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Abstract 

We describe a model of a stockmarket in which independent adaptive agents can buy and sell stock on a 

central market. The overall market behavior, such as the stock price time series, is an emergent property of the 
agents’ behavior. This approach to modelling a market is contrasted with conventional rational expectations 
approaches. Our model does not necessarily converge to an equilibrium, and can show bubbles, crashes, and 
continued high trading volume. 

1. Approaches to economic theory 

In recent years the prevailing rational expecta- 

tions approach to economic theory has been chal- 

lenged from several quarters, and increasing in- 

terest has been shown in an alternative evolution- 

ary economics viewpoint. In this paper we de- 

scribe and contrast these paradigms, and discuss 

our artificial stockmarket model as an example 

of the evolutionary approach. Our approach is 

fundamentally based on the inductive theory of 

learning described in Arthur ( 1992 ) [ 11. This 

stockmarket model may also be seen as a case- 

study in artificial life; from a random soup of 

simple rules an intelligent system spontaneously 

organizes, and develops more and more sophis- 

ticated behavior as time goes on, rather like life 

emerging from a prebiotic soup. 

We emphasize the background and general 

structure of our model, only indicating results 

in general terms. Related papers [ 1,2] provide 

further details. The paper is written for physical 

scientists, without assuming any background in 

economics. 

1.1. Rational expectations theory 

In conventional economic theory the standard 

approach to most problems is fundamentally 

based on Rational Expectations (RE) theory. 

According to RE theory, agents deduce their 

optimum behavior by logical processes from the 

circumstances of any situation, assuming that 

other agents do likewise. Here an agent might be 

an individual, a firm, a state, etc. This seemingly 

reasonable approach in fact involves several 
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strong (and unreasonable) assumptions, and 

has a number of undesired consequences. Nev- 

ertheless it has long been the regnant paradigm, 

perhaps in part because it leads to very appeal- 

ing mathematics. 

Among the assumptions normally made in RE 

theory are: 

(i) Complete Information. All agents are as- 

sumed to have full knowledge of the prob- 

lem. 

(ii) Perfect Rationality. All agents are assumed 

to be perfectly able to deduce their opti- 

mum behavior, no matter how complex the 

computational problem. 

(iii) Common Expectations. All agents are as- 

sumed to know that all others are work- 

ing with the same information on the same 

“perfectly rational” basis. And they know 

that the others know this too, and that the 

others know that they know they know, and 

so on ad infinitum. 

As a simple example, imagine 20 computer 

companies who are independently considering 

the adoption of a new standard 2 for a graph- 

ical user interface. A marketing analysis might 

show that all would benefit if at least 15 adopted 

Z, but that the adopters would experience a net 

loss if fewer than 15 adopted it. RE theory pre- 

dicts that all companies will adopt Z immedi- 

ately, because they will all reason as follows. If I 

were the 15th-20th company to consider adop- 

tion, it would obviously be in my interest to do 

so. If I were the 14th, I would adopt because then 

it would be advantageous for the 15th-20th to 

do so. If I were the 13th, I would do so because 

then the 14th would do so, by the preceding ar- 

gument. As so on, all the way down to the first 

adopter. Since all will perform this reasoning, all 

will be ready to be first, and all will jump in im- 

mediately (and will expect the others to do so 

too). Note that the agents figure out the solution 

initially (“at time O”), and that there is no sub- 

sequent dynamics, learning, or evolution. 

Of course this outcome is not what would be 

expected in practice, partly because of the failure 

of the above assumptions, and partly because of 

other factors not included in our simple model. 

However it still serves to illustrate both the as- 

sumptions and the flavor of an RE argument, 

although in most applications the mathematical 

optimization problem is far more complicated. 

In complex problems, RE theory runs into a 

number of difficulties, especially because the 

three assumptions listed above are typically not 

satisfied. 

(i) Lack of Complete Information. Agents may 

have to learn about the context or about 

the other agents while the “game” is being 

played out. Problem contexts may them- 

selves not be fully defined initially, only be- 

coming explicit through the choices of the 

agents. 

(ii) Lack of Perfect Rationality. Real persons 

and firms often aren’t clever enough - or 

don’t have enough computational power - 

to compute a true optimum. And even if 

they have the power, they may not use it, 

preferring instead rules of thumb that have 

worked elsewhere. 

