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Abstract—Today’s manufacturing and assembly systems have to
be flexible to adapt quickly to an increasing number and variety
of products, and changing market volumes. To manage these dy-
namics, several production concepts (e.g., flexible, reconfigurable,
changeable or autonomous manufacturing and assembly systems)
were proposed and partly realized in the past years.

This paper presents the general principles of autonomy and the
proposed concepts, methods and technologies to realize cognitive
planning, cognitive control and cognitive operation of production
systems. Starting with an introduction on the historical context
of different paradigms of production (e.g., evolution of produc-
tion and planning systems), different approaches for the design,
planning, and operation of production systems are lined out and
future trends towards fully autonomous components of an pro-
duction system as well as autonomous parts and products are dis-
cussed. In flexible production systems with manual and automatic
assembly tasks, human-robot cooperation is an opportunity for
an ergonomic and economic manufacturing system especially for
low lot sizes. The state-of-the-art and a cognitive approach in this
area are outlined. Furthermore, introducing self-optimizing and
self-learning control systems is a crucial factor for cognitive sys-
tems. This principles are demonstrated by a quality assurance and
process control in laser welding that is used to perform improved
quality monitoring. Finally, as the integration of human workers
into the workflow of a production system is of the highest priority
for an efficient production, worker guidance systems for manual
assembly with environmentally- and situationally dependent trig-
gered paths on state-based graphs are described in this paper.

Note to Practitioners—Today’s manufacturing enterprises have
to face a number of challenges in a turbulent environment that
originates amongst other from saturated markets, unprecedented
and abrupt changes in market demands, an ever increasing
number of product variants and smaller lot sizes. A recent re-
search trend in Germany is the so called Cognitive Factory, where
artificial cognitive capabilities are introduced to the control of
production systems. The applications range from production
planning and control, human-robot-cooperation, automatic robot
programming to intuitive worker guidance systems.

The concept of fully automated production systems is no longer
a viable vision, as it has been shown, that the conventional automa-
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tion is not able to deal with the ever-rising complexity of modern
production systems. Especially, a high reactivity, agility and adap-
tivity that is required by modern production systems, can only be
reached by human operators with their immense cognitive capa-
bilities, which enable them to react to unpredictable situations, to
plan their further actions, to learn and to gain experience and to
communicate with others. Thus, new concepts are required, that
apply these cognitive principles to the planning processes and con-
trol systems of production systems.

Index Terms—Adaptive control, assembly systems, assistance
systems, autonomous processes, cognitive factory, computer aided
design, computer-aided manufacturing, computer aided process
planning, computer integrated manufacturing, flexible manu-
facturing systems, human-robot cooperation, manufacturing
systems, multi-agent systems, paradigms of production, produc-
tion planning and control, quality assurance, radio-frequency
identification, reconfigurable manufacturing systems.

I. INTRODUCTION

T
ODAY’s manufacturing enterprises have to face a number
of challenges in a turbulent environment that originates

amongst other from saturated markets, unprecedented and
abrupt changes in market demands, an ever increasing number
of product variants and smaller lot sizes [1], [2]. This trend is
intensified by concepts such as mass customization and indi-
vidualization, which promise the creation of unique products
to satisfy the needs of nearly every customer. In addition, the
globalization of the economy has intensified the worldwide
competition and caused a continuous pressure on production
costs [3]. Therefore, companies can only compete successfully
if they offer products and services that meet the customer’s
individual requirements without sacrificing cost effectiveness
or product quality [4], [5]. This results in large-scale fluctu-
ations of demand, increasing product variants with specific
configurations, random dispatching of orders, short delivery
lead times of products and short product life cycles [6], [7].

Regarding the growing dynamics, the planning and control
of production systems has become increasingly complex re-
garding flexibility and productivity as well as the decreasing
predictability of processes [8]. In spite of the aforementioned
general conditions, Koren [5] stated that every manufacturing
enterprise and therefore every production system should pursue
the following three main objectives:

• providing capability for rapid responsiveness;
• enhancement of product quality;
• production at low cost.

On the one hand, these requirements can be satisfied through
highly stable and repeatable processes. On the other hand, these

1545-5955/$26.00 © 2010 IEEE
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Fig. 1. Need for cognitive automation to improve productivity [12].

requirements can be achieved by creating short response times
to deviations in the production system, the production process,
or the configuration of the product in coherence to overall
performance targets [9]. In order to obtain short response times,
a high process transparency [9] and the reliable provisioning of
the required information to the point of need at the correct time
and without human intervention [10] is essential. However, the
success of those adaptive and responsive production systems
highly depends on real-time and operation-synchronous infor-
mation from the production system, the production process
and the individual product [2]. Recent information and com-
munication technologies such as radio frequency identification
(RFID), cameras, laser scanners, actual state information from
programmable logic controllers (PLC) and robot controllers
(RC) are essential elements to collect real-time data from a
production facility and its subsystems [11]. Pertinent informa-
tion from the shop floor can then be integrated continuously to
production planning and control instances. The realization of
this aspect can be considered as the essential element for the
shift from offline planning systems to online and closed-loop
control systems in production environments [4].

However, it can be stated, that the concept of fully automated
production systems is no longer a viable vision, as it has been
shown, that the conventional automation is not able to deal with
the ever-rising complexity of modern production systems. Espe-
cially, a high reactivity, agility and adaptivity that is required by
modern production systems, can only be reached by human op-
erators with their immense cognitive capabilities, which enable
them to react to unpredictable situations, to plan their further ac-
tions, to learn and to gain experience and to communicate with
others. Thus, new concepts are required, that apply these cogni-
tive principles to the planning processes and control systems of
production systems (see Fig. 1).

In the following sections, the historical context and develop-
ment of production paradigms in the last decades are described
and the state-of-the-art as well as novel approaches are outlined.
This paper hereby covers topics of the production planning and
control, the planning of automated processes and operations, as
well as of hybrid and manual workstations (see Fig. 2).

Fig. 2. Covered topics of this paper.

II. HISTORICAL CONTEXT OF DIFFERENT

PARADIGMS OF PRODUCTION

A. Evolution of Production Systems

In recent decades, many researchers identified the necessity to
cope with changing boundary conditions and to develop novel
manufacturing paradigms [1], [13], [14]. Dedicated manufac-
turing lines with fixed tooling and automation were developed
for mass production, which aims for the manufacturing of high
quantities of identical parts at the required quality for low costs.
As a consequence, the final costs per part have been significantly
reduced [1], [14], [15].

The emerging diversifications of products lead to the devel-
opment of new approaches for efficient planning and control
of manufacturing systems. Examples include Computer In-
tegrated Manufacturing (CIM) with the well-known Flexible
Manufacturing Systems (FMS). These developments aim for
the economic production of and change between predefined
product variants of different volumes [14], [15]. FMS, however,
are characterized by rigid hardware and software architectures
with completely predetermined and manually defined produc-
tion processes. This entails limited capabilities in terms of
upgradeability, customization, changes in production capacity
and reaction to unforeseen events (e.g., machine failure, vari-
ation in quality) [1], [4].

Traditional approaches, which consist mostly of rigid,
hierarchical control architectures, have been unable to deal
sucessfully with upcoming challenges, because the production
schedules and plans become ineffective after a short time on
the shop floor. Established production planning and control
systems are vulnerable to abrupt changes, unforeseen events
and supply stock-outs in production processes and do not
allow a real-time computation of sophisticated decision models
[8], [16]. Furthermore, the increasing size and scope of cen-
tral-planning-based manufacturing execution systems lead to
rapidly growing structural complexity [6], [13]. Therefore, the
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Fig. 3. Concept of BMSs [17].

shift to concepts such as mass customization and individual-
ization encouraged the development of methods and concepts
in agile manufacturing to cluster manufacturing systems into
subsystems and modules [6]. Consequently, Reconfigurable
Manufacturing Systems (RMSs) focused on rapid changes,
modifications and disturbances in manufacturing systems [14].
The concept of RMS aims to provide scalable systems in
response to market fluctuations as well as system and machine
adaptability to new products. These capabilities are achieved by
using modular software and hardware structures in the system
(e.g., additional machines) and the machine level (e.g., machine
hardware and control software) [15].

B. Evolution of Planning Systems

1) Biological Manufacturing Systems (BMSs): In the field
of dynamic reconfiguration of manufacturing systems, the
concept of BMSs was proposed in the second half of the
1990s [17]–[19]. BMS uses biologically inspired ideas such
as self-growth, self-organization, adaptation and evolution.
The single elements in a BMS, such as materials, machine
tools, transporters, and robots are considered as autonomous
organisms. The characteristics of each component within the
BMS are represented by genetic information evolving through
generational (called DNA type) and individually acquired
experience during the lifetime of a system’s element (called
BN type) (see Fig. 3). The main focus of this concept is to
deal autonomously with dynamic and unpredictable changes in
internal and external production environments by changing a
system’s configuration. In order to implement the concept of a
BMS, methods of evolutionary computation, self-organization,
and reinforcement learning were developed [17], [18], [20].

2) Multi-Agent Systems (MASs): In MASs, centralized, hier-
archical control architectures are replaced by a group of loosely
connected agents. MAS mostly focus on the control level and on
the concept of autonomous cooperating agents that operate on
the shop floor. Thereby, each agent, which is a software entity,

Fig. 4. The agent and its environment (according to [2] and [13]).

represents fundamental processing units (e.g., machines), or-
ders and products [21]. Agent-based systems allow for a system
structure with several distributed decision-making entities [22].
Monostori et al. [13] defined an agent as a computational system
that operates in a dynamic environment from which it is clearly
separated. An agent shows autonomous and intelligent behavior
that comprehends, e.g., reasoning, planning and learning capa-
bilities. According to Monostori [13] and Wooldridge and Jen-
nings [23] an agent:

• is able to make observations about its environment (e.g.,
the physical world) and respond to changes that occur in
it;

• acquires knowledge about its environment;
• chooses preferences with regard to the state of the environ-

ment;
• operates without direct intervention of humans or other ex-

ternal factors;
• initiates and executes actions in a goal-directed manner to

change the environment.
The above-mentioned capabilities of agents and their integration
in the environment are depicted in Fig. 4.

However, single agents have only a partial model of their
environment. This can result from insufficient perception or a
limited set of means for the acquisition and integration of new
knowledge [13]. Hence, an individual agent does not have ac-
cess to all the information that is required for an efficient de-
cision-making process [24]. Therefore, a single agent has to
coordinate its actions with those of other partners. When one
agent cooperates and interacts with other agents in a network,
a MAS is generated that achieves local and global objectives
by dynamically communicating between autonomous modules
[13]. Thus, production control strategies such as sequence plan-
ning, resource allocation and routing are negotiated between the
software entities that act on behalf of their physical counterparts
[24]. The negotiation processes for cooperation and conflict res-
olution are often solved with market-based approaches that are
generally based on supply and demand as well as the respective
priority of the order [8], [16].

The distributed responsibilities, tasks and resources entail a
high robustness and adaptability to disruptions and reorganiza-
tions. In spite of changed boundary conditions (e.g., machine
failure, reconfiguration of the production system), the principle
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interaction and cooperation between the different agents still
takes place [24]. The efficiency of MAS is extensively depen-
dent on exact and real-time information of their respective phys-
ical counterparts in the production environment [16]. On the one
hand, this comprises resources as well as machines (i.e., subcat-
egory of a resource) and, on the other hand, individual products
[2], [11].

