
MATHEMATICS OF COMPUTATION
VOLUME 46, NUMBER 174
APRIL 1986, PAGES 425-438

Artificial Boundary Conditions for the

Linear Advection Diffusion Equation

By Laurence Halpern

Abstract. A family of artificial boundary conditions for the linear advection diffusion equation

with small viscosity is developed. Well-posedness for the associated initial boundary value

problem is analyzed. The error produced by truncating the domain is estimated. Numerical

results are presented.

1. Introduction. When computing the solution of a partial differential equation in

an unbounded domain, one often introduces artificial boundaries. In order to limit

the computational cost, these boundaries must be chosen not too far from the

domain of interest. Therefore, the boundary conditions must be good approxima-

tions to the so-called " transparent" boundary condition (i.e., such that the solution

of the problem in the bounded domain is equal to the solution in the original

domain). The transparent boundary condition is usually an integral relation in time

and space between u and its normal derivative on the boundary, which makes it

impractical from a numerical point of view. One must approximate this relation to

get local boundary conditions: they are often called absorbing or artificial boundary

conditions.

This question is of crucial interest in such different areas as geophysics, plasma

physics, fluid dynamics [1], [2], [3], and the use of such conditions is now classical in

geophysics.

Our interest for the linear advection diffusion equation comes from the Navier-

Stokes equation, but it arises also in other fields as, for example, meteorology [6].

The incompressible Navier-Stokes equation can be written as

/, ,-, u, + (u • V )u - fAu + vp = 0,

divu = 0,

where V is the gradient operator and A the Laplacian. The viscosity v is assumed to

be small.

A common application is the flow around a body. Far away, the flow u is almost

constant, equal to a [7]. Linearizing the equation, and using a vorticity formulation

yields

(1.2) co, +(a • v)co - pAco = 0,

which is the equation we are dealing with in this work.
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426 LAURENCE HALPERN

We assume that ax is positive, so that the solution is essentially propagating in the

right x-direction.

We further assume that the data are of compact support in space. We put artificial

boundary conditions at x2 and x,, and find "good" boundary conditions.

Because of the rightward propagation, the conditions to impose on the right and

left boundaries, respectively, are inherently different. In the first five sections we

deal with the right boundary.

In Section 2, using as essential tool the Fourier transform, we formulate the

transparent boundary condition and approximate it for small values of the viscosity

by means of generalized continued fractions. This leads to an infinite family of

boundary conditions, which are partial differential equations of first order in x. For

example, in one dimension, the first three boundary conditions are

(1.3)

(1.4)

(1.5)

CO, + C7C0X = 0,

co, + au>x + v(2au3xl + co„) = 0,

(a*0).

Relations (1.3) and (1.4) are a Neumann and transport condition, respectively. They

are easy to guess and have already been used in applications. As far as we know, the

higher-order conditions are new.

In Section 3 we analyze these boundary conditions and give energy estimates,

which show that the associated initial boundary value problems are well-posed.

In Section 4, using again the Fourier transform, we establish L2-norm error

estimates for the solution in the slab [0, xj, in terms of xx, v, and the original

solution in [0, + oo[: the accuracy of the nth order boundary condition is of order

v2".

In Section 5 we give numerical schemes which discretize the equation and the

right-hand boundary conditions, and we show by numerical results the efficiency of

the approximation.

In Section 6 we briefly develop the boundary conditions for the left boundary x2.

The results analogous to those in Sections 3 and 4 are given without proofs, since the

proofs are essentially the same as for the boundary on the right.

2. Construction of a Family of Absorbing Boundary Conditions. To begin with, we

formulate at every point x outside the support of the data an integro-differential

equation, which will in time be the transparent boundary condition.

2.1. The transparent boundary condition. We consider the solutions of the equation

(2.1) Lm = 0
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THE LINEAR ADVECTION DIFFUSION EQUATION 427

in the half space x > 0, where L„ is the differential operator

(2.2) 4 = A + ¿ + a-v-,A.