(iii) Lack of Common Expectations. Different 

agents may well have different information 

about a situation, and may well use differ- 

ent approaches. They cannot rely on others 

to duplicate their own reasoning. 

These difficulties lead in turn to predictions 

that do not always fit observed outcomes. And 

even when final outcomes are correctly predicted 

by RE theory, the theory is silent about the dy- 

namical process (typically involving trial and er- 

ror, and learning) that agents actually take to 

reach that solution. 

1.2. Evolutionary economics 

In part because of the difficulties with the stan- 

dard RE theory, in recent years many researchers 

have investigated alternative approaches. Some 

have attempted to perturb away from the perfect 

rationality ideal with a variety of bounded ratio- 

nality theories. These theories impose an inten- 
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tional limitation on some aspect of an agent’s 

task, such as the available knowledge, the com- 

putational time or complexity, the memory ca- 

pacity, the forecasting repertoire, etc. One diffi- 

culty is that there are many dimensions in which 

to bound rationality, and no clear guiding prin- 

ciple for how to set the direction and distance 

from the zenith of perfect rationality. 

Another approach, into which the current 

work falls, is to start from the opposite end of 

the scale with agents who initially have little 

rationality or specialized knowledge. The agents 

are then allowed to adapt, or learn, or evolve, 

eventually becoming reasonably expert in their 

own domains. There are a number of advantages 

to this approach, including 

- None of the three assumptions discussed 

above for RE theory is required. 

- Even the modeler does not need to have the 

knowledge or computational power to derive 

an optimum solution for each agent. 

- The evolutionary approach is generally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinduc- 

tive, not deductive; the agents typically gen- 

eralize patterns observed in the past to guide 

their behavior in the future. This inductive ap- 

proach is much closer to normal human be- 

havior than the deductive one of deriving par- 

ticular choices from general principles [ 1,8 1. 

- The general approach is applicable even in 

situations where conventional RE theory pro- 

duces no answers, e.g., due to lack of a single 

well-defined equilibrium solution. 

- The approach can predict and interpret dy- 

namical behavior, not just final outcomes. 

- Agents can continue to adapt in a changing or 

ill-defined world (perhaps of their own mak- 

ing) whose characteristics cannot - or are not 

- known in advance. 

The biggest disadvantages of the evolutionary 

approach are the general lack of analytic meth- 

ods - most work is largely computational - and 

the plethora of possible algorithms for learning 

and adaptation. The field is presently in an ex- 

ploratory phase, determining by explicit simu- 

lation the potentials and limitations of particu- 

lar evolutionary models. A narrowing of options 

and more rigorous results can be expected in the 

future. 

2. An artificial stockmarket 

2.1. General framework 

Turning specifically to financial markets, we 

first construct the framework of a simple kind 

of stockmarket, and then consider different ap- 

proaches (RE and evolutionary) to the agents’ 

decision problem. Our market will have S kinds 

of stocks labelled by Q = 1, 2, . . ., S, and N 

agents labelled by i = 1, 2, . . ., N. The agents 

are not necessarily homogeneous; they may have 

quite different operating principles. For simplic- 

ity we make time t discrete, so t = 0, 1, 2, . . ., 

and refer to the interval from t - 1 to t as the tth 

period. There is no predelined time horizon; in 

principle the market continues for ever. 

At each time t, each agent i has some num- 

ber of shares (or holding) hq (t ) of each stock CL 

There are no complex instruments such as op- 

tions, and no direct interaction between pairs of 

agents. The agent’s essential problem is to choose 

hy (t) at each time t, given various constraints 

such as a finite net wealth. The goal might be 

to maximize expected (mean) profit, or might 

involve a more complicated “utility function” 

which takes risk into account. The price pa (t) 

per share of each stock depends mainly on the 

overall buying and selling behavior of the agents. 

The companies issuing the stocks may also pay 

cash dividends d” (t) per share to each stock- 

holder, in an amount depending on company 

success and policies. Agents can thus make profit 

in two ways, through the dividend stream and 

through speculation, relying on price changes of 

their shares. 