C. Cognitive Factory Paradigm

Recapitulating, fully automated production systems without
human workers have been a convincingly viable vision for a
long time, as pure automation was considered one of the key fac-
tors for implementing cost effective production. These systems
can reach lead times and quality levels exceeding by far those of
human workers. As this concept is quite feasible for reoccurring
tasks, as found for instance in mass production, it disregards the
immense cognitive capabilities humans possess and that enable
them to react to unpredictable situations, to plan their further
actions, to learn and to gain experience, and to communicate
with others. While human capabilities turn mechanical work-
shops into the most flexible, adaptive and reliable form of pro-
duction, they also cause very high production costs, especially
in high wage countries, and thus are solely used for small series,
prototypes or one-of production [4]. Hence, the realization of
comparable cognitive capabilities in technical systems bears an
immense potential for the creation of industrial automation sys-
tems that are able to overcome today’s boundaries. A new par-
adigm in production engineering research pursues the objective
of reaching the “Cognitive Factory,” where machines and pro-
cesses are equipped with cognitive capabilities that allow them
to assess and increase their scope of operation autonomously
[25]. In the following section, brief definitions of cognition and
cognitive technical systems are given.

Cognition is the object of investigation of several scientific
disciplines such as cognitive psychology, cognitive sciences,
cognitive engineering, cognitive ergonomics and cognitive sys-
tems engineering [26], [27]. While robots have learned to walk,
navigate, communicate, divide tasks, behave socially and play
games [28], only a few examples for the application of arti-
ficial cognition in manufacturing exist. Therefore, several au-
thors emphasize the need for cognitive systems to overcome de-
ficiencies in automation [12], human-robot-interaction [29] and
planning [30]. These Cognitive Technical Systems (CTSs) are
equipped with artificial sensors and actuators, are integrated and
embedded into physical systems and act in a physical world.
They differ from other technical systems in that they perform
cognitive control and have cognitive capabilities [25], [31].

Cognitive control comprises reflexive and habitual behavior
in accordance with long-term intentions. Cognitive capabilities
such as perception, reasoning, learning and planning (see
Fig. 5) turn technical systems into ones that “know what they
are doing.” More specifically, a CTS is a technical system that
can reason using substantial amounts of appropriately repre-
sented knowledge, learns from its experience so that it performs
better tomorrow than it does today, explains itself and can be
told what to do, is aware of its own capabilities, reflects on its
own behavior, and responds robustly to surprise [32]. Technical
systems that are cognitive in this sense will be much easier to

Fig. 5. Cognitive system architecture with closed perception-action loop [25].

interact and cooperate with and will be more robust, flexible
and efficient. A factory environment, as a specific occurrence
of a technical system, forms a superior field of application for
artificial cognition, as it is full of concurrent, asynchronous and
interactive control issues [10]. One of the key components of
the Cognitive Factory is the cognitive perception-action loop.
While performing their tasks, the Cognitive Factory acquires
models of production processes, machine capabilities, work-
pieces and their properties as well as the relevant contexts of
production processes. These models are continuously updated
to adapt to changes in the environment and are then used to
optimize action selection and parameterization [33]. Control
systems that use predictive models of actions and capabilities
achieve reliable operation and high performance quality [34].
To this end, the Cognitive Factory must be equipped with
comprehensive perception, learning, reasoning, and plan man-
agement capabilities [25].

The paradigm “cognition” in terms of the factory denotes
that machines and processes are equipped with cognitive capa-
bilities. In technical terms, this comprises sensors and actua-
tors that enable machines and processes to assess and increase
their scope of operation autonomously [25]. So-called “cogni-
tive sensor networks” allow for real-time acquisition of produc-
tion and process data and a suitable feedback to the process con-
trol. Models for knowledge and learning equip the factory with
information about its capabilities and help to expand the abil-
ities of the machines and processes. Continuous information
about the status of certain actions and production steps allow
machine parameters to be improved without human intervention
and enable an autonomous maintenance based on prediction.
Confronting the Cognitive Factory with the task of producing a
new product, its elements “discuss” this task and decide whether
or not the product can be produced with the available produc-
tion resources and abilities, thus recognizing its own limitations.
By storing previously defined strategies within a database along
with mechanisms of information processing and retrieval, the
system is able to derive further decisions [4]. The Cognitive
Factory is able to learn from previously performed tasks and
is, therefore, easily adaptable to new products, thus enabling
small lot size and individualized production at a competitive
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Fig. 6. Classification of manufacturing systems and the incorporation of the
cognitive factory [25].

cost level. Because the Cognitive Factory knows its own capa-
bilities, process planning, which today is performed primarily
by humans, will to some extent be carried out directly on the
shop-floor level and will allow to begin production with rather
raw information and without detailed advance planning [4].

Using self-maintaining systems, the Cognitive Factory will
minimize the efforts and the time needed for reconfiguration
and setup and reduce the down time of factory environments.
The overall goals of the Cognitive Factory can be summarized
as follows:

• making the knowledge available in factory systems more
transparent;

• enforcing the interconnection between men and machines;
• creating manufacturing systems that are more adaptive

than existing ones;
• and enabling autonomous planning processes.

The Cognitive Factory combines the advantages of automated
systems (e.g., low costs, high quality, high efficiency, and low
manufacturing times) with the flexibility, adaptability and reac-
tivity of common human workshops (see Fig. 6).

III. PRODUCTION PLANNING AND CONTROL

A. Product-Based Production Planning and Control

1) State-of-the-Art and Research Gaps: In recent years, re-
search work was focused especially on the increase of flexibility
and adaptability in production environments by acquiring and
using information from resources and machines. Essential in-
formation of the individual product (e.g., quality) was barely
utilized [2], [11]. In most production environments, the work-
piece flow is passive and is handled or transformed only by ac-
tive resources [35]. However, it is inevitable that the individual
project is considered in order to improve flexibility in produc-
tion management [36]. A further step to increase the autonomy
of production systems and to realize autonomous products is
the active consideration of the product in the production control
and the storage of current product-specific information directly
on the product. This includes the availability of product state,
product location and especially the consideration of quality in-
formation in the production process. Thus, the effectiveness of

Fig. 7. Schematic illustration of the product-based control of production pro-
cesses [38].

production planning and control systems can be improved un-
ambiguously. The availability of current product information is
therefore a supplement to existing production information. The
individual product can therefore be introduced as an additional
element of control in the overall control structure of a produc-
tion system. Hence, instant changes both in product states and in
manufacturing systems can be considered for an adaptive pro-
duction control [2].

2) Approach: As a prerequisite for introducing the product
as an additional element of production control, reliable access
to relevant product-specific information, consistent assignment
and the regular update of the product’s state must be ensured.
The utilization of RFID technology provides the basis for
a precise image of the real world and supports autonomous
decision-making in distributed and automated production con-
trol [24]. RFID shows several advantages compared to other
Auto-ID (automated identification) technologies (e.g., barcode)
such as automatic and wireless machine-to-machine commu-
nication, or the dynamic and automatic storing and retrieving
of information. Thus, items can be tracked automatically and
critical product-specific information can be stored directly on
the product [10], [16]. By combining workpieces or products
with RFID transponders, they become “smart products.” They
provide the means to share their information with the planning
level and with other resources through a respective communi-
cation infrastructure. Hence, smart products can automatically
process received requests and respond to the available RFID
readers [37]. Smart products are therefore able to actively
influence their own production, distribution and storage [24].
The communication between the smart product and resources
in the course of the production process as well as the product’s
integration in the overall process is depicted in Fig. 7. It
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Fig. 8. Exemplary multi-agent supported production process [2].

includes the continuous monitoring of smart products and
resources (e.g., state information, operational availability) and
the respective transfer of the updated information from the shop
floor to the planning level. Product-centered data management
is a necessary prerequisite for a decentralized product-based
control of production processes. It consists of the respective
definition of crucial product-specific information that needs to
be stored on the smart product. This information needs to be
logically structured on the RFID transponder, in order to ensure
reliable and standardized processes as well as an easy exchange
and modification of product-specific data. A standardized XML
schema was developed for the representation of product-spe-
cific data, including identification data, processing data and
quality data. The detailed approach is extensively explained in
[2], [11], and [38].

As stated before, the single agents in a MAS are excessively
dependent on updated real-time information about resources
and products from the shop-floor, thus providing an optimal
performance of production planning and control. Specifically,
the requirements that emerge are associated with product cus-
tomization, traceability and information management. Hence,
the observability, quality, availability and productivity of the
production system can be enhanced with improved efficiency
of response to disturbances in process control. By using
the above-mentioned smart product, an applicable real-time
information exchange between a product in the production
environment and its virtual counterpart in a MAS can be real-
ized [2].

Each master workpiece is equipped with an RFID
transponder, on which critical product-specific manufac-
turing information such as the job number, the initial work
plan, quality data and the production history is stored. Fig. 8
shows an exemplary multi-agent supported, product-based
production process. The proposed MAS consists of planning
agents, product agents and machine agents for the planning and
control of production processes [2].

Based on incoming production orders, the planning agent
releases every order for the production process and transfers
the individual order to the product agent. Beyond the job
release, the planning agent must further consider potentially
altered boundary conditions (e.g., machine breakdowns). The

product agent is in charge of the subsequent production of
the workpiece/product and the respective throughput in the
production environment. It must consider the specified work
plan, verify machine capability and negotiate the processing
with the machine agents. Furthermore, the product agent that is
concurrently a quality agent has to evaluate feasible deviations
between planned and executed processes and the respective
workpiece quality [2]. The machine agent negotiates with the
product/quality agent and balances the request for processing
with the available resource capacities. Furthermore, the ma-
chining sequence is optimized with the new addition of a
production order [2].

Decentralized product-based data management allows for a
direct and error-resistant interaction between automated pro-
duction processes and feasible manual interventions of human
workers such as rework of workpieces. The complete docu-
mentation of executed process steps and quality information
with the continuous update allows for the direct consideration
in subsequent production processes and feasible modifications
(e.g., transposition of products, rework). Thus, necessary pro-
duction processes can be determined automatically based on
the designated workflow and its current state in the manufac-
turing environment. The individual agents are therefore able to
access, manage and utilize the information carried on the RFID
transponders and apply it to production planning and control de-
spite the feasible manual interventions of human workers [2].

In the case of manual tasks, such as assembly processes or
rework, the workpiece can be removed from the automated pro-
duction process. The human worker can use product-specific in-
formation as work instructions. After finishing the manual work
steps, the operator can document his work on the smart product
and return it to the automated production cycle. With standard-
ized, product-centered data management, the smart product can
be automatically reintegrated into the control of the MAS. In the
same modality, it is possible to manually dispatch a production
order (push order) to the system. Thus, unprecedented levels of
flexibility can be accomplished in production environments with
a combination of automated and manual processes [2].

3) Results: Parts of the approach explained above were pro-
totypically implemented in a Flexible Manufacturing System
(FMS) that serves as a demonstration platform, which includes
substantial elements and capabilities of an industrial production
system.

The original control platform of the FMS is characterized by a
hierarchical architecture. The production processes for the fab-
rication of products are completely predefined and controlled by
a central computer. This includes the explicit presetting of man-
ufacturing parameters and robot or CNC programs. In case of an
unforeseen event, the process stops immediately and the system
displays an error that has to be solved by human intervention.

The FMS is used as a demonstration platform to replace con-
ventional centralized decision-making systems with distributed
decision-making entities. In a first stage, the approach described
above was prototypically established for the product-based con-
trol of production processes. This includes the RFID-based
transfer of manufacturing information between the smart
product and the CNC-based machine tools, as well as the ex-
change of routing instructions with handling robots, storage and
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the pallet transport system. For the experimental setup RFID
systems with 13.56 MHz (High Frequency, HF) and passive
RFID transponders were chosen. HF transponders usually have
more memory than Ultra High Frequency (UHF) transponders.
Furthermore, it is easier to have a limited and distinct commu-
nication area with high frequency RFID systems [39].

As a precondition for the product-based production control,
the centralized control structure of the original system was re-
placed by developed heterarchical control entities. The appro-
priate control software for the local cells establishes a commu-
nication between the particular RFID system and the respective
workstation, robot and local computer.

