite order at =0. Then, the solution of (2.29)-(2.31)
extended by 0 for t-<0 belongs to C(R; H(2)). Arguing as in Proposition 3.1, u
belongs to 6e(; H(-)), and its trace on E belongs to 5e(; H()). In the region
f/ x, u satisfies (3.9), with

If we still denote u the restriction of u to f_ x E, and if we multiply the equation
satisfied by u on f_ x by an arbitrary v in W(f_), and integrate, we obtain, thanks
to Green’s formula

From Corollary 3.3, this relation can be written

Let us write down the matrix a1(I/2)+ E:

alI E(k, )=((al/2)+(i/Ikl)+ ia2o’+ ,(Ikl-X)
(3.43)---- itrt,A

io-(uA-al) )(al/2)+u[kl_ A

We can decompose this matrix into the sum of two matrices:

where K1 is .given by

alI---E KI+ L,
2

(3.44) KI ( 1/IklO O0) ir"

Let Y{1 be the operator of symbol K. From the definition (2.18) of the scalar product
s, we can see that

(3.45) (ut, v)+tz(u, v)+(Y{u, v)=s(u,, v)+txs(u, v).
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The matrix L can be written as follows, recalling that (al/2)-,A p/2:

(3.46) L
ia2o"+ 1 kl + p-- icr(a + p)

2 -----io’(p--al)
2

v]kl+
It is convenient to write L as a sum of two matrices, one of which has p as a factor:

N
(3.47) L= M + N1, N1 Pz.

The expressions of M and N are given by

3.48) M ( ia2tr+ v[ k[
itral/2

(1(3.49) N=
io"

-io’a1/2

The matrix N is Hermitian positive semidefinite; we have

(3.50)

This relation explains why, as we mentioned in 2, the trace of Ul + u2 on E plays
a particular role in the analysis of transparent boundary conditions. As Re(p) is strictly
positive, we have

Re

The matrix M is not Hermitian, but the symmetrized M, (M + M*)/2 is equal to

(3.51)
M + M* ( vlk, 0 )2 0

This is a Hermitian positive definite matrix, for all nonzero k. Therefore L satisfies

(3.52) Re (La,

In particular, L+ I is invertible, for all values of the parameters r and k, and in
Hermitian norm on 2, we have

(3.53) [(t/I)-’al_-<lal Vt in C 2.

We have thus shown the following result.
PROPOSITION 3.4. For any f satisfying (2.37) and (3.41), for u=0, and for any

positive tz, let (u, p) be the solution of (2.29)-(2.31). If we denote still by u the function
u restricted to ll_ x / and extended by 0for <- O, then u satisfies the variational inequality

(3.54) s(ut, v)+tzs(u, v)+(u, v)+(u, v)= (f, v) /v W(I_),

where the pseudo-differential operator is defined by its symbol L, given by (3.46).

3.3. Functional analysis of the operator . The class of data u and f for which
we have a solution of (3.54) is much too restricted. Thus, we extend it in several steps,
by giving first a suitable definition of the domain of . We rely, of course, on the
positivity of the matrix L observed in (3.47) to (3.52). Then, we shall give a dense
subset of the domain of, and prove that is a causal operator. Finally, the expression

((u)(t), u(t)) dt is greater than or equal to zero, if u is in the domain of , and
vanishes for -< 0.
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The operator is a pseudo-differential operator that belongs to the class S,o of
[17], [20], and [30]; it belongs in fact to a certain anisotropic class, which could be
defined. As we do not seek the highest possible generality, we will be content with
results specific to our variational problem:

DEFINITION 3.5. The domain D() of is the space of functions g such that
there exists an h in L2(; W-1/2()x H-1/2()) such that

(3.55) = (I + L)-lh.
Then, on D(W), is defined by

(3.56) g h g.

An obvious consequence of the definition and of estimate (3.53) is that D() is
a subspace of L2(R; W1/2x H-/2). A sufficient condition for g to belong to the domain
of is given by the following lemma.

LEMMA 3.6. e set Y offunctions g on such that

(3.57) g L(; H/()) and g +g H/(; H-/())
is a subset of D(); moreover, ifZ is the space defined at (3.11), (; Z) is dense in
L(; W1/x H-/) in the following sense; for every g in D(), there exists a sequence
of elements g of(; Z) such that g converges to g andg converges to g in
L2(; W-1/2 x H-l/2).

Proof According to estimate (3.27), there exists a decomposition

p=p+p,
such that

Ip,I TI + }k} =, IP=I TI + I}.
We decompose L as a sum

The first functional assumption on g implies that

IIni + ’k’2’’ 2 dk dw <+.

The coefficients of M are bounded by y’(1 +lkl), and thus,

1
M + p

ff dkd < (7 + T’) 4i + Ikl=l#l = dkd <+.

The second functional assumption means that

1 + Ik[ = Iff,- i#212 dk dw <+.

The second piece ofL is estimated by

IP2NI 2

dkd T I1- ’g212 dkd <+.
l+lkl = l+[kl =

This proves thatg belongs to L2(R, W-1/2(R) X H-1/2(R)), since H-1/2 is a subspace
of W-1/. On the other hand, g belongs to L2(; W-1/2()x H-i/2()), and thus, g
belongs to D().
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To build a sequence g, with the required properties, let g belong to D(), and
let h g; let ,, , and X, be elements of 6e(R) such that

q3,(k) 0 if Ikl- or if Ikl n; 0. 1 if
2
-<=lkl<=n-1,
n

0 _-< o, _-< 1 everywhere;

O.(t) nd/(nt- 1) with q belonging to (R), fa 0 dx 1,

X,(t)=exp =:>X,(to)=
m

exp

We define

h, h *

Clearly, h, belongs to H(R, Z), because the choice of , disposes of all problems at
k=0. Moreover, for any given e, there exists an n(e) such that for n> n(e),

Fix n such that this inequality holds. We define now

g, =(+ 1)-lhn; gmn --Xmgn.