In addition to stock holdings we need to take 

into account other assets of each agent, so that 

not all wealth needs to be invested in stock. For 

simplicity we regard all other assets collectively 
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as cash, or money A4i (t ) . An agent’s total wealth 

wi (t) at any time t is thus given by 

wi(t) = Mi(t) + Chy(t)pa(t). 
a 

(1) 

During the tth period, the price per share of stock 

cr changes from pa (t - 1) to pa (t ) and a div- 

idend d”(t) is declared. We also assume that 

the agent’s cash is invested in a fixed-rate fund 

such as a savings account, which pays an inter- 

est rate r per period so that Mi (t - 1) becomes 

( 1 + r )Mi (t - 1). Accounting for these changes, 

the agent’s wealth at the end of a period is given 

by 

Wi(t) = (1 + r)Mi(t - 1) 

+ ~h:(t- O[p”(t) + d*(t)], (2) 
a 

which is a net change of 

Awi(t) c w,(t) -wi(t - 1) = rMi(t - 1) 

+ xhp(t - U[p”tt) + d”(t) -p”(t - I)] 
a 

(3) 

from the beginning of that period. 

Before the next period begins the agents have 

an opportunity to change their holdings, choos- 

ing hp (t) and Mi (t) subject to the constraints: 

(i) 

(ii) 

(iii) 

Fixed total wealth: Eq. (1) must apply at 

every t. Given the new wealth Wi (t ) from 

Eq. (2), this budget constraint is just a lin- 

ear condition on Mi (t) and the hp (t )‘s. 

Positivity: Mi (t) 2 0, and h?(t) 2 0 for all 

cy. Actually these constraints can be relaxed 

to allow borrowing (possibly with a larger 

value of r when Mi (t ) is negative) or sell- 

ing short (negative holdings), but we still 

need lower bounds on A4i ( t ) and hy ( t ) for 

stability. 

Market clearing conditions: Individual 

agents may not be able to achieve the stock 

holdings they desire, because for every 

seller there must be a buyer, and vice- 

versa; the total number of shares of each 

stock is fixed: 

x/q(t) = H” Vt. 

There are a number of ways to implement mar- 

ket clearing conditions, but here we only describe 

the simplest in detail. For each stock, each agent 

can submit either a bid to buy by (t ) shares, or 

an offer to sell 05 (t ) shares - in both cases at 

the current price pa (t ) - or neither. We define 

b; (t ) = 0 and/or 0; (t ) = 0 for the remaining 

cases. Bids and offers need not be integers; the 

stock is infinitely divisible. Then 

Ba(t) = cby(t), 

i=l 

w(t) = $op(t) (6) 
I=1 

are the totals of the bids and offers for stock (Y 

at time t. If B” (t) = 0” (t), then all bids and all 

offers are fully satisfied, giving 

h?(t) = h:(t - 1) + b;(t) -o?(t) (7) 

(where either bq (t ) or og (t ) is zero for each 

a). If, however, B”(t) > 001(t), then all offers 

are fully satisfied, and a fraction o* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t )/B* ( t ) of 

each bid is filled, giving 

h:(t) = h:(t - 1) + sb:‘(t) -o;(t). (8) 

Similarly if B” (t ) < 0” ( t ) , then all bids are fully 

satisfied, and a fraction B” ( t ) /o(l ( t ) of each of- 

fer is filled, giving 

B”(t) 
h?(t) = hp(t - 1) + b;(t) - O,Ct)op(t). (9) 

All these cases can be subsumed into 

va(t) 
h;(t) = hq(t- 1) + - Ba(t)b?(t) 

VO(t) -- ,(,)“?(t)> (10) 

where P(t) c min(B”(t),O*(t)) is the num- 

ber of trades (or volume) in stock a. 
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This rationing scheme is far from satisfactory 

in general, both because of lack of realism, and 

because it can lead to violations of the positivity 

constraints. For example, an agent could plan to 

sell a large amount of stock A to raise the funds 

to buy B, but end up with M, (t) < 0 because 

the sale of A was rationed while the purchase of 

B was not. A better scheme is to relax the con- 

straint (4), allowing temporary imbalances be- 

tween stock purchases and sales to be made up by 

changes in the stock inventory of a market spe- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cialist. The specialist - an actual person in many 

real markets - has to control the price so that his 

or her inventory stays within acceptable bounds. 