The process sequence is exemplarily explained with the han-
dling and the subsequent machining of a workpiece. When a
workpiece arrives from the pallet transport system, the loading
robot transports the pallet with the respective workpiece to an
intermediate storage facility. At this station, the XML file on
the RFID transponder, which is attached to the workpiece, is
read and the data is assessed by the corresponding subsystem.
Throughout this operation the subprocess, the prerequisites for
the execution and the verification of the respective machine are
evaluated using the above described methodology. In case of
the acceptance for the subprocess, the respective product-spe-
cific data for processing (e.g., CNC code) is transferred from
the transponder to the specified CNC machine tool of the corre-
sponding work cell. At the same time, a direct communication
between the smart product and the robot control is established,
to initiate the transportation and the required handling opera-
tions for the transfer of the workpiece to the respective CNC
machine. During processing, the control software monitors the
CNC machine for potential errors as well as for process docu-
mentation purposes (e.g., duration of machining). The collected
data is used to update the smart product after processing and to
delete nonrequired data in order to improve resource efficiency.
After completing the subprocess, the part is unloaded from the
machine and the data on the RFID-tagged object is subsequently
modified to the new state. The information is evaluated with re-
spect to whether the product has to be processed again on the
other CNC machine or whether it can be transferred to the next
station (e.g., assembly) [2].

B. Simulation-Assisted Production Planning and Controll

1) Motivation: Discrete-event simulation has proven to
be an effective and efficient software tool to assess future
strategies in production planning and control with regard
to their effectiveness and efficiency [40]. Traditionally, the
simulation of manufacturing systems was used to support the
decision making in strategic problems, e.g., as a tool for testing
a newly designed factory layout before building it [41]. But
it is becoming more and more common to use simulation in
the operating phase of a factory as well. For the operational
simulation an existing production system is modelled with its
dynamic workflows within a software tool in order to consider
stochastic effects like breakdowns and interrelations between
different workflows for making prognoses regarding the future
system behavior. The models are then used to support pro-
duction planning and control (PPC). The real-time control via
online simulation allows for a visualization and identification

of problems in shop-floor control in real time [42]. This type of
simulation presumes that simulation models are highly detailed
they have a longer lifetime than models from traditional sim-
ulation studies [43]. Furthermore, they demand that the effort
to update the model in accordance with the real system can be
done in a time and cost effective way [43].

2) State-of-the-Art and Research Gaps: In simulation exper-
iments, data acquisition and simulation modelling belong to the
most time consuming tasks. For this reason, many authors men-
tion the necessity to improve the efficiency in these areas (e.g.,
[40] and [43]–[45]). In literature especially two approaches are
being discussed:

1) reducing the complexity of simulation models,
2) generating simulation models to a large extent automati-

cally.
The first aspect is discussed for example in [46]. Aderson and
Olsson [43] use a standard discrete event simulation package
for supporting operational decisions regarding daily labor as-
signment in a customer-driven assembly line. The information
for building the simulation model is gathered by interviews and
time data collections. They propose an automated daily update
of the simulation model with the real status of the assembly
line every morning, but due to a missing data system this was
not implemented. Lulay [40] uses the operational simulation for
the coordination of partly autonomous production structures to-
wards a common objective with a hierarchical model. Due to the
complex model structure and the long response times a general
usage is not suggested by the author. Lulay implemented in-
terfaces to production planning and control system for updating
the actual workload. The structure and organizational data, how-
ever, is not updated automatically.

In order to compare different strategies in production plan-
ning and control via operational simulation, the simulation
models have to be easily adaptable to changes in the production
environment [40]. In this context, Weigert et al. [47] develops
simulation models that are able to adjust to the real production
system. He regards models for operational simulation no longer
as static objects, but allows for change in status, parameters
and structure at any time. He divides the adjustment into the
synchronization with the system status (e.g., workload) and
adaption to changes in the model parameters. For this auto-
matic and continuous adjustment, the data provided of the
production data acquisition is applied. Later, Weigert et al. [45]
develop a concept for auto-generating simulation models in the
semiconductor industry from databases in enterprise resource
planning (ERP) and manufacturing execution systems (MESs)
based upon so called mini-models. It includes the process flows
and structure as well as the parameterization of the model.
Afterwards this model is used for finding an optimal schedule
[48]. The applicability of the simulation system to support
production planning and control depends among others on the
conformance of real-world decision strategies to the ones simu-
lated. These strategies often depend on the decisions of human
operators [49] and thus are not explicitly known. Milberg and
Selke [44] developed a concept to integrate the identification
of human strategies in production control into the automatic
generation of simulation models using a statistical comparison
between the theoretical patterns of different strategies with
the actual production data. This allows for an improvement
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in the correctness and reliability of the generated simulation
models. An important aspect in this context is the identification
of the implicit strategies in production planning and control.
Li and Olafsson [50] present a methodology for the derivation
of scheduling rules using data mining directly to production
data. They focus on a single machine problem with a jobwise
comparison of jobs. The approach can be extended easily to
large and complex production environments, but there is still
research work to be done in order to consider comparisons
between multiple jobs.

In conclusion, it can be stated that although important
progress has been made in the generation of models for op-
erational simulations, there are still plenty of problems to
be solved. One aspect is the graphical representation. It is
an important aspect to achieve a better acceptance, but it is
mostly not considered in the automatic generation of simu-
lation models. The second aspect is the data needed for the
model generation. Due to reducing costs of data aggregation
and storage, the availability of data is increasing. This is the
same case in manufacturing, where more and more MESs are
installed and hence data regarding product quality, equipment
efficiency and material flow are recorded. Shop-floor control,
however, has received little attention from the data mining
community [51]. The analysis of the production data still offers
a large potential for improving the automatic generation of
simulation models, especially regarding the identification of
implicit human strategies in production planning and control.
Another problem is the quality of the available data. This often
contains lots of missing or incorrect values.

3) Approach: In order to overcome the deficiency in the in-
terpretation of the available production data for the identifica-
tion of implicit strategies, a method for recognizing strategy
related patterns has been developed. For this purpose, under-
lying data from Production Data Acquisition (PDA) is analyzed
to identify patterns and to recognize human strategies and pro-
vide them for an automated generation of simulation models. In
a first step, the data logged by the PDA is preprocessed in order
to modify the available data and to extract the parameters of the
different jobs needed for pattern recognition. Subsequently, a
ranking describing the parameter values in comparison to the
other jobs available in the same decision is introduced. This
ranking is then used for the identification of the most commonly
used strategies. Based upon this information, a regression anal-
ysis is used for recognizing the order of their application. Fi-
nally, the degree of fuzziness in the application of the identified
strategies is analyzed. The usage of the proposed methodology
will improve the ability of companies to predict the behavior
of their production upon a changing and uncertain environment
and hence can be a valuable tool to encounter today’s challenges
of producing companies.

4) Results: The first task is the extraction of appropriate fea-
tures for the identification of strategies in PPC. The presented
approach assumes, that human strategies can be described by
combining different priority rules like earliest due date, cus-
tomer priority or minimal slack time. Given this assumption,
for each strategy a directly related feature can be found. Some-
times it is already part of the data stored in the SQL-database
(e.g., due date) or it has to be calculated from existing data like
for instance the slack time as the difference between remaining

Fig. 9. Patterns in time discrete depiction.

time to the due date and remaining processing time. Neverthe-
less, the identification of patterns in production control has to
deal with two major problems:

1) A human scheduler does not necessarily apply only one
priority rule, but may use a combination of different ones.

2) A production is a dynamic environment and thus the
sample of lots is changing from one decision to the next,
since new lots may enter a buffer and others may already
be processed.

This makes it necessary to look at discrete points of time, where
the decisions are made. To obtain analyzable patterns, the se-
lected lot is compared to the remaining ones. If different se-
quencing strategies are applied simultaneously, the assignment
between pattern and strategy is complicated and has to be de-
rived regarding a large sample size. Fig. 9 shows an example for
patterns occurring when different strategies are applied and ad-
ditional lots enter the buffer in between the first and the second
decision. A more detailed description of the feature extraction
can be found in [49]. These patterns have to be found in the pre-
processed data. In order to achieve this, a ranking has been intro-
duced, describing the priority of a job regarding the related pa-
rameter [49]. Regarding solely the jobs selected for processing
in the next step, it is assumed, that the rankings of parameters
related to frequently applied strategies in average are closer to
one than the ones used less often. This implies, that the lowest
sum signals the mostly employed strategy. Subsequently, limits
for the application of the identified strategies are derived via a
regression analysis. Finally, the order of these strategies is re-
trieved by minimizing the difference between applicability and
application of the identified strategies. In the last step the ap-
plicable tolerances have to be identified. This means, that for a
scheduler it is important for example whether the slack time is
three or four days. But it is not important, whether it is three
days and four hours or three days and five hours. The tolerance
range is detected by comparing the absolute parameter value of
the selected lot and the one with the ranking 1. The tolerance is
estimated by the quantile of the differences, in order to exclude
extreme variations.

C. Self-Optimizing Cell-Control

1) Motivation: The cell control comprises the levels 2 and 3
of enterprise control systems according to [52] and deals with
the dispatching of the production, the detailed production sched-
uling, and the control of production processes. A successful de-
tailed production planning on the shop floor is one core factor
to reach a high supplier’s reliability, thus leading to satisfied
customers, and is therefore the basis for a long-term economic
success.
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Fig. 10. Core elements of the self-optimizing cell-control.

2) State-of-the-Art and Research Gaps: Within the past
years, several approaches for an efficient cell control were
developed, which may be divided into two basic principles:
On the one hand, methods for an efficient job scheduling in
production cells, using given production workflows as an input
have been developed [6], [53]. On the other hand, research work
has been accomplished, in generating workflows from a set of
small tasks, so called action primitives [54], [55]. One of the
concepts of the first type are the agent-based approaches with
a strong focus on job scheduling like Holonic Manufacturing
Systems [13], [21], [56]. These agent-based control systems
have reached a high degree of maturity and are already applied
in industry [57]. Although these concepts have proven to
react highly efficient to machine disturbances and rush orders,
they are not able to consider past experiences and improve
workflows during runtime. A different approach is used in
the concept of Autonomous Production Cells, where single
fractions of a factory are organized as a single company within
the company. However this concept is restricted to methods of
enterprise organization and does not focus on control systems
[58], [59]. The second group of approaches address the control
of single robot cells by the use of action primitives (e.g., [54],
[55], and [60]). An early concept for control systems that
regards machine capabilities has been introduced in the Intel-
ligent Manufacturing Systems Program (IMS) [61]. However,
existing projects focus on special problems in the production
control of factory cells. A concept to integrate the planning
and control of workflows and transport routes, which regards
machine capabilities and improves itself during runtime is not
known.

3) Approach: A concept developed by authors of this paper
consists mainly of five core elements: 1) a graph-based model of
production processes; 2) a description model of resource capa-
bilities; 3) a control module for the allocation of process oper-
ations to resources; 4) a learning sequence optimizer on a local
(i.e., resource) level; and 5) an experience-based material trans-
port planning algorithm (see Fig. 10).