From estimate (3.53),

IIg g, L2(R; w-l/2(lI)xn-l/2()) --=2"
Let

hmn=(+l)gmn,

which is well defined thanks to the first part of the lemma. In the Fourier variable,

h,,,,(k, r)-h",(k, r) (L(k, z)+ 1){(X,.(.)- t’) ft,(k, .)}(r).

As m tends to infinity, ),, ft, converges to ft, in I’(E), for all rn. As the multiplica-
tion by L(k, r) maps -I(E) continuously into -L2(E), there exists an rn such that

this proves the density of
Now, we are able to prove that is a causal operator.
LEMMA 3.7. Ifg belongs to D(), and vanishesfor < O, theng vanishesfor < O.
Proof. Let g be an element of D(), and let h (+ 1)g; assume that g vanishes

for <-0. Let ,, @, and g,, h, be as in the previous lemma. Then, as we can see in
the Fourier variable,

g. g * (q.@.).
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The choice we made of . implies that

g.=0 for t>0.

The choice of q, implies that

ft,(k, to)=O for [kl -> n.

If 0 is a square integrable function on that vanishes on _, we can write

O(to- Ox)= O(t) exp (-it(to- il)) dt,

for/z O, with the estimate

I(to i/x)l -< e-2t" dt <-101=

Therefore, for g,, we have the estimate

1IL (k, oo-i)l<lx=-g.(k, )IL2(R’)2/ if/z _>-/o> 0,

where L2( t) is the space of square integrable functions of time.
We define an operator k by its symbol:

where the tilda" denotes the Fourier transform with respect to the time variable. If v
belongs to L2(), then kV belongs to H-1/:(). The root/9 can be extended to the
half-plane " to- i/z,/x-> 0, as an analytic function of to, with the estimate

We can apply the Paley-Wiener-Schwarz theorem to ..kx2__,kgn (k, ); from the previous
considerations, for almost every k, L(k, z),,(k, z) is analytic in - for/x =-Im(z) > 0,
and satisfies an estimate of the form

IL(k, r)L(k, ’)l----< C(k, go)(1+l’l+Igl) Vg_-->go.

Thus, for almost every k, to L(k, to itx), (k, to i/x) is the Fourier-Laplace transform
of a distribution with support in [0, oo). On the other hand, L(k, to- itx)P,,(k, to-itx)
is square integrable with respect to to, and therefore,

(,_.,o)-(L(k, .),,(k, .))=0 V t<-0, and a.e. k,
and finally,

g,=0 Vt-<0, and for all x2.

By density, the same result holds for g.
An immediate consequence of Lemma 3.7 is the following.
LEMMA 3.8. Let u belong to H(E2), andf to L2(O, oo; La(2)). Assume that u and

fsatisfy respectively the support conditions (2.36) and (2.37). If Ix is strictly positive, and
if (u, p) is the solution of (2.29)-(2.31), extended by zero for negative time, then the
trace of u on E belongs to D().

Proof. According to Proposition 2.7, u belongs to L2(O,, W(f_)), and according
to Proposition 2.4, the trace of u on E belongs to L(0, c, W1/2x H1/2). On the other
hand, the support condition enables us to apply Lemma 2.14, and therefore, (ul +
belongs to H(Z).

We first obtain a result of existence, under the support condition on.. u and f,
with some functional analysis on .
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PROPOSITION 3.9. For all u in H(I_) and all f in L2(0,, L2(I_)) that satisfy
the support conditions (2.36), (2.37), andfor all strictly positive tx, there exists a function
u satisfying the variational equality (3.54) with initial data u, and such that

u e L([O, oo); H(O_)),
Vu L([0, ); L(f_)),
u, t([0, ); W’(_)).

Proof. We have to approximate a right-hand sidef+ u(R) 6 by a smooth right-hand
side fn belonging to ([0, c); H(2)). This is clearly possible by truncation and
regularization. The passage to the limit in the variational inequality is easy.

We will obtain a much better result of existence, not only for the sake of exhaus-
tivity, but also to have a convenient frame for the proof of uniqueness. We write (3.52)
as a problem with time in the full real line, extending u by 0 for t=>0; after an
integration by parts in time, we have for all v in L2(R; W(II_)) such that vt belongs
to L(R; H(12_))

(3.58) J {-s(u, vt)+ tzs(u, v)+fi(u, v)} dt+(u, *v)y. s(u, v(O))+I (f’ v)dt.

Here, of course, 37* has L* for symbol, the domain of 37* is defined similarly to the
domain of 37, and the trace of a test function v on E belongs to D(37") thanks to
Lemma 3.6 and simple interpolation. We need to define three more operators to prove
existence and uniqueness.

DEFINITION 3.10. The operator A is an operator from W(f_) to W’(f_) defined
by

(3.59) s(Au, v) fi(u, v) Vv W(II_).

The operator B(-) is an operator from W(fI_) to W’(fI_) defined by

(3.60) s(B(-)u, v)= Ia L(k, r)a(O, k)(k, -) dk, v W(YI_).