Another more elaborate possibility is to have the 

agents engage in an iterative auction-like process 

to buy or sell stock, adjusting the price until sup- 

ply 0” (t ) and demand B” (t ) are equal. We will 

report on these and other options elsewhere [ 21; 

here we use only the simple rationing scheme, 

and will ultimately avoid the positivity problem 

by limiting ourselves to a single stock. 

To complete our specification of the market, 

we need to detail how the dividends d” (t ) and 

prices pa(t) are fixed. For the dividends we 

choose a purely stochastic process, entirely in- 

dependent of the agents’ actions. In a sense the 

dividend stream is a noise source, somewhat like 

a physical temperature, that drives the market. 

We have explored a number of different random 

processes for d” (t) including: simple random 

number generators without any t + t + 1 corre- 

lation; regular ramps and square waves (to see if 

our agents can learn simple periodicities); and 

various Markov processes in which d* (1) de- 

pends on d* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t - 1). The simplest case having any 

claim to realism is a discrete colored noise pro- 

cess (or, equivalently, an Ornstein-Uhlenbeck 

process, or an AR ( 1) process) for the logarithm 

of d”(t)/P (where da simply sets the scale): 

d”(t) 
log -&- (I 

= a logd”(t- l) 
d -u + bar”(t). (11) 

Here <* (t ) is a Gaussian noise source with mean 

0 and variance c$, and a, and b, are positive 

parameters such that ai + bi = 1. It is easy to 

show that log d” (t ) /da has mean 0, variance r~,‘, 

and an exponentially decaying autocorrelation 

function with correlation time r, = l/ log a,. 

The prices p” (t ) must depend on the bids and 

offers of the agents. The price of a stock should 

rise if the demand for it exceeds the supply 

(more agents wanting to buy than to sell), and 

fall if the supply exceeds the demand. Choice 

of a detailed mechanism is interrelated to the 

way bids and offers are matched; an iterative 

auction process, for example, would inherently 

determine prices itself. For the rationing scheme 

chosen here we use a very simple price adjust- 

ment scheme, based solely on the excess demand 

P(t) -On(t): 

p’“(t + 1) = p”(t). (1 + q[B”(t) - O”(t)l). 
(12) 

The parameter q is a crucial determinant of the 

ultimate behavior; small q leads to very slow ad- 

justment of prices, while large q gives large os- 

cillations. In most cases we have instituted an 

adaptive mechanism for q itself, based on feed- 

back from the number of recent reversals in di- 

rection of the price trend, and aiming to keep 

the response near to critical damping. But here 

we will keep q fixed, and small enough so that 

q[B”(t) - Oa(t)] < 1. 

This completes our specification of the mar- 

ket itself. All that is undetermined is the way in 

which individual agents choose their bids by ( t ) 

or offers op (t), based on the information avail- 

able to them. We assume that that information 

consists of the entire past history of the market, 

including prices p” (t’ ) and dividends d* (t’ ) for 

t’ <_ t, and total bids B* (t’ ) and offers O* (t’ ) 

for t’ < t. We also sometimes introduce a purely 

random sunspot variable y (t ). Although I,Y (t ) is 

not causally connected to the market, the prices 

can nevertheless become correlated with ly (t ) if 

agents “believe” that it has predictive power and 

coordinate their actions around its fluctuations. 
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2.2. Rational expectations approach 

A simple (“risk free”) RE approach to the 

market just described would be based on a be- 

havioral equation of the form [ 1,111 

p”(t) = PE[f(t + 1) + d”(t + l)lZ(t)l, (13) 

where p = l/(1 + r), and E[.lZ(t)] means an 

expected value (prediction) given all the infor- 

mation Z(t) available at the current time t. We 

assume the efjcient market hypothesis that the 

price reflects (i.e., values appropriately) all ac- 

cessible information about the future. Eq. (13) 

says that the current price p” (t) per share of 

stock a: should reflect the best estimate of its 

valuep”(t+ 1) +d”(t+ 1) attheendofthepe- 

riod, discounted by the factor /3 to allow for the 

increase in the value of money implied by the 

interest rate r. The reasoning behind Eq. ( 13) is 

that any other value for p” (t ) would represent 

an opportunity to make a profit, which rational 

agents would take (if they care nothing about 

risk). If, for example, the actual price of a stock 

were lower than given by Eq. ( 13), then many 

agents would attempt to invest in it, thus driving 

the price up until Eq. ( 13) was satisfied. This is 

called arbitrage. 