The interplay of these five core elements and the corre-
sponding information flows can be outlined as follows: A
prerequisite to implement planning and learning algorithms is
a sound data model of process operations of the products to
be manufactured on the underlying production system. This
graph-based model contains the required process operations of
a product during its production process. A data model for the
adaptive control of production operations has been developed
and tested on a factory cell. The graph-based representation
of the approach distinguishes four main elements: 1) product;
2) process operation; 3) process operation time; and 4) process
plan. A product is defined as one unit of a good that could be
produced on the underlying production system [62]. Therefore,
this term is used for end products as well as for assemblies,
subassemblies, and components. An operation is, in accordance
to [62], an activity that could be included into a process plan.
The time required to complete a process operation is called
process operation time. It often depends on its upstream process
operations [63]. For every product, a process plan is required
for its production. The process plan represents a precedence
graph of the process operations, including sequence constraints
and is therefore equal to a cycle-free digraph. Thereby, the
set of vertices represents all process operations required to
produce the respective product . The set of edges are the
executable changeovers from one process operation to another,
which represent the process operation times required for the
execution of the process operation. An additional requirement
for an autonomous allocation of jobs to resources is to equip the
planning algorithm with knowledge on the capabilities of the
resources of the production system. The resource capabilities
are hereby described as a set of process operations according
to [64]. The full set of operations that can be performed by
a resource is called a profile. This profile is published to the
assignment module, and serves as input for the job allocation
algorithms, which enable the control system to share jobs
among its resources and to distribute tasks between them.
Following the assignment of jobs to resources, the sequences
of the devolved process operations have to be optimized.
The optimization on a local level is hereby conducted by
graph-search algorithms. During runtime of the production
system, the realized process operation times and their quality
results are transferred back, to update the process model and to
support midterm adaptation of production workflows. Finally,
the material needs to be transported to the resources in order
to accomplish fabrication and assembly tasks. Despite existing
approaches, this task is not merely performed purely deter-
ministic on the basis of known and started jobs, but transports
are started anticipatorily based on previous material calls. This
predictive transport control comprises four steps:

1) Estimation of time for material calls: For every resource of
an underlying production system, the corresponding time
of material call for every product are estimated according
to the past material calls. This is denoted in the following
equation:

(1)
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where

time of material call for product at resource
in period ;

number of past material calls.

2) Decision making: The estimated time of material call is
used in the second step, to decide, whether a material trans-
port is started or not. The according decision function is
denoted below

(2)

where

value of a possible transport;

cost factor for gained production time of
accepted transports;

cost factor for transport times (including
transport back) of not accepted
transports;

probability for the acceptance of a
transport;

production time gained by an accepted
transport ;

transport time (including transport back)
of not accepted transport .

3) Transport: A transport is started, if the value of the above
equation is positive.

4) Transport approval: Once a transport arrives at its destina-
tion, (i.e., a resource), the control system checks if the ma-
terial of the transport is required at its destination. If yes,
it is used for production, if not, it is transported and stored
again. The result of the check is transferred to the decision
module and updates in the above equation.

4) Results: A full concept for a self-optimizing cell con-
trol has been developed. This comprises the definition of a data
model that includes product requirements as well as resource ca-
pabilities. In order to provide high applicability, the data model
is strictly in line with existing guidelines. In addition, a full
model for a predictive transport control has been developed and
introduced.

IV. AUTOMATED PROCESSES AND OPERATIONS

A. Machining Planning

1) Motivation: In order for companies to remain competitive
in a global market, design and manufacturing must be better
integrated [65] and increased flexibility and dynamic adaptation
in manufacturing environments must be provided [66]. A strong
market driver is the need for the fabrication of customized, indi-
vidual and even engineered-to-order parts that require methods
and tools for flexible and autonomous fabrication planning,
without the need for time-consuming, manual replanning,
and reprogramming. Planning the fabrication process for new
designs autonomously requires using a generative approach,
generating the process plan from scratch and avoiding human

interaction in the planning process. This results in a highly
complex task to analyze the design and derive the required
fabrication information [67]. Current process planning for
machining is carried out offline and machines only execute the
generated plan. Enabling machines to know their capabilities
as well as plan and execute their own fabrication processes will
allow for wider part flexibility and reacting to unforeseen events
on the shop floor. To enable the execution of manufacturing
operations in a real manufacturing system, multiple layers of
knowledge must be integrated [68] since planning for the man-
ufacture of parts involves symbolic computation and extensive
geometric reasoning [69]. To enable online feedback from the
shop floor to the planning system, a perception system must be
integrated. The approach, that is presented, addresses the rapid
fabrication of customized or individual parts using multiple
CNC machine tools and handling devices within a FMS.

2) State-of-the-Art and Research Gaps: The state-of-the-art
in Computer-Aided Process Planning (CAPP) are feature-based
approaches that encapsulate the semantic knowledge of manu-
facturable shapes into smaller units within parts, thus making
them accessible to a computer-based method. An example of a
system able to autonomously derive all manufacturing informa-
tion from a design and to fabricate the part is the internet-based
CAD/CAM-system CyberCut [70]. The system allows the de-
sign of parts by means of manufacturing features in a 2.5D
environment. From this design information, the machining in-
structions are derived in a three step process from macroplan-
ning to microplanning to toolpath planning. The part is then
directly machined on a three-axis milling machine. This de-
sign-by-manufacturing-features approach reduces the necessary
transition between the domains to a fixed mapping able only to
statically represent machining capabilities and tools and their
relation to predefined features. However, the mapping from one
domain to the other by feature recognition (i.e., recognizing do-
main specific features only from geometric information) or by
feature mapping from a feature model still remains a difficult
problem [71]. Feature recognition approaches are still bound
to specialized application areas or specific part families [65].
Since predefined transformation rules that describe the decom-
position of design features into machining processes are diffi-
cult to handle and to maintain [71], the mapping must not pre-
scribe the decomposition but the underlying principle of how
to decompose design features into viable manufacturing pro-
cesses. To enable a design-to-fabrication system to reason about
its task and to create a process plan autonomously, it must be
equipped with knowledge models. Shah and Mäntylä [72] clas-
sify the necessary knowledge models into the hierarchy of uni-
versal, shop-level, and machine-level knowledge. One approach
to embedding knowledge in the system is the use of an on-
tology [73], [74]. If the ontology is logic-based, it is possible
to reason directly about alternative production plans and capa-
bilities using the knowledge base. This is appropriate for the
universal knowledge level, i.e., knowledge common to any man-
ufacturing system, and shop-floor level knowledge, i.e., knowl-
edge for a particular machine shop, due to its symbolic nature.
However, machine level knowledge for fabrication machines,
and in particular CNC machines, is highly coupled with geo-
metric models, constraints and transformations, and thus is not
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well suited for description through an ontology. For example, a
specific difficulty is the mapping from the model level descrip-
tion of a part down to the application level, thus transforming a
part description into a process plan that can be executed on the
machine level. Promising approaches such as STEP-NC [75],
[76] for micro- and toolpath planning have only reached limited
industrial uptake and still have issues in implementation [77].

Therefore, the authors propose that another kind of knowl-
edge representation is required to satisfactorily encode machine
level knowledge for automated generation of machining
plans. The goal is to do this in a general and flexible way for
macroplanning right down to toolpath planning [78].

While formal grammars primarily work symbolically, shape
grammars work in the domain of geometry [79]. With rules
and basic elements from points to solids [79], [80], general ge-
ometries can be represented and generated. The advantages of
shape grammars are that they can represent knowledge about
both form and function, since they represent geometric shapes
in addition to symbols [81].

Engineering grammars have been proven able to represent
and generate designs for Microelectromechanical Systems
(MEMS) resonators [82], motorcycles [83], gear systems [84]
and also to integrate knowledge on fabrication [85], [86], to
translate designs into fabrication ready models. Furthermore,
approaches generally based on grammars and algebras for
translating designs from CAD models to manufacturing infor-
mation and process planning have been proposed in the areas
of CAD modeling [80], process planning for turning [86], and
generative CAPP [87].

3) Approach: The process, from design to fabrication, is
shown in Fig. 11. It begins with the geometric models of the de-
sign and the raw material. With a Boolean subtraction operation,
the Total Removal Volume (TRV) (i.e., the volume, which needs
to be removed from the raw material to yield the finished part)
is generated. Using fundamental knowledge of the machining
process, material (i.e., volume) is removed from the TRV by
applying rules of the shape grammar using the knowledge en-
coded in the rules and the vocabulary, simultaneously instanti-
ating the toolpath and the necessary CNC instructions to carry
out the operation on the machine tool. After the rule applica-
tion, the TRV geometry is updated and further rules are applied
until the volume of the TRV is minimized. Once the volume of
the TRV has been minimized, the CNC instructions can be col-
lected from the created toolpaths in the sequence of the rules
applied. The resulting machining plan can be executed on the
machine tool. The Removal Volumes (RV) contain also as labels
the parameters of the RV that are instantiated during rule appli-
cation and the definition of the used machine tool, selected tool,
toolpath, and machining instructions. The complete machining
instructions can then be collected from a sequence of RVs. The
machining process knowledge is encoded in the rule set and in
the vocabulary. In the vocabulary, the elemental shapes that can
be removed by a machining operation are generated from the
combination of the tool shape and the kinematic capabilities of
the machine tool from the machine tool library. The vocabu-
lary consists, in general, of the Removal Volume shapes, tool-
path-curves and endpoints of the toolpath, the shapes of the part
to be fabricated, the raw material and the TRV. The labels allow

Fig. 11. Design-to-fabrication process.

further control over the grammar. The set of rules consists of
the fundamental rule to apply an RV to the TRV and of auxil-
iary rules for setting the initial tool-path origin, repositioning of
the tool and approaching the raw material.

The TRV represents the Initial Shape of the grammar. During
the application of RVs to the TRV, the TRV and the sequence of
RV applications represent the working shape. The details of the
specific shape grammar for machining planning can be found in
[78] and [88].

When the machining planner has decided which operations
need to be carried out and identified a selection of adequate ma-
chines, classical planning is used to create a sequence including
transportation and handling operations. This sequence is called
the Executable Plan (EP), which can be fed into low-level ma-
chine controls.

Classical planning finds an action sequence that, starting from
a defined initial state, achieves a given goal state. It employs a
logical model consisting of predicates and entities. The Plan-
ning Domain Description Language (PDDL) [89] is used in
the approach presented. A multitude of open-source planners
are available that support the planning based on a domain de-
scription and an accompanying problem description. The do-
main describes the predicates and actions, while the problem
describes the specific setup and entities as well as the goal of
the single planning task. A concise formal definition of planning
can be found in [90]. The machining operations are modeled in
PDDL in analogy to assembly operations. The execution of a
machining operation corresponds to adding a virtual part to the
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product in the planning model. The added part represents the
CNC instructions to run on the machine tools.

Inclusion of an adequate perception mechanism into the cog-
nitive system provides visual feedback, allowing for monitoring
of the system’s state, indirectly through the product state, pos-
sible failure diagnosis and consequent recovery. To build an in-
tegrated cognitive manufacturing system, a variety of ad-hoc
perception mechanisms is used, for example:

• a machine vision-based approach using a Dark Field Light
and edge detection algorithm;

• 3D laser scanning based on point-to-surface distance mea-
sures for deviation estimation.

The selection of an appropriate mechanism depends on the type
of the examined part and the features to be inspected.

Since the machining planning is a deep knowledge,
bottom-up approach, only machining specific information
is generated. Such a plan, however, is not directly executable
on the complete manufacturing system because it lacks in-
formation on logistics and transportation of the parts, which
are outside of the machining planning scope. To enable the
execution, the plan has to be completed with this information.
To do so, the machining planning is interfaced with a global,
abstract planning system. Fig. 12 shows the three areas of the
global and local planning: the global input and output, the
global planning and the local planning. The overall planning
process is initiated by defining the global goal to produce a
part X and passing the part designator to the global planning
system. Designators are partial part descriptions (e.g., material,
dimensions or CAD model) that are updated in the execution
loop used to parameterize the system’s actions.

In the global planning system, a reference model and raw ma-
terial are found. Furthermore, the availability of capable ma-
chine tools and their tools is estimated. Afterwards, a raw mate-
rial designator along with the original part designator is passed
to the local planning system. There, the TRV is calculated and
the Initial Plan (IP) for machining is generated. To complete the
IP, and thus create a feasible and executable plan, the IP must
be manipulated by the global planning system. To enable this
manipulation, the domain specific IP must be generalized (i.e.,
abstracted by segmenting it into single operations).