The operator S is an operator from L(II_) to H(I-I_) defined by

(3.61) s(Sf, v)=(f, v) ’v H(12_).

The operator A is well defined; this is a classical result. The mapping which
assigns to a pair (u; v) belonging to W(II_)x W(I_) the expression

L(k, r)a(O, k)(O, k) dk

is clearly a sesquilinear continuous mapping, and thus B(r) is well defined. Finally,
the mapping

v- (f, v)

is linear continuous on H(12_), and Sf is thus well defined.
The existence and uniqueness theorem reads.
THEOREM 3.11. For all u in H(fI_) and all f in L2(0, o; L-(fI_)), and for all

strictly positive tx, there exists a unique u in L([0, ); H(YI_))f’)L2([0, c); W(I_))
such that u, belongs to L2([0, ); W(YI_)) and

(3.62) f,{-s(u, vt)+s(u, v)+(u, v)} dt+(u,*v)).=s(u, v(O))+ f(f, v) d.

for all v in L2(R; W(_)) such that vt belongs to L2([; H(I_)).
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In order to prove this theorem, we need a positivity result which will be useful
for the existence part.

LEMMA 3.12. Let g belong to the space Y defined at (3.57). Assume that u vanishes
for negative time. Then, for all positive T, we have

r
(g, g) dx2 >- O.dt

Proof. Assume first that g belongs to 6e(R; Z), and vanishes for negative time.
Let u be the solution of (3.9). Then, if we multiply the equation, (u, p) 0 by u and
integrate over f+, we obtain

(g, g) dt- Ilu(’, T)II=+, {(u, u)+ llu(’, t)[12} dt-(?TClg( ", T), gl(’, T))F

--/t/, (ffrlgl( t), g(’, t))r dt,

where Yf is the boundary operator of symbol Ik1-1. We check that Ilul12-(Yfg, g)r is
greater than or equal to zero. By an argument analogous to the one we used at
proposition 2.4, we have the identity

(’’{g, gl)r----2( Ul, ffiru2)

and

Thus the positivity holds for smooth data. By density and causality, it will hold as
stated in the statement of the lemma.

Proof of the theorem. We first prove uniqueness; denote t the partial Fourier
transform of u in time. If u is the solution of (3.62), it satisfies

(3.63) itoa( r) + tza(
If the data vanish, we have

itot(z) +/xt(r) + Ate(r) + B(’) t(r) 0.

For almost every to, t(-) belongs to W(I_). If we multiply the above equation scalarly
by t(r) and take the real part, we obtain

(3.64) Re {/xs(t(r), t(r))+(t(r), t(z))+ s(B(’)(’), t(r))} 0.

The definition of fi and B(-) implies that the corresponding terms in (3.64) are
nonnegative; there remains

Re (/zs(t(-), t(z)))_-< 0,

and this implies that t vanishes almost everywhere. We can conclude the uniqueness
of the solution of (3.62).

Let us prove the existence under the assumptions of our theorem; if u andf satisfy
our support condition, we know that there exists a unique solution to (3.62). If this
support condition is not satisfied, extend u and f by 0 in f/+, and approximate these

0extended u and f by translated data un and fn that satisfy the support condition. For
the solution u, the positivity of implies the estimate

s(u,(T), u,(T))+ {txs(u,,(t), u,,(t))+(u,(t), u,(t))} dt<-s(u, u)<-s(u, u).

An easy passage to the limit gives the result, l-]
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4. Absorbing boundary conditions. This section is dedicated to the approximation
of the pseudo-differential operator by more manageable operators. We have seen
that the symbol L of is a two-by-two matrix which is algebraic in r, k and r sgn(k).
We would like our approximation of to be local in space and time, which would
mean that its symbol is polynomial or rational in T and k. Unfortunately, we do not
know how to approximate r or Ikl by rational fractions of low degree; thus, we will
be content with an approximation which is rational in r, k and r. The idea is to
approximate the root p by a sequence of r, which keeps the essential property Re(r, => 0.
We need a number of technical results that precisely describes the properties of the
sequence ofapproximations. These properties enable us to prove a rather weak existence
and uniqueness theorem for the problem with absorbing boundary conditions. Then,
we estimate the difference between the solution ofthe problem with absorbing boundary
conditions and the solution of the problem with transparent conditions. From this
estimate, we deduce a better existence theorem. If u is small, the ditterence between
the two solutions is small with a power of u; when u and f satisfy the support
conditions (2.36), (2.37), the ditterence is estimated in a space of smooth functions.

4.1. Approximation of the symbol L. We approximate the transparent boundary
conditions in constraint formulation. If we approximated the symbol of the operator
g (Ou/Oxl, p), we could run into trouble and obtain an ill-posed problem.

We recall that we obtained at (3.47) a decomposition of the matrix L(k, T), which
we write now with an explicit dependance on the viscosity u.

N(k)
(4.1) L(k, z, u)= g(k, u)+ p(k, r, u).

2
The matrix M is of degree 1 in ; N(k) and the Hermitian symmetrization of

M(k, ) are both positive semidefinite matrices.
Now, we have to approximate p(k, r, u) so that the successive approximations,

denoted r,, will satisfy the essential property
(4.2) Re (r,(k, r, u)) -> 0 Vk,
This problem has been solved in [13] but with very few proofs. The principle of the
approximation has been obtained by observing that for all complex number d we have

hd -]k]2- ko’
(4.3) ,

-h +a+d
where a=a/u and to’ =(r+a2k)/al.