If we iterate Eq. ( 13), using the law of it- 

erated expectations E[E[xlZ(t + l)]lZ(t)] = 

E[xlZ(t)], we obtain 

p”(t) = f+[d”(t + n)lZ(t)], (14) 
PI=1 

so that the price today should just depend 

on an appropriately discounted series of ex- 

pected future dividends. If the dividend se- 

ries had a constant expected value, so that 

E[d”(t + n)lZ(t)] = da Vn, this would reduce 

to 

p*(t) = @jr, (15) 

which gives the fundamental value of stock Q in 

this approximation. Note, however, that a col- 

ored noise process such as Eq. ( 11) does not sat- 

isfy this constant expected value assumption, 

More sophisticated RE approaches are possi- 

ble. In particular we could allow for risk aver- 

sion in the agents. Typically this would lower 

the price pa(t) from that given by Eq. ( 13) or 

Eq. ( 15) by an amount proportional to the vari- 

ance of the prediction for p” (t + 1) + d” (t + 1); 

riskier returns are worth less. But the essential 

flavor of the approach is not changed by such 

improvements. 

The RE approach implicitly assumes that all 

agents compute the same expectation values 

E[p”(t + 1) + d”(t + l)lZ(t)] for each stock; 

otherwise the arbitrage argument fails. This 

assumes not only that they all have the same 

information Z(t), but also that they form ex- 

pectations in the same way, and indeed know 

that others will do so too. In practice these as- 

sumptions will fail; no two agents are likely to 

have exactly the same information, and agree 

that there is a unique objective way to compute 

the required expectation value, and know what 

that unique method is. Moreover, individual 

agents cannot form their expectations in a fully 

rational way unless they know how others form 

theirs, so all are reduced to subjective beliefs 

about each other’s behavior. In Keynes’ words 

[ 91, they must “devote [their] intelligences to 

anticipating what average opinion expects the 

average opinion to be.” 

These fundamental difficulties of the RE ap- 

proach lead in turn to predictions that do not 

correspond to the empirical behavior of real 

markets [4]. In particular the RE theory pre- 

dicts low trading volume; there is no reason for 

agent A to sell shares to agent B if they both 

have the same information and expectations. 

Further, there is no room for market bubbles 

or crashes, or any sort of market psychology 

or moods. Finally, it should not be possible to 

make any profit by technical trading - attempt- 

ing to predict future stock prices by recognizing 

and exploiting patterns in past prices - since 

any such opportunities should be removed by 
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arbitrage; this is a direct consequence of the 

efficient market hypothesis. 

In real markets there is much higher trading 

volume than RE predicts, there are bubbles, 

crashes, and moods, and many traders seem 

to live by technical trading. These and other 

anomalies can be reconciled with the RE ap- 

proach only by extending or modifying it, for 

instance by introducing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAheterogeneous expec- 

tations [ 61, or by allowing Bayesian learning 

of parameters [ 3 1. However none of these ap- 

proaches is entirely satisfactory, and none pro- 

vides a truly dynamical picture of the market. 

2.3. Evolutionary approach 

Instead of the RE approach, we propose an in- 

ductive model in which we start with agents who 

have little knowledge or reasoning ability. The 

agents trade on the basis of internal models or 

rules that are initially very poor. By observing 

the success or failure of these internal models the 

agents can improve them, select among alterna- 

tives, and even generate totally new rules. Thus 

over time their behavior becomes more sophis- 

ticated, and they become able to recognize and 

exploit many patterns in the market. The stock 

prices p” (t ) themselves reflect the aggregate be- 

havior of the agents; phenomena like bubbles, 

crashes, and market moods can emerge as collec- 

tive phenomena. Because they both create and 

exploit the prices series, the agents are essentially 

coevolving, even though they do not interact di- 

rectly with one another. 