The vector a is given in R", v denotes the gradient with respect to y = (yx,.--,y„)

and A the Laplacian in all variables X = (x,y).

Theorem 1. The transparent boundary condition at point xx is

(2.3) |^ = // \(k,u)ù(xx,k,o>)e^'+k»dicdk,

where X is given by

(2.4) A = (1 - 8^2)/2v,

(2.5) 8 = 1 + 4¡>(co + a-k) + 4f2|k|2.

The determination of 8X/2 is chosen such that

(2.6) ReS1/2 > 0.

Proof. We shall write at every point x > 0 an integral relation between u and ux.

For this purpose, we use the Fourier transform in t and y. The Fourier transform u

of every solution u to L„ in the halfspace x 3* 0 satisfies the second-order ordinary

differential equation in x:

(2.7) -vùxx + ùx +(/(« + a • k) + Hk|2)û = 0.

The solutions of this equation have the form

(2.8) "(w,x,k) = «5(co,k)c?Xx + b(u,k)ex'x,

where X and X' solve the quadratic equation

(2.9) -vX2 + X + i(w + a-k) + f|k|2 = 0.

The discriminant is 8, given by (2.5). One root is X (cf. (2.4)), the other is

(2.10) X' = (1 + 8x/2)/2v.

Our choice (2.6) implies that the real part of X is negative, while that of X' is

positive. In order to keep ù bounded in the halfplane x > 0, the coefficient b must

vanish, so that

(2.11) "(x,k,co) = â(k,co)eX(k'uj)x.

By differentiation with respect to x, the following identity is seen to hold at every

point x > 0:

(2.12) fx - XÙ = 0.
Hence, at point xx, u satisfies the integro-differential equation (2.3).   G

Relation (2.3) is the transparent boundary condition at point x,. It is global in

time and space. Hence we shall approximate the nonlocal operator

ù-* ff X(k,u)ù(x,k,u)ei(ul+k*)do)dk

by a suitably chosen local operator, in time and space.
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428 LAURENCE HALPERN

2.2. Approximation of the transparent boundary condition. For wave equations, the

approximation is made with respect to the incidence angle to the boundary, that is,

roughly, in terms of |k|/co. The strategy here is different: we shall approximate

X(k, co) for small values of v, for any value of k and co. In order to get a local

operator, we shall use polynomial or rational approximations.

Taylor approximation. The first two approximations to X, given by (2.4), come

from zero- and first-order Taylor approximation to 8X/2, respectively:

l8x/2 = l + 0(v),

\ 8X/1 = 1 + 2iv(a + a • k) + 0(v2),

which give

a = 0(1),

X = -(co + a • k) + O(v).

These approximations lead to the boundary conditions

(2.13) B0u = ux = 0,

(2.14) Bxu = u, + ux + a • Vu = 0.

Higher-order approximations. For higher-order approximations, various strategies

can be applied. The idea of using Taylor or Padé approximations has been

introduced for the wave equation in [1]. There, the authors have shown that, except

for the first one, Taylor approximations lead to ill-posed problems, while a hierarchy

of Padé approximants lead to well-posed problems. We shall develop here a family

of generalized continued fractions related to certain Padé approximants.

It is well-known (see [4]) that one can approximate a root X of a quadratic

equation

aX2 + bX + c = 0

in terms of generalized continued fractions by rewriting the equation as

X(aX + b + d) + c-Xd = 0

and defining the sequence X„ by

(2.15) Xn+x = (X„d-c)/(aX„ + b + d)

for a suitable choice of d. We choose here d and Xx as follows:

Xx = -/(co + a • k),
(2.16)

d = -ii>(u + a • k).

Thus, as a function of v, Xn is the quotient of two polynomials of degree n — 1,

Pn  x and fin-i' given recursively by

(2 17) lpn = -/(« + a ■ k)<-. +(i(« + a • k) + Hk|2)ô„_!,

(ß,,-i'P._1-(l + /(« + m-k»ß>I_1.