The choice of d ko’ and of the initialization h =-ko’ (because ho might be a
special case) defines a sequence recursively by:

h,,d -[k] 2 ito’a
’n+l -A,+a+d

which has the three important properties:
(i) Each of the A, is rational in k, z and
(ii) The associated initial boundary value problem is, at least formally, well-posed

because Re (A,)-< 0, and we will prove that it is actually well-posed;
(iii) A is the In-1, n-1] Pad6 approximant of A around v=0 (see [13]).

More precisely, we have the
DEFINITION 4.1. Denote

(4.4) o’

al

z+a2k



338 L. HALPERN AND M. SCHATZMAN

We define"

(4.6) ho =0,

(4.7) hi -ito’,

-ito’h,, + iato’+ k2

(4.8) A.+I
h, a ito’

(4.9) r. al 2uA..
We will give now a sequence of technical lemmas on r, and

LEMMA 4.2. For all n >-_ O, k , to , u > O, r, is well defined and

(4.10) Re (h,)-<0.

Proof. For n =0 or 1, the result is obvious. Assume that Re (h,)-50; then, the
expression h,-a + ito’ has a strictly negative real part; moreover,

so that,

(-ito’h,, + iato’+ k2)(. a + ito’)
]h, a + ito’[2

[X, a + ito,[2
and by induction, the results holds true. U

LEMMA 4.3. Let p be as in (3.24) and h (al-p)/2,; then, the following relation
holds"

(4.11) hn+l--h
(An A )[k2+ tot2]

h,, a -/to’][h a ito’]"

Proof We substitute d =-ito’ in (4.2)

-ito’h + iato’ + k2

Therefore, subtracting this expression A from the expression (4.7), we obtain
immediately (4.10). Vi

The recursive definition of , by a sequence of homographic transformations
shows that A, is a rational fraction in k and to. To obtain more information on the
sequence A,, we study the particular case a 1. Then (4.8) becomes

ito ’h, + ito + k2

(4.12) An+ A. ito’- 1

we define P. and Q. by

(4.13)

(4.14)

and

(4.15)

(4.16)

P.+I -ito’P,, + ito’+ k2)Q.

Q.+,= P.-(ito’+ 1)Q..

Re (An+l)
[k2+ to,2] Re (A, a)
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Then, we have

(4.17) A,
Q,

An obvious induction shows that P is at most of degree n, and that Q, is at most of
degree n- 1, globally in k and to’. Let P, and Q, be decomposed as a sum of globally
homogeneous polynomials in k and to’, of decreasing degree:

(4.18) P. P + Pnn-1 +...-t- pO,,

(4.19) Q, Q-I + Q,- +... + QO;

we now define the polynomial Z, by

(4.20) Z, P + kQ,.

Let

(4.21) z k- iw’.

Then Z" satisfies the following relation:

(4.22) Z,,+I=Z(Z,,-Q,,),

and if we decompose Z" into a sum of homogeneous polynomials

(423). Z,,=Z"+Z"-+ .+Z’,,,
then we can deduce Q" and P" from Z" by

(4.24) P" Im (Z’)+ Re (Z2,)+ Im (Z3,)+...

Re (Z’)+ Im (Z])+ Re (Z3,)+...
(4.25) Q"

k

Of course, these expressions terminate differently according to the parity of n.
LEMMA 4.4. Assume that ce 1. Then, there exists a polynomial R" of degree n- 1

in one variable such that Q’- can be written as

The zeros of R" are real and simple and except for k O, the next term O,-(k, kp)
does not vanish.

Proof. A simple induction shows that P, and O- are given for n odd by

/P Im (z’),
(4.26)

Qnn-l= Re (z")/k.

When n is even, they are given by

P," Re (z’),
(4.27) Q,,-1 [i Im (z")]/k.

The polynomial R’(X) is given by

R" (X) Im (1 ix)i if n is even,

R’(X) Re (1 iX)" if n is odd.
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From these formulae, Rn is of degree n- 1 and the roots of Rn are real and simple.
Geometrically, these roots are the ordinates of the intersection of the straight lines

1 + r eik/n with the imaginary axis, when n is even; when n is odd, they are the
abscissae of the intersection of these same lines with the real axis. There are exactly
n of these lines. When n is even, one of these lines is parallel to the imaginary axis
and another is the real axis; this yields the announced n- 1 real solutions, one of
which is zero. If n is odd, one of the lines is the real axis, which we discard, and there
remain n- 1 real distinct nonzero solutions. For the last assertion, we consider first
the case of n even:

Re (Z,-1)

Relation (4.22) implies that

n-1

j=l

With the help of (4.26) and (4.25), we obtain

Re (Z-l) -Re zJQ,--\j=l

(,1 ilmzn-J ,- Re z--)=-Re z+ z
j= k j= k

odd

Im (z) Im (z-)- 2 Re () Re (-)
k j=

odd

Assume now that z is a root of Q- which does not vanish. Then, it is real and the
above formula reduces to

Re (Z,-)
2k’

which does not vanish.
The proof in the case of n odd is analogous and left to the reader. [3

In the next lemma we give an estimate on An + (ito’/n), which will enable us to
work on the variational problem for absorbing boundary conditions.

LEMMA 4.5. Assume that a 1. Then, for each n, there is a constant Cn, which
depends neither on k nor on to’, such that

(4.28)
ito

--< C,,(1 +lkl) -.
Proof. We observe that in

ito’ nPn + ito’Qn
rl nQn

the term of highest degree in to’ of Pn is (-ito’)", and the term of highest degree in to’
of Qn is (-ito’) n-l, so that nP, + ito’Qn does not have a term of degree n in to’. Thus,
we have the estimate

(4.29) InPn + ito’Qnl <= C,n{ 1 + Izl"-’ + lkl
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To estimate from below the denominator Q,, we consider first the case when n
is even. Let (p)l<-_p<-,,-1 denote the zeros of Rn, and let SCq denote the zeros ofX (Q-2)
(1, X). We make the convention that

1 "-0.