The inductive approach provides a dynamical 

picture of a market and avoids most of the pre- 

viously discussed problems of RE theory. It is 

also inherently closer to the way humans typi- 

cally make decisions in complex situations [ 8 1. 

They start by making mental models or hypothe- 

ses, based on past experience and training. These 

models may directly imply a course of action, or 

they may let them anticipate the outcome of var- 

ious possible actions, on which basis a choice can 

be made. In any case, humans also observe their 

own successes and failures, learning to modify 

or abandon unsuccessful mental models, and to 

rely more strongly on successful ones. 

Our present approach is computational. We 

define a framework for the agents’ behavior in 

which learning and adaptation is possible, and 

then we run simulations of a whole market to 

see how both the agents and the market behave. 

Some analysis and interpretation is certainly 

possible, but no detailed analytic theory is yet 

to hand. There are some rigorous results for 

simpler systems of adaptive economic agents 

[ 10,121, and of course there is much work on 

learning systems in general, but none of this 

is directly applicable to entire markets. Thus 

an exploratory computational approach seems 

appropriate. 

2.4. Condition-action agents 

To implement an inductive approach we must 

specify in detail how agents choose their bids 

or offers. We have been experimenting with a 

number of approaches, including agents who ex- 

plicitly forecast the future and perform a risk- 

aversion computation to choose their optimum 

holdings [ 21. But here we describe only a sim- 

pler class of agents, based on a classifier system 

and a genetic algorithm [ 5,7]. 

Before proceeding, we specialize to a single 

stock, and drop the Q superscripts. Most phe- 

nomena of interest are already present with a 

single stock, and the restriction removes the dif- 

ficulty with the positivity condition. We now re- 

duce the bid/offer decision to a simple ternary 

choice: 

(i) Bid to buy one share: hi(t) = 1, oi(t) = 0. 

(ii)Offertoselloneshare:oi(t) = l,bi(t) = 0. 

(iii) Neither: hi(t) = oi(t) = 0. 

Provided one period (from t to t + 1) repre- 

sents a short interval in terms of the dividend 

autocorrelation time T and the price adjustment 

timescale (set by q ), the restriction of demand to 

& 1 is not serious; larger changes can be achieved 

by a sequence of smaller ones. 
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In the spirit of a classifier system, each agent the rule is poor it will sink to negative strength 

has many condition-action rules. We typically use and never be selected. If it is good it will gain 

R = 60 rules per agent, labelling rules by k = strength and may come to be used as a basis for 

1, 2, . . .) R. Each agent i has its own set of rules, a decision. For example, there could well be two 

independent of all other agents, so there are NR rules with identical conditions but opposite ac- 

rules in all, labelled by ( i, k ) . Each of these rules tions, but only one would come to have positive 

has three components: strength. 

(i) A condition part, that governs when (un- 

der what market conditions) the rule is ac- 

tivated. We discuss this further in a mo- 

ment. 

(ii) An action aik = f 1, representing either 

buy ( + 1, bid one share) or sell (- 1, offer 

one share). 

(iii) A strength Sik (t), representing how suc- 

cessful the rule has been at suggesting 

wealth-increasing actions in the past. 

Each time that the agent has to make a deci- 

sion it first lists those of its rules that are acti- 

vated and have Sik (t) > 0. Next it selects one 

of these randomly, with probability proportional 

to strength. The action of this selected rule then 

gives the agent’s decision: buy or sell. If the list 

is empty, then the agent makes neither a bid nor 

an offer. 

The condition part of each rule consists of a 

string of symbols such as ***l*O***ll**, drawn 

from the ternary alphabet { 0, 1, *}. These strings 

are matched against a single binary string (with 

0 and 1 symbols only) that represents the current 

state of the market. O's and l's in the condition 

string only match O'S and I’s respectively in the 

market string, whereas *‘s are don’t care symbols 

that match either o or 1. Thus, for example, the 

above condition string matches a market state of 

0101001101101 but not 1001011100101. 

The number and meaning of the bits in the 

market state string can be adjusted to give the 

agents more or less information. We typically 

use strings of length 70-80 symbols, providing 

a mixture of short-term and long-term informa- 

tion, such as: 

- The price is above 1.2 times fundamental 

The strengths of all activated rules (not just 

selected ones) are updated at the end of the pe- 

riod according to: 

value (as given by Eq. 15 ) . 