Furthermore, Xn is of order 2« - 1 in v,

(2.18) X„-X = 0(v2nl).
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THE LINEAR ADVECTION DIFFUSION EQUATION 429

In other words, Xn is the [(n - l)/(n - 1)] Padé approximant to X. This can be

proved by defining the error coefficient qn as

(2.19) qn = (\-Xn)/(X'-\n).

An easy calculation shows that

(2.20) (?, = (*)",

Ui = 0(v2),

and the estimate for Xn follows.

Remark 1. What first comes to mind, when seeking a sequence of rational

fractions approximating X, would be to choose d = 0 (and Xx = 0). Unfortunately,

this provides a less accurate approximation (n - l,n), with Xn - X = 0(vnl).

Likewise, the choice d = 1 leads to a divergent sequence Xn.

Boundary operators. We return to Xn as a function of v, co and k. It is easy to see

inductively that Pn and Qn are also polynomials in co and k, and their degrees in

these variables are n + 1 and n, respectively. The corresponding approximation to

the boundary identity (2.3) is in Fourier coordinates

Bnù = 0,

where Bn is given by

(2.21) Bn = Q„_x(k,U)^- P„_x(k,U).

Upon application of the inverse Fourier transform, this formula yields a local

operator Bn which is globally of order n, and of order 1 in x.

Example. The second-order boundary operator is

(2.22) B2=-Bx-uBy^ + Bx]j + ^v,

where Ay is the Laplacian with respect to y, and By the transverse transport

operator

(2.23) B, = ^ + a-V.

For the study of the associated initial boundary value problems, a formal

factorization of the boundary operators Bn will be useful.

Lemma 1. If u is a sufficiently smooth solution to the problem

Lvu = 0   for x < x,,

Bnu(xx,y,t) = 0,

then u satisfies the boundary condition

(Bx)"u(xx,y,t) = 0.

Proof. The hypothesis can be written in Fourier coordinates as in (2.7),

-vùxx + ùx +(í'(co + a • k) + f|k| \ù = 0,

BnÙ =  Qn»x - PnÛ = 0, X = XX.
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Using the recurrence formulae for Pn and Qn, we get

B"=_"(rjx"+/(i0 + a'k))5"-i;

then we have on the boundary

Bn = (-vy\Bxy. a

3. A Priori Estimates for the Initial Boundary Value Problem. We consider the

following problem in the half space x ^ xx:

(L„u = 0, x<x,, t g [o,r],

(3.1) <u(X,0) = u°, x<x,,

\Bnu(xx,y,t) = 0,    ie[0,r].

We assume m° to be as smooth as needed, with compact support in the half space

ñ_= {X; x < x,}. Then the problem is well-posed, i.e., there are a priori estimates:

Theorem 2. Suppose u is a solution to (3.1). Then the following holds:

(i) u belongs to L°°(0, T, L2(fi_)) n L2(0, T, H\Q_));

(ii) u belongs to L°°(0, T, L2(R"-1)) on the boundary x = xx.

Before proving the theorem, we introduce some notations.

We denote by q, qx, q0 the squares of the usual Sobolev norms (or seminorms),

defined by

q(u) = // u2(x,y,t)dxdy,

(3.2) qx(u) = ff \vu\\x,y,t)dxdy,

?o(") = / u2(xx,y,t)dy.

Proof of Theorem 2. Suppose u is a solution to Lvu = 0 in the halfspace, that is,

u, + ux + a • Vu - l'A« = 0.

Multiplying by u and integrating with respect to X in the whole domain, we get

(3.3) jtq(u) + 2vqx(u) + q0(u) - 2v f (uux)(xx,y, t) dy = 0.