Lemma 4.4 implies that there exists a/3 such that

min I-1 =/>0.
l<=p<=n--1

Therefore, this suggests an estimate on three different regions:

," (k, ,o’)/Ikl=/ I,o’1 = < r=},

=: {(k, ,,,’)/Ikl=/l,o’l’->-r and minp I,,-,o’/kl<-_. {(k, ,o’)/Ikl =/ I,o’1 = _-> r2 and minp ISrp to’/k > 3’}.

For any positive r, Qn is bounded away from zero on 1; this is a consequence of
Lemma 4.2. The precise choice of r and , will be made below.

We can see that Q,"- is the product with k"- of an imaginary polynomial R,
whose roots are all real. On the other hand, Q,,-2 is real. Therefore,

n--3

j=l

n-3

_-> min (I (-1, (-1)
j=l

where the C are positive numbers depending only on n. We have the relations

and

In the region 2, I(co’/k)-pl >/3-3,. Therefore, if we choose 3/so that

(4.30) y<=-,
we obtain the estimate

IQR-2I-> Ig’llkl ’-2

In the region =, [w’ =<lkl(T+maxp I1), and therefore, there exists a constant
such that

(4.31) IQ-=I C=lzl-.
We argue similarly in the region 3; the homogeneous term Q- satisfies

I-ll=lgllkl n-1 1 I tin-1 1 Ikp
p=l p=l
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If [k/w’ <_- e, where e is so chosen that e maxp Il , then

1

2"-18 n-1

If the converse inequality holds, then

Q."-I->-Igl Ikl- ->- C4lzl-.
Finally there exists a constant C5, such that

(4.32) IQ."-I-> clzl- v z in yt3.

The number r must be chosen so that

n-3

Izl > rmin (G.Izl "-=, Cs.lzl "-1) > 2 E Clzla.
j=l

Then, there exists a constant C6n such that

Finally,

IQl c.(l +lzl "-1)

io)
< Gin{1 -+-Izl"-’ + Ikl Izl"-’}

C6. 1 +[z 1"-2) =< C8,(1 + Izl + Ikl Izl) on t2;

the inequality of the statement of the lemma is satisfied, because Iw’l constant Ik[ on
Yt2. On the other region,

ito’ Cl.(1 + Izl"-’ + Ikl Izl-’) _< C9,(1 +lkl) on.
n C7.(1 / Izl’-’)

Here, the inequality stated is clearly satisfied. No difficulty can come from region 3"
The proof when n is odd is analogous and left to the reader. [3

We can now state an estimate in the general case.
PROPOSITION 4.6. There exists a constant cn depending only on al and a2, such that

(4.33)
io) (1-4- vlkl)

Proof. In the general case,

/n+l
-ito’A. + iaw’+ k2

An a ito’

then,

A.(k, to’, a) P. k, to ’, o
Qn(k, w’, a)’

where

0P,(k, to’, a)= P,+oP-’+. .+a Pn,

Q. (k, w’, a) Q"-’ + aQ’ -2+"" + a"-’ QO.
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or, in other terms,

Now, we can use (4.26):

ito,,, k, ,o ’, , +
n

a An --,--, 1 C,,o(l /lk/l) 2.

This proves the proposition.

4.2. Variational formulation: existence, uniqueness, error estimates. In this section,
we shall state a variational formulation which is suitable for the analysis of absorbing
conditions. Given data u and f, we obtain by the Fourier method a unique solution
of the problem with absorbing boundary conditions of any order n. This is not enough
to obtain existence in nice spaces. One expects that the larger n, the closer the solution
with artificial boundary conditions to the full space solution. This result is obtained
by the analysis of the error, if the data satisfy the support conditions (2.36) and (2.37).
It turns out that the error is in a better space than the solution un; using causality and
positivity, we obtain the existence and uniqueness in convenient spaces.

DEFINITION 4.7. Let, for n 0

(4.34)

and

(4.35)

Lo(k, r, )= M(k, r, O)+-q N(k)

Ln(k, r, ,)= M(k, ’, ,)+ rn(k, r, ,)N(k)/2.

The operator &tn is defined by its symbol

(4.36) n(u) ff-l(Ln(’, ", ,)t(0, .,. )).

The variational formulation (3.58) is approximated by:

f{-s(u, v)+txs(u, v)+(u, v)} dt+(u,*,v)r.=s(u, v(O))+ f(f v) dt,

(4.37)

’ v L(; W(f_)) such that v, L(; H(12_)).

We have a first result of existence and uniqueness, as follows.
PROPOSITION 4.8. Let u belong to H, and letf belong to L-(; H(f_)). Then, for

n >-_ 1, there exists a unique u in H-(; H), such that, for all v in H(; W(I)_)), (4.37)
holds.

Proof Define an operator B, (to) by

(4.38) s(B,,(r)u, v)= f L,,(k, r)a(O, k) (0, k) dk V v W.