The machining plan is segmented into operations, each
separated by machine tool changes, tool changes and reposi-
tioning movements at rapid traverse. After the abstraction, the
Abstracted Plan (AP) can be accessed by the global planning
system. Each operation in the AP is fully defined by the tool,
machine tool, CNC instructions, cost/time information and the
expected resulting shape of the TRV and the part. Providing
geometric models of the part shape is necessary to infer the
interrelations of the different operations and to enable feedback
from perception. The AP is passed to the global planning
system, where it is analyzed. The global planning system
adds missing process steps such as transportation operations.
Furthermore, the sequence of execution can be altered, de-
pending on the interrelations of operations and online feedback
from the system. The final result of the planning system is the
Executable Plan (EP). This plan can be executed in the man-
ufacturing system, depending on the current state and system
feedback obtained from the perception component, involving

Fig. 12. Process for the integration of local and global planning and perception
for part manufacture.

all necessary machines of the manufacturing system. When the
manufacture of the part is finished, it can be inspected using the
described perception techniques. Faulty areas of the part are
identified and mapped to operations of the EP. This is possible
since the EP contains the expected resulting shape of the part
after every operation. The incorrectly executed operations can
then be replanned using the original part models from the EP in
combination with the reference representation of the part (i.e.,
reference edges or reference PC) avoiding resources involved
in the incorrect operation. Through this, a faulty part can still
be remachined to achieve a correct result autonomously. Addi-
tionally, the image of the current scanned part and the derived
shape can be stored in the knowledge base for future refer-
ence regarding failure analysis. Overall, the specialized local
planning system for machining can be effectively integrated
with a general, global planning system and thus be integrated
in the overall system. The ability to integrate perception into
the operation of the system also demonstrated the potential
for this combined bottom-up (local planning) and top-down
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Fig. 13. Screenshot of the machining planning application after plan genera-
tion, decomposing the TRV into operations.

(global planning) approach, allowing planning and perception
to closely interact.

4) Results: In contrast to traditional tool-path planning
where a set of defined features or shapes is recognized from the
TRV and then further mapped to fabrication processes, using
specific strategies, e.g., equidistant offsetting of the contour
and connecting the paths, the system presented in this paper
is aimed at being able to deal with a wider variety of parts
and fabrication processes. Since the system does not depend
on a set of feasible manufacturing features, no maintenance
and continuous updating of this set is required, and thus this
administration task is minimized. This is also addressed by
the ability of the system to generate knowledge models of its
capabilities, i.e., the shapes it can remove, from the tool-shape
and the machine tool kinematics, enabling the system to adapt
itself to new machine tools and tool capabilities. With the
method presented, a fabrication system will be enabled to react
to missing (raw-) material or machine capabilities, respond to
new and changed tools and to replan after machine interruption.
The implementation under development of the method using
the OpenCASCADE 3D CAD kernel [91] shows the general
feasibility of the approach using a single machine tool within
a single setup. Fig. 13 shows a screenshot of the planning
application developed after the generation of a machining plan.
The CNC code displayed on the left side of the figure was
generated simultaneously to the application of rules and RVs
to the TRV. In the main window, the finished shape of the
TRV can be inspected. Currently the part design needs to be
constrained to prismatic milling parts to allow for a successful
plan generation. The implementation uses a combination of
pattern search [92] and Simulated Annealing [93] for search
during plan generation. However, different heuristic search
methods are currently under investigation to benefit from faster
plan generation and improved plan quality in terms of time and
possible part variety.

B. Fixture Design and Reconfiguration

1) Motivation: To enable the efficient and flexible manufac-
turing of customized products, an approach to the autonomous
fabrication [94] and fabrication planning [78] of individual parts
on CNC machines, as described in Section IV-A, has been devel-
oped. However, insufficient flexibility on the hardware level cur-
rently prevents the successful application of these approaches in

a manufacturing system. One of the key issues in hardware flex-
ibility is fixture design and fixture device adaption [95] to allow
for the secure fixation of arbitrarily shaped workpieces for ma-
chining and assembly. To make use of the aforementioned ap-
proaches, the hardware system, especially the fixtures, need to
be autonomously adaptable and reconfigurable.

2) State-of-the-Art and Research Gaps: Fixture design and
fixture automation have been researched for many years. A gen-
eral overview can be found in the eight survey papers listed by
Bi et al. [95]. Still, in the field of automating the fixture process,
only a handful of approaches are commonly used in industry
nowadays. Among these are the use of pneumatic, hydraulic
or electrically actuated elements for locating and clamping the
workpiece, as found in active vices or clamps. Normally, these
fixtures only automate the clamping process itself and are ei-
ther not capable of adapting to different shapes of workpieces
or need manual interaction to do so. To address the issue of
fixing arbitrarily shaped parts, several approaches exist. These
include modular fixtures, electromagnetic fixtures [96] and fix-
tures using phase-changing materials such as magneto- or elec-
trorheological fluids [97], [98]. Further, there are adaptable fix-
ture devices such as the 3-D gripper tool described by Brown et

al. [99] and self-adapting fixtures such as vices with movable
jaws [100] or pin-array type jaws [101]. Although all of these
systems enhance the fixture flexibility, they are limited in their
range of use. Magnetic fixtures only work for ferromagnetic
parts with at least partially planar surfaces to allow for secure
magnetic fixation. The embedding of parts in phase-changing
materials is complex and the positioning of the workpiece is
not exactly reproducable. Therefore, time consuming position
referencing is necessary for each workpiece. The mentioned 3D
gripper tool only works for a limited range of workpiece geome-
tries and needs to be reconfigured manually. Self-adapting vice
jaws eliminate this need. Pin-array type jaws, based on a matrix
of small individually driven hydraulic or pneumatic pistons that,
when activated, cast a mold around the parts surface, allow for
a great geometric adaptability but again raise the issue of po-
sition referencing. The jaws described in [100] consist of two
rotatable half-cylinders per jaw. Through rotation, the jaws can
adapt to different part geometries. Using sensors to detect the
rotating angle for each half cylinder, the exact workpiece posi-
tion can be computed, so that no referencing is needed. Unfortu-
nately, the underlying algorithm does not work for symmetrical
or quasi-symmetrical parts, making human supervision of the
process necessary.

The most common systems in industry are modular fix-
tures consisting of single elements for supporting, locating
and clamping the workpiece, that can be mounted on a table
with a dowel pin-, hole- or T-slot pattern. A human expert
designs and assembles each fixture using these elements. Using
a zero-point locating system, the tables, with preassembled
fixtures and fixed workpieces, can then be passed around in a
manufacturing system and be fixed for machining. Although
these systems offer a great adaptability through reconfiguration
of the whole fixture, they are very limited regarding their degree
of automation. The design and assembly of each fixture is very
time-consuming as it has to be carried out manually by the fix-
ture expert. Approaches to automate the assembly of modular
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Fig. 14. Structure of the reconfigurable vice.

fixtures using robots are very complicated and expensive [102]
and no industrial application is known.

In the field of automating the fixture design process, sev-
eral methods exist. One possibility is using an ontology to rep-
resent fixture knowledge in combination with an agent-based
system [103]. Pehlivan and Summers [104] and Cecil [105] give
an overview of the work in Computer-Aided Fixture Design
(CAFD). Although the use of these methods increased in the
last decade, they generally only address the issue of supporting
a human expert in designing fixtures. They do not address the is-
sues of autonomous fixture design or automatic reconfiguration
and reassembly of the fixtures. As none of the existing solutions
fully covers the requirements of a cognitive factory, a new flex-
ible fixture device is under development.

3) Approach: The goal of the approach was the development
of a flexible fixture device for the CNC milling machine within
a given FMS. The development was carried out systematically
according to carefully defined requirements [106]. Some of the
key requirements are that: 1) the device can be reconfigured and
adapted solely using the existing devices within the manufac-
turing system (i.e., machine tools, handling robots, storage, and
conveyor belt) and 2) similar clamping forces (max.+ 5 kN), a
similar clamping width (0–130 mm) and a similar positioning
precision ( 0.01 mm), regarding the existing fixture, can be
achieved. More than 100 functional solutions were created, eval-
uated and revised, using classical methods of product develop-
ment, until the final solution was derived.

4) Results: The result is a fully automatic, reconfigurable and
adaptable pneumatic vice. To reconfigure the vice, the clamping
jaws can be exchanged by the existing handling robot, without
the need to recalibrate the machine tool. To adapt the vice to new
part geometries, the jaws can be machined by the machine tool
on which the fixture device is installed. The overall design of
the flexible vice is shown in Fig. 14. The vice rail (2) is mounted
to the machine table (1). The vice’s anvil block (3) is mounted
to the rail opposite to the movable slide (4). The exchangeable
jaws (5) are held in place by pneumatic pistons mounted on the
anvil (3) and the slide (4). The slide (4) is driven by a pneumatic
piston (6). A cable actuated position sensor (7) is used to control
the clamping width of the vice and the correct fixture of a part
by variance comparison. Additional noncontact sensors detect
the correct locking and unlocking of the jaws.

Since the jaws have a similar weight to the workpieces, the
same robot used to insert workpieces into the machine tool can
be used to exchange the jaws. This implies that the robot can
be smaller, and therefore cheaper, than a robot capable of ex-
changing the complete fixture device, as required by current

Fig. 15. Robot-guided optical scanning devices.

zero-point fixture systems. Using pneumatic elements to (un-)
lock the jaws and the handling robots to exchange them, the
reconfiguration can be achieved autonomously without human
intervention. The jaws can be exactly repositioned in the vice
after the exchange, which makes it unnecessary to recalibrate
the origin of the machine tool in order to produce the parts with
sufficient precision.

If no fitting jaws for a certain part exist, a set of blank jaws
can be machined to the desired shape on the machine tools. To
create the design of the jaws, a knowledge-based approach is
being developed, able to synthesize valid jaw designs for a given
part, based on the 3D model of the workpiece. A key challenge
in this process is to find an optimal orientation of the part within
the fixture. Liu [107] and Zhu [108] show different approaches
to overcome this challenge from the field of fixture layout or
robot grasping. Once the jaw design is created, the NC program
for their machining is derived using the method for autonomous
machining planning [78] described in Section IV-A. This en-
ables the autonomous adaption of the fixture and therefore the
fixation and fabrication of a wide variety of part shapes.

According to the requirements, the current device is limited
regarding the maximum part size and clamping forces, mainly
due to the use of pneumatic pistons to create the necessary
forces. This solution is chosen out of weight and cost consider-
ations. However, using hydraulic pistons, the vice can be easily
extended to higher clamping forces and larger part dimensions,
thus making it more applicable in industry. The underlying
principle of the flexible fixture device can also be extended
to grippers for the handling robots, adding further flexibility
on the hardware level. The ability to reconfigure the fixtures
fast and flexibly minimizes change–over time, while increasing
production time. For handling, transportation and installation
of the jaws, the existing control and planning systems can
be used, integrating the jaws and their configuration into the
manufacturing system and its existing processes. Overall,
the approach is an important enabler of flexibility, especially
supporting the autonomous operation in a cognitive factory for
the fabrication of customized and engineered-to-order parts. In
addition to the development of an autonomous part orientation
and jaw design method, current work also includes creating a
hardware prototype of the fixture device and integrating it into
the manufacturing system for further validation.
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C. Robot-Guided Quality Inspection

1) Motivation: In dimensional quality inspection, acquiring
the shape data of the physical objects to be inspected is essential
[109]. Robot-guided optical scanning devices (compare 15), can
be deployed for the flexible digitalization of nearly all kinds of
free-form surfaces that require high-resolution sampling [110].
Despite this enormous advantage, the wider implementation of
such systems, especially in the case of small lot sizes or cus-
tomized parts, is still far from being reached. This is partially
due to the extensive amount of time and human effort required
to manually program the robot paths for every new part using
trial-and-error approaches [111], [112]. Since the laser scanner
trajectories have to simultaneously satisfy several constraints
[111], [113] using tedious and time consuming manual teaching
methods often result in, over- and underscanning or missing of
some interesting filigree regions [112]. Therefore, inspection
path planning is an important, complex part of robot-assisted in-
spection tasks and needs to be automated in order to overcome
these challenges [114]–[116].