The condition B0 is quite easy to analyze: If ux vanishes on the boundary, the last

term in (3.3) is zero, and the result is clear. If n is equal to 1, then u satisfies the

boundary condition

m, + ux + a • Vu = 0;

we can replace ux in the last term of (3.3),

(3.4) jM^ + "9o(")) + 2vqx(u) + q0(u) = 0,

which gives estimates (i) and (ii) in this case.

We now proceed by induction: Assume the theorem holds for Bn_x. If the

function « is a solution of (3.1), we define a function v for x < x,, t in [0, T], by

(3.5) v = u, + ux.
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The function v is a solution of (3.1) for n - 1 and therefore fulfills (i) and (ii).

Furthermore, multiplying (3.5) by u and integrating in y for x equal to xx, we get

(3-6) di^o(u) + 2J (uux)(xx,y,t)dy = 2J (uv)(xx,y,t) dy.

We multiply (3.6) by v and add it to (3.3) to get rid of the last term in the left-hand

side:

d (
— (q(u) + vq0(u)) + 2vqx(u) + c70(t<) = vj (uv)(xx,y, t) dy.

We now use the following inequality on the right-hand side,

uv < eu2 + v2/4e.

By choosing e such that ve < a < 1, we finally obtain

Jt(q{u) + vq0(u)) + 2vqx(u) + Cc70(w) < q0(v),

which gives the desired bounds.   D

4. Error Estimates for the Approximate Problem. Let us consider the initial

boundary value problem in the half space x > 0:

lL„u = 0, x > 0, t > 0,

(4.1) <«(X,0) = 0,       x>0,

U(0,y,/) = g,    t>0.

We approximate it in the slab 0 < x < xx by the problem

(Lvun = 0, 0 < x < x,,    t > 0,

«n(X,0) = 0, 0<x<x,,

Y„(0,y,t) = g, t>0,
,Bn»„(x1,y,t) = o,   t>0.

The principal result of this section is

Theorem 3. 77ic? boundary condition Bn has an accuracy of order 2« in v: the error

is bounded in L2(R + X R"~x) for any x in ]0, xx] by

ill"-"J|(x)<f2"J(x1,f')||L''M||(x)    forn>l,

\\\u- Wo||(x) < vd(xx, v)(\\Byu\\ + HI VH)(*).

where By is the transverse transport operator defined in (2.23), the operator L is

(4.4) L = B2 + Ay,

and the function d(xx, v) is given by

2
(4.5) d(xx,v) =

1 - exp(-x1/2f)'

Remark 2. The bound depends on v and xx. In order to keep it small, Xj must

remain large compared to v.
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Proof of Theorem 3. The main tool will again be the Fourier transform with

respect to t and y. We denote by vn the error in the slab 0 < x < x,,

(4.6) vn = u- u„.

Using Section 1, we can write the Fourier transforms ù and vn of u and u„ explicitly

as

« = geXx,

vn = âeXx + bex'x.

The coefficients â and h are given by the boundary conditions at x = 0 and x = xx,

and vn can be expressed as

(4.7) vn = Ä„(e(X-V)x> - e<x-x')<x>-^)û,

where Rn is related to the error coefficient qn, defined in (2.19), through

R ~q"
"      1 - qne<x-x'^ "

Since the real part of X - X' is negative, we get immediately a first bound on vn,

(4-8) |f>J<2|Äj|«|.

A bound on qn will give a bound on Rn, and thereby complete the proof.

Lemma 2. The following bounds hold for qn:

(i) \q„\ < i;
(ii) |9J < »>2"((co + a • k)2 + |k|2)".

Proof. Since qn is equal to (qx)n, we only need to prove the lemma when n is

equal to 1. The value of qx is

1 + 2t>(co + a • k) - 81/2

qi ~ 1 + 2i>(w + a-k) + 51/2'

We denote by a and ß the real and imaginary parts of qx; a is greater than one. It is

easy to see that

\qx\=(a-l)/(a + l),

which proves part (i). We note that

*2((co + a • k)2 +|k|2) = (a2 - l)(ß2 + l)/4,

which leads to

kil 4
f2((co + a-k)2 + |k|2)      (a + l)2(ß2 + 1)

O,

and thus finishes the proof of part (ii).