We solve (4.37) by Fourier transform in time:

(4.39) ito(tn(r) + Ate, (r)+/zt, (r)+ B, (r)t, (r) u + Sf(r).
Here A and S are defined respectively at (3.59) and (3.61).
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We estimate the solution of

(4.40) kot3n (’) + At3n (r) +/xt (’) +B (-)t (r) v
in terms of I1 11,, and IIvll . If we multiply (4.40) scalarly by the conjugate of ,(t)
and take the real pa of the result, we obtain the estimate

(4.41) I1()11 CIIvll ,,
from the positivity of the operator B,.

In order to obtain the H estimate, we take the imaginary pa of (4.40) scalarly
multiplied by the conjugate of , (w), and we obtain, for n 1,

ws(,(r), (r))+ al+ NB,(O, k, r) v,(O, k, ) dk
nail

Im ls(v, ,(r))-s(A,(r), ,(r))
(4.42)

-J Mv(O, k, r) v(O, k, r) dk

+ +-i N(o, , ). v(o, , )
n ha2

The most interesting term in the right-hand side of the above relation is the integral
term which has (A + i’/n) as a factor of the integrand; to estimate this term, we use
Proposition 4.6. We will have a result if we are able to estimate k(0,., ). This will
depend on additional regularity on (r). Let D denote the differentiation with respect
to x; if we apply D to (4.40), we can write, because B,(r) commutes obviously with
D,

(4.43) iP,(r) +(r) + AD,(r) + B,(r)P,(r) Dv.
From (4.41), we have

P r)ll w C Dvo w, C vo .
Now, this inequality enables us to conclude that, for 0,

(4.44) ]ls(,(r), (r)) C([lv[ln).
This relation concludes the proof of the existence. The uniqueness is as in the proof
of Theorem 3.12.

There is an analogous result for n 0; as it is easier, its proof is left to the reader.
PROPOSITION 4.9. Let u belong to W’; then, there exists a unique u in H (; H)

such that, for all v in H(; W), (4.34) holds.
These H estimates are of course very bad, but we will obtain better after we

make error estimates. Let us denote

(4.45) e,=u-u.

THEOREM 4.10. Assume that u and f satisfy the support conditions (2.36) and
(2.37); then, for n 1, and for all positive p, the error e, satisfies the estimate

4.46) Ile.ll.; c,llll.+llfll;.).
For n O, the exponent 2n has to be replaced by 1 in relation (4.46).

Proo We subtract (3.63) from (4.39), and we obtain

(4.47) i +A, + + B(z), (B- B)(r).
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The point now is to estimate the norm of (B-B,,)(z)a(-) in W’(_), so as to utilize
(4.38). For n _-> 1, we deduce from (4.8) and (4.32) that

s((B-B,,)(7")a(’), v)= dk.

We already know from (4.10) that

An easy algebraic computation shows that there exists a constant c’ such that

IA,- AI c’ (Ikl a+ 12).
On the other hand, under the suppo conditions, Xu[x belongs to H(2). Thus, for
all p, there exists a constant Cp such that

N(0, k, )1 c( + Ikl 2+ 112)-,
These considerations imply the estimate

s((B B,)() if(r), v)l C"-’ "CpC’ f (I kl 2+ Ir]2)" 1 + [kl2+ Irl2)-l (k)l dk.

If v is taken in then is integrable on E, and there is a constant Cp,, such that

Thus, we obtain

II(n-
From here, the conclusion of the theorem is immediate. The case n 0 is completely
analogous.

Remark 4.11. The constant Cp,, which appears in (4.46) increases with n;
moreover, the sequence A, converges to A only for bounded values of A and o. If one
wanted to prove that the limit of the sequence u, is u, one would have to estimate an
integral involving arbitrary powers of (o ’2+ k2). Therefore, it is likely that a convergence
theorem would need very strong conditions over the data.

COROLLARY 4.12. Under the assumptions of Theorem 4.10, u, is an element of
L(a+, U(n_)) L(a+; W(n_)).

Proo From Theorem 3.12, we know that u is an element of L(+, H(O_))
Le(+; W(O_)); as the error e, belongs to the same space, the corollary holds.

In order to get rid of the suppo conditions, we prove some positivity results for

LEMMA 4.13. The operator , is causal; if g is an element of H(2), which
vanishes for lesser than or equal to zero, then

(4.48) Re (&g, g}r de N 0.

Proo The causality of comes from the inductive construction of I; it suces
to observe that I admits an extension to the half-plane Im (r)<0, and that this
extension has polynomial growth. By induction, the same holds for the I. Details of
this proof are left to the reader. The second pa of the lemma relies on the decompo-
sition

1 d
(4.49) +--

n
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where the symbol of , is bounded with respect to r. This decomposition is an
immediate consequence of Lemma 4.6. Arguing as in the proof of Lemma 3.7, and
with the help of a technique used in [21], we define ,(k,. by

(k,. )u(t) ,o_.,{L,(k,
and similarly N*(k, .), recalling the definition (3.50) of

If we let

u(t) if0=< -< T,
u(t)= u(T)(T-t+e)e -1 if T<=t<-_ T+e,

Oif T+e<=t,
then

Re f (k,.)u(t) u(t) dt= Re f L.(k, -)(r) u(-) doo>=O.

On the other hand, by causality,

Re (k, )u(t) u(t) dt= Re (k, )u(t) u(t) dt

T+e

-Re .(k, .)u(t) u(t) dt.
.IT

The first term is greater than or equal to zero; we estimate the second one as e tends
to zero; with the help of decomposition (4.49),

T+e

lim Re (k, )u(t) u(t) dt=O,
eO T

because , is bounded with respect to ’;
T+e due(t) 1

lim Re A; k, u dt k, u T) u(T)
-.o aT dt 2

as is shown by a straightforward computation. This shows the lemma. [3

Now we can give a much more precise estimate under the assumptions of
Theorem 4.10.