- The dividend went up two periods ago. 

- The loo-period moving average of price went 

Sik(t) = (1 -c)Sik(t- 1) + 
up (compared to the previous 100 periods). 

- The 20-period moving average of price is 

caikb(t) - (1 + r)p(t- 1) + d(t)]. (16) 

The term in square brackets represents the net 

profit made by investing in one share of stock for 

the past period, rather than leaving the money in 

the bank; compare Eq. (3). c is a small param- 

eter (e.g., 0.01) so that Sjk (t) accumulates over 

a long period an exponentially-weighted moving 

average of the net profit potential of the rule’s 

action under circumstances in which it is acti- 

vated. To avoid occasional problems we restrict 

strengths to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASmin 5 Sjk  (t ) 5 Smax. 

above the loo-period moving average. 

In each case the appropriate bit is 1 if the cor- 

responding statement is true, o if it is false. 

Note that any rule can be injected into the 

population (with initial strength 0, say) with- 

out negatively affecting the agent’s behavior. If 

The structure described so far is a simple 

classifier system; the rules classify the states 

of the environment (market state) into many 

categories, depending on which are activated, 

and then provide probabilities for each possible 

action to be taken in each category. By itself it 

simply assigns strengths to a pre-defined set of 

rules. But this is easily extended by adding a 

genetic algorithm which generates new rules, so 

that the population of rules can evolve towards 

ever better ones. Our genetic algorithm is ap- 

plied at random times (in a Poisson process) to 
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each agent, and has the effect of replacing lo- 

20% of its rules by new ones. It selects some of 

the weakest rules for replacement, and initially 

makes copies (clones) of some of the strongest 

rules to replace them, selecting candidates with 

probability proportional to their strength. The 

clones may then be modified by random mu- 

tation and crossover. Mutation means that a 

few symbols are randomly changed, with prob- 

abilities adjusted so that the average number 

of don’t care symbols stays constant. Crossover 

means that a pair of “parent” strings is selected 

(from among the clones) and used to generate 

two “offspring” strings, each of which gets its 

symbols partly from one parent and partly from 

the other; the idea is to combine good building 

blocks (substrings) present in the two parents 

151. 
We also apply two further operations to the 

whole new population. Firstly, rules that are par- 

ticularly weak (negative strength) have their ac- 

tions reversed; if buying was bad, then selling 

should be good. Secondly, rules that have not 

been activated in a long time are generalized, 

changing some of their specific zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO/I symbols to 

*‘s. 

3. Results and conclusions 

As stated initially, this paper describes mainly 

our rationale and overall design. Quantitative 

results will be presented elsewhere [ 21. Qualita- 

tively our main observations are as follows. 

(i) In sufficiently simple cases - with few 

agents, or few rules per agent, or a low- 

variance dividend stream - the agents 

converge to an equilibrium in which price 

tracks fundamental value (Eq. 15), vol- 

ume stays low, and there are no apprecia- 

ble anomalies such as bubbles or crashes. 

The agents become relatively homoge- 

neous, relying mainly on simple rules such 

as buy when the price is below fundamental 

value. The overall behavior is just what 

would be expected from RE theory and 

the efficient market hypothesis. 

(ii) On the other hand, in a richer environ- 

ment, there is no evidence of equilibrium. 

Instead we obtain what we call economic 

life; as described in the following observa- 

tions, there is rich evolving behavior that 

becomes more complex over time. 

(iii) Although the price frequently stays close to 

fundamental value, it also displays major 

upward and downward deviations which 

may be called bubbles and crashes. Of- 

ten these have no simple explanation; the 

effect is collective, and cannot always be 

traced to a simple rule or instability. It is 

reasonable to think of them as correspond- 

ing to moods of the market. But one mech- 

anism is clear; a set of condition-action 

rules can be collectively self-fulfilling and 

hence give positive feedback that amplifies 

any small fluctuatation from equilibrium. 

For example, a trend-following rule that 

simply suggests buying stock when the 

price is rising will, once triggered, create 

demand that drives the price up further. 