2) State-of-the-Art and Research Gaps: So far, essentially
two distinct approaches which mainly differ in the amount of
planning done online and the amount of a priori knowledge
about the part to be digitalized, have been investigated. On-
line approaches without a priori object shape knowledge [117],
[118] assume that the artifact to be scanned is enclosed in a
bounding volume. According to that assumption simple grids
of regularly spaced robot poses are generated orthogonal to the
sides of the bounding volume.

The main drawback of this approach is that the generated path
cannot maintain a regular pattern of line stripes to reconstruct
quality surfaces out of the point cloud. Furthermore, a lot of un-
sampled regions are spawned when digitalizing complex parts.
This makes the gathered point cloud only adequate for reverse
engineering purposes unless it is complemented by driving the
robot manually around the unsampled areas. Offline approaches
with a priori object shape knowledge were successfully con-
ducted by many researchers. The methods are basically built
around the visibility or accessibility theory [112], [114]. The al-
gorithms introduced in those works use visibility or accessibility
cones to compute a set of points from which the scanning de-
vices can freely access the part by satisfying a set of constraints.

Additional reported methods are based on slicing algorithms
to divide a CAD model into a number of sections in such a way
that each section can be covered by the laser stripe width [119].
However, it is unclear where the slices should be spotted in order
to obtain good results.

Most of the outlined methods and systems address the scan
planning issue as an isolated problem without incorporating the
topology of the scanning scene. The yielded scanning paths lie
in a meander- or zigzag-fashion over the surface containing the
features to be collected.

Since the implemented systems are based on coordinate mea-
suring machine (CMM), respectively, Cartesian robot-based,
kinodynamic constraints play a minor role or are simply not
considered. Only the collision between scanner and part is
taken into account. Moreover, no methodology is introduced to
automatically capture specific curved regions of interest such
as edges, corners, slots, pins, without scanning at least a large

portion of the part. Those methods and system cannot also
cope when an active real-time control of the sensing process
is required to resolve mismatch between the virtual and real
world, hence, assure that the robot stays on the right track.

3) Approach: Consequently, the novel approach proposed
by the authors tackles the four main bottlenecks while carrying
out automated inspection tasks: the optimal positioning of the
workpiece, the selection of the features to be gauged, the auto-
mated generation of optimal scanning paths and corresponding
smoothly shaped robot movements and the real-time control of
the scanning process. This new approach rests on the observa-
tion that artifacts such as edges, corners, slots and pins are crit-
ical for manufacturing height quality grade parts. Thus, using
the spatial information of the workpiece in the form of a CAD
model, the part feature line contours are automatically extracted
as given by the design-engineer. The user then decides which of
the extracted features are relevant for the inspection task and
optimal scanner poses as well as collision free robot motion se-
quences are automatically generated. The following are major
steps of the methodology.

Features contour lines extraction and inspection task de-

scription: The aim of this step is to isolate features contained
in the CAD model. Given tessellated, structured surface model
of parts, feature regions distinguish themselves by high curva-
ture, respectively, heavy direction change of surface normals.
Hence, the extraction of features is achieved by tracking the
later across the meshed model. For this purpose, image fairing
techniques described in [120] were adapted. The developed al-
gorithm is based on a three-stage calculation scheme including
the following.

A Preprocessor stage in which the input meshes are subjected
to a filtering algorithm in order to heal the model from errors,
refine the initial mesh, eliminate the redundant data, establish
vertex connectivity in triangle fashion and finally store the pro-
cessed data in a proper structure for further use.

A Classification and selection stage in which a Second-Order
Difference (SOD) classification operator as presented in [120] is
used to assign an importance factor to every edge of the polyg-
onal mesh. The importance factor adopted here is proportional
to the dihedral angle between the two polygon faces that enclose
the edges. Afterwards, the model is decimated using a hysteresis
threshold algorithm, which filters the most nonsalient regions
out of the mesh and simultaneously indentifies the edges be-
longing to a feature contour or to its neighborhood.

Finally, a Skeletonizing and pruning stage where using the
medial axis transformation operator [121], a skeletal remnant
of the output from precedent is produced in form of a collection
of piecewise linear curves describing the salient features of the
mesh. Fig. 16 illustrates the result of the algorithms applied to
the CAD model of a car side panel. The inspection task can be
further specified manually by selecting a subset of desired fea-
ture contours out of the previous stage results (compare the high-
lighted features in Fig. 16). The complete feature set can also be
automatically considered if no human interaction is desired.

Tool path planner: Next, for a given point of the feature
line, the Tool Path Planner generates a set of robot-independent
scanner poses (spatial placement and orientation) that ensure a
robust coverage of the feature. Robust coverage implies that the
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Fig. 16. Feature lines of a car side panel (The highlighted ones chose manually
selected contour lines.)

Fig. 17. Geometrical constraints while scanning.

following constraints illustrated in Fig. 17 [111]–[113] must be
satisfied:

1) View angle: The angle between the incident beam and the
surface normal of each point of the laser stripe should be
less than a given limit angle. Ideally, this angle should
amount to zero degrees.

2) Field-of-View (FOV): Any measured point should be within
the length of the laser stripe .

3) Depth-of-View (DOV): Scanned lines must be within a
specified range of distance from the laser source.

4) Self-occlusion: The incident beam as well as the reflected
beam must not interfere with the workpiece.

5) Clearance for the laser probe: The probe has to be colli-
sion-free with the workpiece.

To fulfill these requirements, the decoupled approach imple-
mented in this work can be summarized as follows: First, for each
knot of the feature line, a polygonal direction cone aligned with
the normal vector of the knot is calculated, considering the gen-
eralized laser scanner model plus constraint one and two. After-
wards, the self occlusion test is performed heuristically by tilting
or scaling down the direction cone without violating the first two
constraints. Simultaneously, the workpiece, the cones and the
laser probe are checked for collision. For this purpose, a scalable
CAD model of a cone as well as the CAD models of the part and
the laser probe, are passed to the Planner. Collision monitoring is
carried out by the third party Proximity Query software Package
(PQP) [122]. Once the direction cone at each point of the feature

Fig. 18. Scannability map of a linear track-mounted robot-based 3D scanning
system. The result was save in a 3D matrix and sliced for better visualization.

line is computed, an area that constitutes the solution space for
the collision free positioning of the laser probe is isolated on its
upper part using constraint three (compare Fig. 17).

Robot motion planner: Before addressing the issue of mo-
tion planning, the positioning of the workpiece in the manip-
ulator’s workspace needs to be considered, since its can no-
ticeably influence the path planner. Hence, it will be a great
benefit if the chosen workpiece posture lies in an area where
the robot posses outstanding dexterity index values. The dex-
terity index is computed via the manipulator Jacobian matrix
and measure how far a robot is from kinematic singularity at or
near given targets. This index also quantifies the robot’s ease
of arbitrarily changing position and the orientation of its tool
center point at a given posture [123]. Accordingly, we intro-
duce the new notion of a robot scannability map with manip-
ulator-guided scanning systems. The map should give a graph-
ical description of the scanning system’s ability to digitalize a
part within its working area. It should also provide information
to all robot motion planner so they can avoid singularities, as
well as configurations subjected to collision. The scannability
map shown in Fig. 18 was obtained by performing a kinematics
workspace analysis similar to [123]. The red fields denote the
region where the workpiece should be positioned for optimal
access by the laser scanner, where dark blue indicates areas with
bad scannability attributes.

The Robot Motion Planer itself has the task of planning
the trajectory of the robot manipulator’s joints based on the
previous computed tool solution space. Its core consists of five
algorithms. The first algorithm computes a preliminary feasible
path consisting of a sequence of viable scanner poses along
the targeted feature contours. This is done by heuristically
searching for a scanner pose residing in the solution space at
each cone and connecting them with piecewise linear segment
lines. Thereby, the best next heuristic algorithms used here,
try to keep the sensing direction as perpendicular as possible
to the sensed point. The second algorithm presmoothes the
obtained path using an elastic-band-based algorithm. The
third Algorithm interpolates the path using cubic splines to
form smoothed robot joint’s curve and computes afterwards
the inverse kinematics solutions for each intermediate point
of the interpolated path. The robot configuration yielded by
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Fig. 19. Experimental result: (a) extracted and selected feature lines; (b) solu-
tion space; (c) point cloud; (d) shape error map.

the inverse kinematic are then checked for singularity and
collision. By positive hits, the algorithm performs minimal
modifications on the Cartesian pose of the laser scanner pose
to remove the handicap. The same procedure is subsequently
conducted at each intermediate path point until an adequate
robot configuration is retrieved. The fourth algorithm is based
on the Probabilistic Roadmap Planner developed in [124] and
inserts collision free intermediate poses for transfer motion so
that the complete motion of the robot is fully determined. To
achieve high-level process safety, the Robot Motion Planner
explicitly takes the topology of the current robot workspace into
account. In cases where multiple robots are needed to achieve
an inspection task, the laser scanner path is first partitioned and
assigned to the individual robots, taking each of their physical
limitations into account. The fifth and last Algorithm takes
action at the phase of the system operation. It consists of a
PI feedback controller, which monitors the scanning data in
real-time and tries to keep the surface being digitalized within
the Laser scanner’s depth of view. Hence, this Algorithm
ensures that the robot stay on the right track, even if the virtual
robot cell where the path planning is carried out, marginally
differs from the real robot cell.

4) Results: A prototype system that utilizes the described
methods and algorithms has been implemented using Matlab
and C/C++. To evaluate the performance and robustness of the
implemented algorithms, experiments were carried out on a car
door. The equipment used includes a six-axis robot, 3D laser
scanning system. Fig. 19(a) shows the extracted contour feature
lines of the car door. In Fig. 19(b) the solution space along the
features lines are depicted. Fig. 19(c), respectively, Fig. 19(d)
shows the collected point cloud and the shape error between the
point cloud and the CAD model.

V. HYBRID AND MANUAL PROCESSES AND OPERATIONS

A. Human-Robot Cooperation

1) Motivation: In general, issues concerning the coopera-
tion between humans and industrial robots are emerging more

and more in ongoing research fields, focusing on human ma-
chine interaction, as well as industrial safety requirements, is-
sues, and union decrees. Humans and robots must share certain
knowledge about the task to solve, about each other, and about
external constraints, including the environment, in order to co-
operate effectively. Today’s industrial robots have no ability to
“see” humans as cooperation partners, because they cannot per-
ceive their surroundings at all. According to the research results
of cognitive neuroscientists, a robot must engage in joint action:
joint attention, action observation, task sharing, and action co-
ordination in order to achieve successful joint action [125].

Joint Attention: For cooperation between robots and humans,
it is important that both partners coincide on the same objects
and topics and create a perceptual common ground and shared
representation of reality [125]. That means that the system has
to be able to know where the human’s focus-of-attention is. The
focus-of-attention can be extracted from data gained by visual
sensor devices (cameras) using tracking techniques (e.g., [126])
or from data gloves [127]. Therefore, the system needs to rec-
ognize, for example, a pointing gesture, compute the location
indicated by the human worker, and then transform this informa-
tion to estimate his focus-of-attention. Thus, an internal system
representation of the environment that is always kept up-to-
date with information from the sensors (workspace model) is
required.

In addition to pointing gestures, the human worker’s head ori-
entation can be used to determine his focus-of-attention. Ac-
cording to behavioral studies [128], head orientation is directly
connected to a human’s focus-of-attention. Determining head
orientation can be achieved with tracking techniques, using mu-
tual information presented in [129].

Joint attention also implies that both partners coincide on the
same objects. In a production scenario, this includes objects like
workpieces and tools that might be used.

Task Sharing: To manage a predefined goal, in this case the
assembly of a product, a robot-system needs to know about the
task in the production process, the human worker, and the neces-
sary skill rated steps. Therefore, the representation of the tasks
should be as generic as possible, so that role allocation can be
changed dynamically, even during production.