COROLLARY 4.14. Under the assumptions of Theorem 4.10, the solution u with
absorbing boundary conditions satisfies the estimate

1
s(u.(t), u.(t))+ {txs(u.(t) u.(t))+l(u.(t), u,,(t))} dt

2

(4.50)
1 o, uo) + (f(t), u.(t)) dt.--S(U

-2

Proof. This result is an immediate consequence of Lemma 4.13; one has only to
substitute v by u in the variational equality (4.37). We can do this for smooth enough
data; if u and f are smooth enough, ut belongs to L2(R+; H(f_)). By error estimate
(4.43), u, belongs to the same space. Therefore, using the integration over [0, T], the
positivity and a density argument, one obtains the desired result. [3

Finally, we obtain the most general existence and uniqueness theorem.
THEOREM 4.15. For all u in H(f_) and all f in L2(0, 03; L2(-_)), and for all

strictly positive tx there exists a unique u in L(R+; H(O_)) f’) L2(N+; W(f_)) such that
ut belongs to L2(N; W’(_)) and the variational equality (4.37) and the energy inequality
(4.50) hold.
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Proof. It is enough to approximate any initial data by initial data satisfying the
support condition. Then, the energy estimate gives the existence by standard procedure
of extraction of subsequences. The uniqueness depends only on the positivity and still
holds. 1-]

4.3. Explicit formulations. We write problem (4.37) explicitly for n 0 and n 1.
The variational form will be convenient for computations. We give the associated
boundary conditions; for n--2, we use an auxiliary unknown.

Let us recall first that a product in Fourier space corresponds to a convolution in
physical space. One of the important operators is the convolution by the inverse Fourier
transform of pf(1/Ik[); it is defined by

?{u(y) ;( u( k)pf(1/Ikl) ).

The kernel K of :7{ is given by

(4.51) g (x)
1

Log Ixl),

where 7---0.57721... is the Euler constant. Then, the scalar product s admits the
expression

s(u, v)= I_ u(xl, x2)v(xl, x2) dx axe
(4.52)

""-- ’ Ul(0 X2)V(0, XZ) dx2- Log ]x2-Y2lul(O, xz)v(0, y) dx2 dy2

where the barred integral means that a principal value has to be taken.
Another impoant kernel is the kernel of the Hilbe transform, which is equal

to vp(1/x).This distribution is not locally square integrable, but from the relation

11 11l
We deduce

and the kernel K of if{ is locally integrable.
According to Definition 4.7, the symbol ofo is the matrix Lo given by

Lo(k, z, ,)= M(k, z, 0)+ N(k).

the value of ro is given by (4.6) and (4.9); ro al. Therefore,

(4.54) Lo(k,’r, ,)=(ia2tr+(al/2) -kral)0 a/2

Therefore,

al(Loa, 3)=---(a, )r+(-io(a,-au,),
Z
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If the vector product is denoted by the symbol , this last expression can be rewritten
as

al(Lou, 3):--(u, B)r+ (-io’a a, l)F.

We obtain the following expression of (WoU, v):

al(o90u, /))-’-7 (U, v)u+(a X u, Vl)F,

or, with the help of (4.53),

a ( OVl(4.55) (oU, v)=(u, V)r+ axYCu,
OX2/F

Finally, the variational formulation for 0-aificial conditions is stated in the following
proposition.

PROPOSITION 4.16. For n O, the variational formulation (4.37) is equivalent to

(4.56) s(u, v)= (u, v)_+(Y{u, V)r;

(4.57) s(u,v)+s(u,v)+(u,v)+(u,v)r+ ax2gu, Ov =(v) Vve W(a_).
Ox2/ r

Proof The above dictionary of kernels proves that the following variational
equality holds:

--S(U, Ot)+S(U, O)+(U, O)+(U, O)+ aXff{u, 001 dt
Ox/

f ( v) dt + s(u, v(0)).

for all test functions v in L(; W(_)) such that v, belongs to L(; H(_)). Observe
that the second integral along F makes sense because of the characterization of the
trace on F. Using a test function of the form

v= W@,

where v belongs to W(_) and is a smooth function, we obtain (4.57). U
In the case n 1, L1 is more complicated:

r is given by

Therefore,

rlL,(k, ’, ,)= M(k, ’, u)+T N(k),
Z

2ui
r a+ (z+ azk).

a

(4.58) L,(k, r, ,) Lo(k, r, )+ lkl +-- (r+ ak)N(k).

Therefore, we have only to compute the extra terms which did not appear before:

2" Ox’ r
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In the same fashion,

ikN(k)a. dk =1- ika. dk+ Iklxadk2"rr 2"rr 2"a"

u, + x, 1
r OX2 OX2 F

N(k). a-I .a+ (-i)
2 2 2

=(u, r)r+ (Cr x u,

We can summarize this calculation:

OX2 F al V

x,l +--(u,+u,v)v+(Yfvx(u,+u),l)v.
OX2 OX2 v a

Finally, we have the following result:
PROPOSITION 4.17. For n 1, the variational formulation (4.37) is equivalent to

P a
s(u,, v)+--(u,, v,)+(ycv x u,, )+ os(u, v)+a(u, v)+(u,

a

(4.59) + a x Y{u, OVt + v y{
au Ov

+-- u, + x,l
Ox/r Ox’ r a

=(fv) vin W(O_).