(iv) The agents become quite heterogeneous, 

using very different rules. 

(v) Trading volume varies greatly, and is 

sometimes quite high. This reflects the het- 

erogeneity of the agents - a set of identical 

agents would never want to buy from one 

another. There tend to be long periods of 

relative calm, interspersed with episodes 

of high-volume activity. These episodes do 

not always coincide with the bubbles and 

crashes. 

(vi) Over time, the complexity of the agents in- 

creases steadily, even though the market- 

level phenomena appear relatively station- 

ary. One measure of agent complexity is 

the average number of non-* symbols in 

their rules. A steady increase in this mea- 

sure is fairly common in classifier systems, 

and might just reflect a random increase 

in the use of redundant bits, or the details 
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of the genetic algorithm. But more likely it 

reflects the discovery of addenda and ex- 

ceptions to gross responses uncovered early 

on, leading to a default hierarchy of rules 

[81. 
(vii) If a trained agent is extracted from the mar- 

ket and then reinserted much later, it tends 

to do rather poorly. The rules needed for 

success change in time -there is no station- 

ary optimum strategy. 

(viii) The ecology of agents can adapt to new sit- 

uations such as a changed dividend stream. 

They never get locked into a particular ap- 

proach, but automatically choose a balance 

between exploration of new rules and ex- 

ploitation of old successful ones. 

(ix) An initially uniform wealth distribution 

evolves into a wide distribution, with 

some agents becoming much more wealthy 

than others over long periods. This re- 

flects agent heterogeneity and “luck”; the 

chance discovery of good rules can make 

certain agents very rich for a while. How- 

ever over very long periods the identity of 

the winners and losers changes, although 

the statistical distribution remains approx- 

imately constant. 

It is worth noting explicitly the artiJicia1 life 

aspects of our model. We find the self-formation 

of an autonomous economy that bootstraps it- 

self up from randomized “stupid” behavior to 

organized mutually-adapted behavior. From a 

random soup of simple rules, an “intelligent” 

system spontaneously organizes. Thus we have 

modelled the origins of economic life among in- 

teracting agents in the same sense that others 

model the origin of biological life among organic 

molecules. What distinguishes this from stan- 

dard equation-based equilibrium economics is 

the ability of the agents to learn, and of the sys- 

tem to bootstrap itself to a high order of mutual 

behavior, rather than merely to implement some 

simple optimizing rule at an equilibrium. 

In all, our models of a stockmarket can re- 

produce the major features (as well as some de- 

tailed statistics, to be discussed elsewhere [ 21) 

of real markets, including dynamical and non- 

equilibrium phenomena. It does not require - 

and indeed rejects - the restrictive assumptions 

of rational expectations theory. Its relative dis- 

advantage is that it is largely a computational 

model, without immediate prospects for rigor- 

ous mathematical results, whereas rational ex- 

pectations theory leads to rich mathematical for- 

malism. 

We see our stockmarket model, and others of 

its class, as a fertile testbed for exploring mar- 

kets, adaptive agents, and a class (distinguished 

especially by the lack of direct agent-agent in- 

teractions) of artificial life. For example, we 

can explore the effect of changing the market 

mechanism, for instance by adding a special- 

ist with inventory, or by imposing transaction 

costs or price controls, and see how the market 

efficiency is affected. We can investigate what 

mechanisms would be effective for stopping or 

limiting bubbles and crashes. We can analyze 

various computerized trading schemes and eval- 

uate their effect on the stability of the market. 

We can explore the difference between homo- 

geneous and heterogeneous traders, and see the 

effect of adding naive “noise” traders who are 

not principally motivated by profit (and can 

therefore be exploited by others). 

We can also investigate many variations at 

the agent level, including different learning 

techniques and different goals (including risk 

aversion). We can inquire into the effect of giv- 

ing certain agents inside information. We can 

try limiting the computational ability of some 

agents. We can set up a framework in which 

agents can go bankrupt and be replaced by clones 

of better agents, so that the whole population of 

agents evolves. 

Some of these projects are already under way; 

others are on the distant horizon. We also expect 

to make public our software (which includes dy- 

namical displays of market and agent behavior) 

within the next year, so that others can share in 

the endeavor. 
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