Action Observation and Coordination: All information per-
ceived by the sensors builds up an internal representation of the
working environment, the workspace model. In addition to the
perceived data, the workspace model can also carry informa-
tion about the inventory (e.g., how many parts are stocked), an
assembly line (e.g., which part is on the assembly line), and the
worktable (e.g., where parts that are already in use can be placed).

This information is used in the decision making process of
deciding whether to infer in the next action step, along with the
knowledge about the task provided by the current building plan,
sensor information, and extracted features (e.g., the human’s
focus-of-attention). The system has to begin executing the
likeliest next step in order to reach an anticipatory behavior
that is important for efficient collaboration. If new sensor-input
changes the situation and thus the decision, the system must
change its behavior seamlessly.

To control the movement of the robot (Motion Control), real
time control of the robot is needed. Because the robot and the
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human worker share the same work space, the movements of
the robot cannot be programmed offline for safety reasons. After
starting to execute the next step towards reaching the assembly
goal, the robot has to be aware of obstacles (e.g., the human
worker’s hand, body, or arm) and react in real-time to avoid
collisions with them.

Assembly modules of today’s factories can be subdivided
into the following three classes: fully automated assembly, fully
manual assembly, and a combination of manual and automated
elements (the so-called hybrid assembly).

2) State-of-the-Art and Research Gaps: The state-of-the-art
in human-robot collaboration is mainly based on a master-slave
level, where the human worker teleoperates the robot or pro-
grams it offline, allowing the robot to execute only static tasks.
To ensure safety, the workspaces of humans and robots are
strictly separated either in time or in space. For instance, human
workers in the automobile industry are completely excluded
from the production lines, where automated robots execute
assembly steps. On the other hand, robots are not integrated in
assembly line manufacturing along with human workers. These
approaches do not take advantage of the potential for humans
and robots to work together as a team, where each member
has the potential to actively assume control and contribute
towards solving a given task based on their capabilities. Such a
mixed-initiative system supports a spectrum of control levels,
allowing the human and robot to support each other in different
ways, as needs and capabilities change throughout a task. With
the subsequent flexibility and adaptability of a human-robot
collaboration team, production scenarios in permanently
changing environments, as well as the manufacturing of highly
customized products, are possible. Future assembly systems
could be characterized by a direct cooperation between humans
and robots without the use of separating safety equipment or
safety areas. The fundamentals for this cooperation are cur-
rently being created from a technical and legal perspective. For
an effective human-robot-collaboration, new safety methods
have to be developed and proven. Human workers, as well
as objects in the environment, have to be detected; collision
avoidance algorithms must ensure the safety of persons and
equipment.

3) Approach: The innovation lays in the creation of a smart
working environment in which a human and an industrial robot
can work together on a peer-to-peer level, overcoming state-of-
the-art techniques to shut the robot down if a human comes
close in order to maintain a safe working environment. This is
achieved by the use of multiple modalities to analyze current
actions, to reach pro activity (anticipatory behavior), and to en-
sure safety for the human co-worker (reactive behavior).

Therefore, a special hybrid assembly cell, which can be
seen in Fig. 20, is integrated as a workstation in a Cognitive
Factory research environment [130]. The hybrid assembly
cell primarily consists of an industrial robotic manipulator, a
shared workbench, where the Human-Robot interaction takes
place, a tool change station for the manipulator, and sensors to
monitor the ongoing activities within the cell. To connect this
hybrid assembly station to the remaining manufacturing units
(fully automated assembly, purely manual assembly, automated
storage rack), a conveyor belt is located directly behind the

Fig. 20. Picture of a worker wearing eye-tracking glasses and fixing screws
together with the robot on a product in the hybrid assembly cell (CoTeSys/Kurt
Fuchs).

workbench to exchange parts and other products. The following
explains the specification of this setup in greater detail. The
general idea behind the hybrid assembly is to construct a
workpiece by exploiting the advantages of the cooperation
between a human worker and an industrial robot. Thereby,
the cognitive skills and dexterous manipulation capabilities of
the human are combined with the precision, repeatability, and
strength of the robotic counterpart, which enhances the current
productivity in general and decreases the physical efforts of the
human. Therefore, a sample product was selected, including
tasks appropriate for the human worker (wiring), dedicated for
the robot (glue parts together), and for both of them (mounting
and fixing screws). The conveyor belt access was managed
autonomously by the robot to exculpate the human from this
task. The robot also hands over the required parts when they
are needed in the assembly process. Otherwise, these parts are
stored in a local buffer, to be used later on. The hybrid assembly
cell is equipped with a Mitsubishi RV-6SL manipulator arm,
which has a maximum payload of six kilograms, six degrees
of freedom in motion, and a spherical workspace with a radius
of 0.902 meters. Furthermore, the robot controller allows
online programming if the position data is updated within a
timespan of seven milliseconds. Mounted on its tool center
point, a tool-change unit provides desired flexibility in handling
operations. Therefore, several different kinds of grippers (two
parallel grippers and one centric gripper) and end effectors
(screw driver, observation camera, glue-unit) are within the
robot’s workspace and can be exchanged, depending on the next
steps of the current procedure, without manual interference.
The intelligent controller is aware of what tools are needed
to perform specific tasks, based on the production plan. For
example, if the system requests gripping an object and the tool
currently installed is not appropriate for this handling opera-
tion, the controller changes autonomously towards the correct
end effector or gripper. This operation happens without the
human having to implement the necessary commands explicitly,
making the planning of the task less complex. Furthermore, a
force torque sensor delivers data about occurring forces, which
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Fig. 21. Left: laser scanner—experimental setup; right: laser scanner—data
evaluation.

can be used as valuable information for interaction situations
or manufacturing processes.

A camera is mounted above the workbench and provides a
view of the entire area of interaction. Information about rota-
tion and location of objects in the scene and the positions of the
worker’s hands are extracted from this image source as well.
For image segmentation and increased safety within the interac-
tion process, the depth data delivered by a Photonic Mixer De-
vice (PMD) camera is used together with information about the
robot’s current position. A further camera is applied to gather
information about the head and face of the worker. A desktop
array microphone used for video conferencing is used to cap-
ture the audio signals of the worker, required for speech recog-
nition. A haptic input modality to the system is provided by
buttons, which are projected onto the workbench with a table
projection unit. This projection unit is also used to provide the
next assembly instructions in an ergonomic way. However, an
additional input channel was setup by introducing eye-tracking
glasses, as presented and discussed in [131], into this working
environment. This allows the human worker to enable system
functionalities by the use of gaze information or to select op-
tions by simply looking at the buttons.

Safety Sensors: For interactions between humans and
industrial robots, the position and orientation of both entities
must be known to avoid any collisions between human worker
and robot.

To detect the human, a laser scanner is used. The scanner is
mounted below the working table (see Fig. 21). Due to safety
reasons, the position data of the human has to be verified by a
second redundant system. In case of data loss of one system
the second system can release an emergency stop command.
A matrix of safety shutdown mats can evaluate the data of
the laser scanner to verify the standing position of the human
worker. Therefore, a matrix of safety shutdown mats on the
floor can detect where a human is standing from the pressure
of his feet [132].

System Controller: In a first phase, the control of the Human-
Robot interaction system, presented in [133], has been realized
with a finite state machine to build up an efficiently robotic
work cell. During the first evaluation, we found, that this kind
of system controller did not meet the requirements of flexi-
bility. Therefore, the controlling unit was replaced with an ex-
pert system based on first-order logic. This expert system uses
the Real-Time Data Base (RTDB) Control-Object to exploit the
self-reporting mechanisms of these intelligent software mod-
ules. The skills of the available and running modules, i.e., the

Fig. 22. Left: real production cell; right: abstraction on system level.

input and output modules, can be enumerated and used for au-
tonomous planning purposes considering specific constraints,
such as computational power or inter module dependencies, etc.

User Adaptation: Adaptation on multiple levels will increase
the performance of the system and also the user’s acceptance.
For example, the skin color model for gesture recognition can
be learned based on the color histogram of the facial region, as
presented in [134]. Additionally, the language model can be ad-
justed according to its present user, to provide a natural language
speech input to the system. Further preferences, like handover
positions, preferred interaction modalities, and distances, etc.,
can be learned by the system and stored in this user model.

4) Results: Some safety aspects are shown in Fig. 22 (left:
real production cell; right: abstraction on system level). For the
detection of humans, five procedures can be used.

With a matrix of safety shutdown mats the rough position of
humans can be seized. This can be verified with a laser range
scanner. With marker-based object-tracking and vision-based
tracking algorithms, the head and hands of a human worker can
be localized very precisely. Observation of the working table is
realized with a PMD camera.

Within the project, interaction between robots and humans in
a common work space was examined on a research platform.
Here, the individual strengths of the interaction partners are
linked. The robot is used for the handling of heavy construc-
tion units and for the execution of repetitive tasks like screwing.
Humans are used to implement sensitive and fine-motor work,
like fixing a cable in cooperation with the robot. The cooper-
ative efforts must be guaranteed by the integration of different
safety components in the system and an intelligent path plan-
ning method so that the robot is closely integrated in the as-
sembly process and can optimally adapt to the actions of hu-
mans. This way, humans can interact and cooperate, using their
superior cognitive developments and high fine-motor abilities
with robots close by with the help of multimodal interfaces.

B. Quality Assurance and Process Control in Laser Welding

1) Motivation: Most robots functioning today are used in
industrial production, so the potential for cognitive capabili-
ties is high in this area [135]. In manufacturing, certain pro-
duction processes are especially hard to control and observe in
regard to quality; material processing with laser beams is one
of these. The strong radiation and process emissions that result
from working with high powered lasers require specialized sen-
sors and excellent controlling techniques. Therefore, the aim of
this research is to improve the quality assurance and process
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Fig. 23. Laser welding process equipped with acoustic sensors; in-process
image taken with coaxial camera.

control in laser material processing with artificial cognitive ca-
pabilities, such as learning how to weld or cut metals. Laser
beam welding or cutting experiments, under real industrial con-
ditions, shall then validate the improvements by using technical
cognition in production or manufacturing systems.

The control of laser beam welding has challenged research
and development teams for decades. Many sensor and quality
assurance systems have been invented and introduced to indus-
trial assembly lines, most of which use cameras and photodiodes
for monitoring [136], [137]. Systems in industrial use today
are set up manually and undergo many trials. Any variation in
process parameters often necessitates a recalibration, which
might even require the assembly line to be halted. Research
has offered promising approaches for controlling laser welding
processes [138] and for teaching machines how to handle them
[139]–[141]. In a Cognitive Factory, many different sensors
are combined and real-time machine-learning techniques to
improve process quality and control are developed.

The cognitive capabilities under evaluation can be separated
into four categories: first, abstracting relevant information;
second, learning from a human expert how to control; third,
acting on learned knowledge; and fourth, autonomous decision
making in previously unknown situations.

2) State-of-the-Art and Missing Research: state-of-the-art
sensors for laser material processing are usually insufficient to
monitor process quality online if only one kind of sensor is used.
Therefore, different kinds of sensors are utilized to combine
many partially weak sensor signals for an improved combina-
tion. For the cognitive laser material processing system, we in-
troduced cameras, photodiodes, and sensors for solid-borne and
air-borne sound, offering a lot of valuable process information,
as demonstrated in Fig. 23. Receiving data from many different
sensors is vital to be able to abstract the relevant information
while reducing the amount of data in order to process infor-
mation in a reasonable time. Linear and nonlinear dimension-
ality reduction enables us to map an high-dimensional observa-
tion space to a low-dimensional feature space . All of the
data from the applied online sensor system can be represented
by a 26.603 dimensional vector, which can be reduced to only
33 dimensions, representing the relevant process-information by
combining different dimensionality reduction techniques. Thus,
we are extracting characteristics that enable the CTS to perceive
the real world [142]–[145].

Fig. 24. Features and probability related to the “False Friend” process error.