Proof This is simply a consequence of the previous computation.
In order to obtain the strong formulation of the boundary conditions, we observe

hat if the matrix E is defined by

alI(4.60) E K Lm,
2

where K is given by (3.44), then the associated operator gives the boundary
condition

(4.61)
The matrix Eo is given by

E ( ia2" i’r/l i tr).
Therefore, the corresponding boundary condition is given by

(4.62) trll _yOu+u x a,
Ot

(4.63) O’12’-- 0.

The same kind of computation gives the result for n- 1"

OUl(4.64) O’11 -77{ +u x a +v 0ul + a2 (U + U2)
Ot Ox2 al

(4.65) Ou+__ a (-u +u)
022 al
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In [13], the family A, defined by (4.4)-(4.8) had been introduced to design
absorbing boundary conditions for the advection-dittusion equation u, + aV u ,Au

0. It turned out that with this special choice, the boundary conditions assumed a very
special form, namely

O+aV u=0.

The analysis is much more intricate here, and we will merely outline a possible
strategy for the case n 2. It relies on the introduction of an unknown auxiliary,
defined on the boundary. This technique had been initiated in [23] and proved to be
very useful [3]. Using the symbols and the expression of A2 and A1, we get a formulation
of L2 as

2 k2-k- ’2
L2=L+’(I-2)N, or L2=L- N.

1 + 2iw’,

Let us introduce the auxiliary function q defined on the boundary through its Fourier
transform by the expression

(4.66) , Na q,
1 + 2ito’

or equivalently, using the fact that

( 2’(t X)) (0 1( X))(4.67) 1+-- +a2 (o1+ Y(02) + 2’ i+- +a2 (Ul+ u2) 0.
a2 Ox2 a

then L2a is given by

(4.68) L2a
We conclude that the boundary condition associated with the second approxima-

tion 2 reads

(4.69)
t,’ 0 + a2 111 -}- U2 -- (1) -- i,
al Ox2

(4.70) 21 P02 (+ )az (u2 u +) + iv
0 O.

OX2 al OX2

These formulae have to be supplemented with (4.67).
Remark 4.12. The first boundary condition (4.62), (4.63) is actually local and can

be written in the form"

(4.71) Ou
-k- (a V)Ul----. 0
ot

OU2(4.72) -0.
Ox1

Appendix A. The standard spaces of Beppo-Levi functions are studied in [7]; the
distribution spaces described by Definition 2.1 are ofthe very same nature. The common
property of the spaces BL(HS(f)) is that their local properties are the same as the
local properties of. HS+l(f), but their properties in the large are quite different. In
particular,
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LEMMA A.1. For any n, for any unbounded open set fl of n, and for any real s,
there exists an unbounded function in BL(H ()).

Proof. If is enough to exhibit examples; outside of a compact subset, we require
u to be equal to

r1/4 if n 1;

Log Log r if n 2;

r-1/4 if n >-3.

Checking that these functions give the answer is an exercise left to the reader.
Though the elements of BL(HS(fl)) may be unbounded, they are nonetheless

elements of 9’. This is a consequence of the fact that vp(1/ik) in dimension 1, and
proper generalizations of this in dimension greater than or equal to 2 admit a Fourier
transform, which is known explicitly. Moreover, the growth of the elements of
BL(H ()) is polynomial at most and can be estimated precisely.

Finally, the Beppo-Levi spaces are natural spaces on an unbounded domain,
where the only estimate is an energy estimate that involves only the gradient.

Alpendix B. In this appendix, we prove a result on the behavior at infinity of
harmonic functions. This result is probably part of the folklore of the subject, but we,
know no source where to find it in simple form.

LEMMA B.1. Let p be a function on RN such that Ap (computed in the sense of
distributions) has compact support. Ifp decreasesfast at infinity to zero, then p is constant
outside of a compact set of

Proof. Let p be a C test function that is radial and has support in the ball of
center 0 and radius 1. Denote p(x)=e-p(x/e). If p is harmonic for all x in
ER_2--{X/IX >= R-2}, then it has the mean property in this region, and, whenever

Ix _-> R 2 + e, we have

u(x)=u*m(x).

Therefore, u has derivatives of all orders in int (ER_2), and all of its derivatives decrease
rapidly at infinity. Let be an infinitely differentiable function onN such that

q 0 for Ixl--< R 1

p 1 for Ix[ >= R.
Then q =po is in 5e(N), and, hq has support in the ball of center 0 and radius R.

We perform a Fourier transform on the equation Aq q, and we obtain

(B.1)

Thanks to the Paley-Wiener theorem, (s) can be extended to all of CN and is an
entire function of s; moreover, for all n, there is a constant Cn such that

< C,,(1 + Il)" eRIIm(:)l"

From (B.1), we can see that can be extended to all CN as a meromorphic function
of :, with possibly a pole at zero. But, since q is in 9(gN), is in 5e(N), tOO, and
there is no pole of at zero. Thus t satisfies the estimate

[t(sc)[ =< Co for Il =< 1,

I()]-< C,(1 +l[)" eRlIm(:)l, for [sc[=> 1.
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Thus q has compact support in the ball Ix[-< R, and therefore p vanishes for Ix[_->
R.

If p is known in (2.29)-(2.31), then u is the solution of an advection diffusion
with right-hand sidef- Vp; therefore, ifp does not decrease rapidly to zero at infinity,
and iff has compact support, for instance, u cannot generally decrease rapidly to zero
at infinity. Therefore, a smooth solution u is in a space of function with polynomial
estimates at infinity, and the dual of this space is a strict subspace of
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