Using this lemma, we can bound Rn by

f2"((co + a-k)2+|k|2)"

'^"^       1 -zxp(-xx/2v)
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We use this in (4.8), and obtain

\v„\^d(xx,v)v2"\F(L"u)\,

where F is the Fourier transform in t and y. Parseval's theorem now completes the

proof.

The estimate for condition B0 is obtained in the same way.   D

Remark 3. The use of the Fourier transform in time is only formal here. But one

can justify it by using the Laplace transform. The term t'co is replaced by s, with

Res ^ 0. One easily proves that the denominator of Rn cannot be zero. Then ùn is

analytic in the half space Re s > 0, and the Paley-Wiener theorem allows us to take

the limit when Re s goes to zero.

5. One-Dimensional Numerical Experiments. We deal here with problem (4.1) in

R + X [0, T], and problem (4.2) in [0,1] X [0, T]. We shall consider only the boundary

operators B0, Bx and B2. The initial value is chosen to be zero, and the boundary

value at point x = 0 is (cf. Figure 1)

(5.1) g(t) = sint/J(t2 + l).

BOUNDARYJIATA G(T)

0.6

0.5-

0.4 -

0.3

0.2

0.1

0.0

-0.1

-0.2

0 1 2 3 4 5 6 7 8 9 10

Figure 1

Boundary data

We do not have the exact solution to problem (4.1) in closed form. But it can be

observed that the reflection due to the boundary condition affects the solution only

near the artificial boundary. Thus, we shall call here "exact" solution the computed

solution in a larger domain, with a "good" boundary condition. For practical

purposes, we take as the larger domain [0,2] x [0, T] and the second-order boundary

condition B2 at x = 2.

We use second-order finite difference schemes in time and space. We recall some

notations:

* u" approximates u(Xj, t") on the grid (xjt t"), 0 < j < J, 0 < n < N, x}= jLx,

t" = «Ai.
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* The operators D+, D_, and D0 denote forward, backward and centered

differences, respectively. S+, S_ and S0 are forward, backward and centered sums;

for example,

(5.2) D'+u] = (u;+1 - uj)/At,       S'+u? = (uj+1 + u])/2.

The operator L„ is approximated by the following discrete scheme, derived from

the Crank-Nicolson scheme,

(5.3) Ld = D'++ D$S'+- vDx+DxS'+.

This scheme is implicit, has order two in time and space, and is unconditionally

stable.

The operator BQ is approximated by

(5-4) Bd = D_x.

For the operator Bx, we use the transport part of operator Ld and introduce a

virtual point. This yields

(5.5) Bd = D'++ DXS'+.

Using the characterization of B2 given by Lemma 1, the second-order boundary

condition is approximated by

(5.6) Bdunj = {D'+D'_+ 2D'0Dx)unj + Dx+DxS¿u"j_x = 0.

For any of these boundary conditions, the interior scheme together with the

boundary scheme is stable and has order two in time and space.

The mesh sizes are taken equal to A/ = Ax = 0.001.

Since we are dealing with parabolic equations, the maximum principle asserts that

the largest error occurs at point x equal to 1. Hence Figures 2-4 show the "exact"

solution and the error on the boundary for the various boundary conditions, as

EXACT SOLUTION ON 0,2
FO« WfFERENT VAUlES OF TIME 1.2 3.4 S

THE VISCOSITY (S EQUAL TO 0.02

0.6   -

0.5 ■

0.4 :

0.3   -

0.2 :

0.1   .