Fig. 25. Probability of the “False Friend” process error for a test sample.

3) Approach: Laser material processing systems are usually
set up and processes configured by human experts. In order to
simplify and accelerate this process, the cognitive capability
for learning is implemented in the cognitive laser processing
system. In the learning phase, the system performs a test ac-
tion such as a laser power ramp for welding or a processing gas
ramp for cutting. The human expert points out, over a graphical
and acoustic interface displaying the workpiece, how the pro-
cessing result would be classified for the different workpiece
areas, such as a poor weld with not enough laser power, a good
weld, and a poor weld with too much laser power applied. Our
system stores this information together with the extracted char-
acteristics described above with a classification technique. We
evaluate several classification techniques for our purposes, such
as Support Vector Machines, Artificial Neural Networks, and
Fuzzy k-Nearest Neighbor. All of the named classifiers achieved
good results; the extracted characteristics seem to be separable
from each other. However, the knowledge learned from the ex-
pert makes the system capable of performing improved quality
monitoring because a considerable amount of joint sensor data
input is used. Even previously hard-to-detect faults can be moni-
tored, such as the so-called false friend, which may occur when
the gap between the parts to be joined is too wide, as shown
in Figs. 24 and 25. The performance of the monitoring results
of our system will be evaluated for further scenarios in the fu-
ture [135].

4) Results: Having improved monitoring results, different
closed-loop control experiments are performed on the basis
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Fig. 26. Similarity of features acquired on workpieces of different thicknesses
while performing a laser power ramp.

of the learnt knowledge. Combining PID-control with the
classification results enabled us to do “cognitively control”
overlap welds of stainless steel workpieces with laser power,
compensating for the focus shift in processing optics by varying
the axis, and reducing the influence of the gap between the
parts to be joined. Especially for controlling tasks, real-time
data processing is important. Using low data volume charac-
teristics to represent the relevant information enabled us to
have closed-loop control cycles of 100 Hz. In experiments,
the system was capable of adjusting the laser power in overlap
welds and achieve a processing result that was previously
defined by an expert, thus the machine’s capability to learn
initially from a human is validated. In other experiments,
we successfully measured the sharpness of images. Because
the observing camera is integrated into the optics used for
processing, it was possible to detect the focus shift, which
occurs when the optics heat up because of energy absorption.
This and other learned background properties may be used to
control the axis and vary the distance between the workpiece
and the processing head. Furthermore, since we were able to
detect a false friend, it was possible to reduce its influence by
adjusting the laser power. Further experiments can evaluate the
limits of the cognitive laser material processing system [142],
[146]–[149].

Even though every attempt was made to keep all processing
parameters constant for a configured process, influences may
occur in varying workpieces, such as changes in mounting and
workload. To cope with this challenge, we integrated a learning
scheme. A novelty check with the stored knowledge can de-
tect new or previously unknown situations. In this case, the
system performs another test action and classifies the new work-
piece. This time it does not need to consult a human expert;
it can map the gained knowledge onto the new workpiece au-
tonomously and adjust the process control appropriately. We
have tested this cognitive capability for varying material thick-
ness of 10%; the results are demonstrated in Fig. 26. They
indicate that the system is capable of making a judgment and

adjusting the applied laser power for receiving the desired welds
accordingly. Further techniques for this step will be evaluated,
such as Q-Learning in order to increase high-level adaptivity
[135], [150].

In summary, we were able to demonstrate cognitive capabil-
ities within a laser material processing system managing mul-
tiple sensors and actuators. The system has been able to learn
from a human expert how to weld or cut materials, make deci-
sions in completely new situations, and improve monitoring and
process control. Future research will concentrate on improved
learning capabilities for higher adaptivity and for controlling cy-
cles greater than 500 Hz.

C. Assistance Systems

1) Motivation: Besides automated and hybrid production
processes, especially for complex products, manual assembly
by human workers is indispensable [4], [151], [152]. Human
workers have fine motor skills and are able to flexibly per-
form several tasks. Moreover, they easily can switch between
various tasks with changing content. Nevertheless, human
mental capacities are limited and resources have to be shared
and distributed among the relevant subprocesses. Accordingly,
in order to optimize ergonomic as well as economic aspects
of manufacturing, the worker needs to be assisted during the
whole working process [153], [154].

2) State-of-the-Art and Research Gaps: Existing systems
for digital assistance in manual assembly, e.g., optical dis-
plays at the workplace, are inherently suboptimal, because
they do not take into account the dynamics of the production
process. Traditional assembly planning is purely deterministic
while using predefined assembly orders. Moreover, none of
the existing methods allows for the selection of assembly
tasks in real-time. The generation of assembly instructions
happens without the comprehension of the actual production
environment and the physiological or psychological state of the
worker [155]. Individual worker internal models of the com-
plex products and unforeseen events of the factory environment
(e.g., missing parts) are not taken into account. However, the
display of sequential instructions does not offer an increase
in productivity beyond a certain degree [16]. Moreover, little
situational support and the resulting deterministic guidance
leads to a reduced acceptance of such systems by the worker.

3) Approach: A key to solving these discrepancies is seen
in the development of an assistive system that delivers adaptive
worker guidance. The system integrates factors of the produc-
tion environment as well as factors regarding the human worker.
Accordingly, information and instructions are presented at the
right time and the right place with adapted content. In order
to fulfill these goals, cognitive methodologies for the genera-
tion of assembly tasks are used. Nonlinear assembly sequence
graphs are derived in real-time for the generation of adapted in-
structions. These require environmentally- and situationally de-
pendent triggered paths on state-based graphs [157], [158]. The
graph-based structure integrates product states as vertices and
assembly operations and their respective complexity as edges
[159]. For this purpose, the current product states are continu-
ously monitored. Assembly states are interpolated from periph-
eral entities of the production environment (e.g., workbench,
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Fig. 27. State-based assembly graph.

storage rack). The adaptation of these graph-based process plans
is based on the worker’s actions, performance, and mental state.
Relevant information about the worker based on implicit worker
interaction (e.g., eye and hand movements) and of a database
(e.g., worker profile) are merged into a parameter (see
Fig. 27). The parameter restricts the maximum step-length
on the path of the assembly sequence towards the target of the
product, i.e., the degree of detail and complexity of the task dis-
played to the worker. In this context, a multidimensional task
complexity metric is defined while modifying basic execution
times through parameters for cognitive task processing of the
worker (e.g., perception and selection processes) and product
references (e.g., similarity). This metric extends the concept and
application of common systems of predetermined times (e.g.,
MTM) [160]. Based on the VDI-Richtlinie 2860 (assembly and
handling) and relevant chapters of the DIN 8593-X (manufac-
turing processes), a representation of assembly primitives (as
elemental operations) was developed in XML. Moreover, se-
quence weightings based on past incidents are modified to im-
prove the search for optimal manufacturing and assembly se-
quences. Assembly instructions are derived via the resulting
nonlinear assembly sequences.

4) Results: The instructions are presented to the worker via
a multimodal interface including optical, acoustical, and touch-
as well as gesture-based information exchange. The variety of
in- and output channels for human-machine-interaction enables
optimal distribution to human perceptual resources. One key
issue of the information presentation is the contact analog
highlighting of relevant areas on the working area. In general,
software-ergonomic principles are integrated into the dynamic
assembly process. Moreover, several sensors are integrated in
order to enable the context awareness of the system. Accord-
ingly, distributed data and information acquisition from human
workers, work places, and workpieces is established. The mon-
itoring of the human worker includes gestures, expressed by
hands and whole body movements. Additionally, fundamental
results concerning attention allocation and action planning
in applied scenarios are integrated. The vision-based scene
observation utilizes these experimental results for switching
the focus of attention to regions that are currently necessary.

Human cognition in production environments is investigated
in controlled neurocognitive experiments in order to specify
how the worker can be optimally supported. The experimental
setup consists of a workbench equipped with a motion caption

Fig. 28. Display of assembly instructions at the experimental workplace
(CoTeSys/Kurt Fuchs).

system and an eye tracker in order to register hand, arm and eye
movements during the whole assembly process (see Fig. 28).
DV and firewire cameras are integrated for online and offline
analyses of task performance. A beamer placed on top of the
workbench together with a front-surface mirror enables the pro-
jection of assembly instructions directly on the work area.

During the experiments, task difficulty, task similarity, and
task sequences are being varied. Results establish a database for
human control processes to isolate cognitive processes involved
in manual assembly and to derive relevant parameters for per-
formance predictions. These behavioral measurement methods
and parameters are integrated in the generation of worker-spe-
cific instructions.

Experiments are also used to evaluate both the interface and
the mode of instruction presentation. Especially, methods for
the guidance of the worker’s attention were investigated. Exper-
iments revealed an influence of task complexity and of commu-
nication modes on commissioning as well as on joining tasks.
Movement onset time, peak velocity, and acceleration of the ini-
tial reaching and grasping movement were improved by con-
tact analog highlighting in comparison to monitor presentations.
Also, the projection of schematic box views in close proximity
to the real boxes facilitated selection processes, because box po-
sitions could be compared without additional effort. Both con-
ditions led to faster response execution of reaching and grasping
movements. Thus, guiding visual attention and thereby reducing
necessary attention shifts modulated performance times during
commissioning [161]. In the joining task, various classes of
assembly primitives differed substantially in assembly times.
More complex operations such as orienting on two rotational
axes versus orienting on all rotational axes took longer for single
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assembly parts, in accordance with traditional methods of pre-
determined times. The projection of task instructions close to
the workpiece enabled faster completion of joining operations
when more difficult spatial relationships had to be considered.
For basic joining operations, no differences between projection
and monitor presentation were found. From these results, one
can conclude that complex assembly primitives benefit more
from support by AR-based communication modes than easier
ones. The experiments demonstrate an effect of task difficulty
and attentional guidance on task performance [162], [163]. The
observed interplay of mental processes (e.g., searching for as-
sembly parts or for assembly positions) and action execution
(e.g., grasping or joining) seems to be an indicator for task com-
plexity and an important factor for the prediction of performance
times.

In summary, the development of the proposed assistive
system includes algorithms for dynamic work plan derivation.
In the future, sensing technologies for real-time observation of
humans are being developed. Further experiments will increase
the understanding of human cognitive processes; their results
will be implemented in control structures. This will enable the
technical system to reason about the behavior of the human
worker in single cases, to generalize knowledge of known
events and to transfer it to new situations.

VI. SUMMARY

In this paper, the demand for highly responsive and adap-
tive production systems is outlined, based on influence factors
like volatile customer demands, short product lifecycles and the
trend for individual and customized products.

While this turbulent environment has existed for manufac-
turing companies for several years, the approaches to deal
with it have changed over time. In this paper, different pro-
duction paradigms to ensure a (cost) efficient production are
detailed and their historical development are described. De-
spite the achievements reached so far by these concepts, the
silver bullet for highly responsive factories does not exist yet.
In this paper, it is stated, that a key component for adap-
tive and reactive production systems are still human planners
with their highly developed cognitive capabilities such as per-
ceiving, planning, learning and acting. Therefore, a new para-
digm of CTSs is introduced and its application to the factory
domains is explained.

The approach of cognitive production systems may be ap-
plied to a wide range of problems and challenges in the fac-
tory domain. In this paper, the areas of production planning and
control, automated processes and operations, as well as hybrid
and manual processes and operations are introduced. Concrete
topics in each of these three areas are outlined, including the re-
spective state-of-the-art. In addition to the known concepts and
approaches, for each problem, a possible solution using the ap-
proach of CTSs is introduced. The specific problems addressed,
cover the area of production planning and control, autonomous
machining and fixture planning, the automated programming
of industrial robots, the human-robot-cooperation, knowledge-
based quality assurance and process control, and worker guid-
ance systems for manual assembly.

Applying the proclaimed paradigm of the Cognitive Factory
will help to further advance the adaptivity, responsibility and
changeability of production systems.
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