3.0   -

-0.1   -

-0.2

0.0     0.2     0.4     0.6     0.8     1 1.2     1.4     1.6     1.8       2.0

Figure 2

"exact " solution on [0,2] for a viscosity equal to 0.02;

time varies from 1 to 5
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Figure 3

Exact solution on the boundary.

The viscosity is equal to 0.02.

ERROR ON THE BOUNDARY

CONDITION Brj

0123456789        10

ERROR ON THE BOUNDARY

CONDITION B,

0 1 23456789       10

ERROR ON THE BOUNDARY

CONDITION 8,

01234567 89       10

ERROR ON  THE  BOUNDARY

TRANSPORT EQUATION

0      1        2      3      4      5      6        7      8      9      10

Figure 4

Errors on the boundary as functions of time.

The viscosity is equal to 0.02
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Table 1

L2-norm in time of the error on the boundary

viscosity Be. *i B,

0.002 0.210" 0.810" 0.7 10"

0.004 0.410" 0.3 10" 0.4 10 "7

0.006 0.5 10"2 0.6 10~4 0.110
-6

0.008 0.7 10"2 0.1 10"3 0.3 10'6

0.01 0.8 10" 0.210
-3

0.6 10"6

0.02 0.2 10" 0.5 10" 0.4 10
-5

0.04 0.3 10" 0.2 10- 0.310-

0.06 0.4 10" 0.3 10
-2

0.8 10"4

0.08 0.5 10"1 0.5 10"2 0.210"

0.1 0.6 10"1 0.8 10 ": 0.3 10"

functions of time. The last curve represents the error when replacing the diffusion

equation by the transport equation in the domain, i.e., when ignoring the term pAm.

One can see that the error oscillates and decreases in time, as does the exact

solution. Moreover, the second-order condition B2 produces the smallest error, while

B0 produces the largest. All these errors are smaller than the one produced by

neglecting the diffusion in the equation.

Table 1 gives the L2-norm of the error on the boundary, for different values of v

increasing from 0.002 to 0.1.

To show the dependence in v, we plot in Figure 5 the logarithm of the £2-error as

a function of the logarithm of the viscosity.

-7.0        -6.5        -6.0        -5.5        -5.0        -H.5        -1.0        -3.5        -3.0        -2.5

LogCviecosiEy)

Figure 5

Logarithmic plot of L2-error on boundary
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It can be seen that for B0 and Bx the dependence is linear in v, respectively

quadratic, as stated in Theorem 2, or even better. For the second-order condition, it

is of fourth order in v when v is not too small. This of course is related to the size of

At and Ax: the schemes have order two, and the error cannot become much smaller

than Ax2 and Ar2.

6. Left-Hand Boundary Conditions. We are now formulating boundary conditions

on the left wall x2. In the same way as in Section 2, the transparent boundary

condition is

(6.1) | - X'ù - 0,

where X' is given by (2.10). In particular, we have

(6.2) X' = 1/v - X.

With this formula, we can approximate X' by using the approximations to X.

Thus, the first approximation to X' is X'0 = 1/v, which gives the boundary

condition

(6.3) B'0u = v^-u.

If Xn is the approximation to X given in Subsection 2.2, we define an approxima-

tion to X' by

(6.4) X'n = l/p-X„,       n>l.

Then X'n is an approximation of order v2n~l to X', and leads to an inhomogeneous

boundary condition. The boundary operator B'n can be written as in Lemma 1,

(6-5) B'n = {B'xy,

where the first-order operator B[ is defined by

(6.6) B[u = v(ux — u, — a • Vu) - u.

From the recursion formula (6.5) one can deduce, as in the previous sections, that:

* The associated initial boundary value problems in the halfspace x ^ 0 are

well-posed.

* The boundary condition B'n has accuracy of order 2w in v.

Conclusion. We have developed two families of artificial boundary conditions for

the linear advection diffusion equation, when the viscosity is small. They lead to

well-posed initial boundary value problems and produce errors which are powers of

v. The numerical experiments confirm the theoretical study.
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