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Abstract
The multiple traveling salesman problem (MTSP) is an extension of the traveling salesman problem (TSP). It is found that 
the MTSP problem on a three-dimensional sphere has more research value. In a spherical space, each city is located on the 
surface of the Earth. To solve this problem, an integer-serialized coding and decoding scheme was adopted, and artificial 
electric field algorithm (AEFA) was mixed with greedy strategy and state transition strategy, and an artificial electric field 
algorithm based on greedy state transition strategy (GSTAEFA) was proposed. Greedy state transition strategy provides state 
transition interference for AEFA, increases the diversity of population, and effectively improves the accuracy of the algo-
rithm. Finally, we test the performance of GSTAEFA by optimizing examples with different numbers of cities. Experimental 
results show that GSTAEFA has better performance in solving SMTSP problems than other swarm intelligence algorithms.

Keywords  Artificial electric field algorithm · State transfer strategy · Spherical geometry · Spherical multiple traveling 
salesman problem · Metaheuristic optimization

1  Introduction

Combinatorial optimization problem is a kind of optimiza-
tion problem. Optimization problems can be divided into 
two categories: one is continuous variable problems, the 
other is discrete variable problems. Problems with discrete 
variables are called combinatorial. In the case of continuous 
variables, it is generally a set of real numbers, or a func-
tion; In combinatorial problems, an object is found from 
an infinite or countable infinite set—typically an integer, a 
set, a permutation, or a graph. In general, these two types 
of problems have quite different characteristics, and the 
methods of solving them are quite different. Metaheuristic 

algorithms have been widely studied in recent years because 
of their advantages in multi-modal, large-scale, and highly 
constrained problems.

The traveling salesman problem (TSP) is a classical com-
binatorial optimization problem [1]. Many practical prob-
lems can be modeled as TSP, such as route planning [2], pro-
duction scheduling [3], and emergency management [4]. In 
recent years, there are many scholars have made continuous 
exploration on solving TSP in two-dimensional space. There 
are some precise algorithms and heuristic algorithms that 
can effectively solve TSP.  Gouveia, Leitner, and Ruthmair 
used a branch cutting algorithm [5]. Kinable, Smeulders, 
Delcour, and Spieksma used an accurate algorithm [6]. 
Asadpour et al. used Approximation Algorithm [7]. Both 
Genetic Algorithm [8] and Memetic Algorithm [9] are 
applied to asymmetric traveling salesman problem. Algo-
rithms to solve the TSP problem also include Evolutionary 
Algorithm [10], Artificial Bee Colony Algorithm [11], Ant 
Colony Algorithm  [12], Water Cycle Algorithm [13], Dis-
crete Bat Algorithm [14], Random-key Cuckoo Search [15], 
Black Hole Algorithm [16], Discrete Comprehensive Learn-
ing Particle Swarm Optimization Algorithm [17], Simulated 
Annealing Algorithm [18], Fruit-fly Optimization Algorithm 
[19], and so on.
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However, the classic TSP cannot be modeled in some 
special cases. For example, suppose that a company has mul-
tiple salespeople living in different cities, and the company 
expects them to visit the city no less than a certain number 
of times to meet their minimum wage [20]. Therefore, the 
MTSP is introduced on the basis of the current problem 
[21]. ACO has been widely used in the research field of 
MTSP and achieved good results. In particular, Ghafurian 
and Javadian [22] designed an ant-based system to solve 
the MTSP problem at a fixed destination. Yousefkhoshbakht 
et al. [23] solved the MTSP problem by mixing the insertion, 
switching, and 2-opt operators with ant colony algorithm. 
Changdar et al. [24] proposed a genetic ACO algorithm for 
solving MTSP. However, it is difficult to optimize the param-
eters of ant colony optimization system because of the large 
number of inherent parameters. This further leads to its dis-
advantages such as slow computation speed and easy local 
convergence. When more complex problems are solved, 
unacceptable performance occurs. Other metaheuristic algo-
rithms have been proposed to solve MTSP. Malmborg [25] 
proposed a genetic algorithm based on two chromosomes. 
Carter and Ragsdale [26] designed a genetic algorithm for 
the two-part chromosome technique. Venkatesh et al. [27] 
mixed artificial bee colony algorithm with weed invasion 
algorithm. Chen et al. [28] proposed an improved two-part 
Wolf pack search algorithm. Zhou et al. [29] proposed a 
improved PSO to solve MTSP.

Compared to the standard TSP, the spherical space TSP 
is more practical. In recent years, many scholars have stud-
ied TSP in three-dimensional space. Literature [30] solves 
3D-TSP with multi-dimensional city location. Literature 
[31] adopts genetic algorithm to solve the TSP problem on 
the sphere. Literature [32] describes the distance distribu-
tion between random points on a sphere. The ant colony 
algorithm [33], firefly algorithm [34], an improved flower 
pollination algorithm based on greedy strategy [35], and the 
discrete improved cuckoo algorithm [36] are used to solve 
STSP. As we know, the surface of the earth on which we 
live is very close to a sphere. In many fields of study, such 
as chemistry, biology, and physics, structures such as atoms, 
molecules, and proteins are represented by spheres. There-
fore, the solution of spherical MTSP can be directly applied 
to micro and macro systems such as path planning, robot 
path planning, picking, and placing parts. Therefore, it is of 
great significance to study spherical MTSP problem.

AEFA is a physics-based optimization algorithm 
designed by Yadav et al. in 2019 to solve continuous opti-
mization problems. Its main characteristics include less 
optimization parameters, rapid convergence in the process 
of optimization, high accuracy, and low complexity of the 
algorithm [37]. Since its inception, AEFA has been widely 
used in continuous optimization problems [38], practical 
engineering problems [39], image matching problems [40], 

multi-objective optimization [41], nine parameters triode PV 
model best estimate [42], cancer detection [43], white blood 
cells [44], the optimal purchasing problem [45], feature clas-
sification [46], assembly line balancing problem [47], and 
wind turbines active loss in distribution network and the 
distribution of the voltage deviation problems [48] made a 
wide range of applications. In this paper, an improved AEFA 
is proposed. The greedy state transition strategy is intro-
duced on the basis of AEFA, and the improved algorithm is 
used to solve SMTSP. Similar to STSP, the city coordinates 
of the SMTSP are extended to the surface of a sphere, and 
the coordinates of the points and the minimum spherical 
distance between the points are known. The improved AEFA 
is used to solve SMTSP. Experiments show that the proposed 
algorithm is feasible and effective in solving SMTSP.

The rest of this paper is organized as follows: “Spherical 
Geometry and Definition of the Problem” gives a brief intro-
duction to spherical geometry and the definition of the prob-
lem. “Related Works” introduces the related work, includ-
ing solution encoding and decoding, greedy state transfer 
strategy, AEFA, and GSTAEFA. In “Experimental Setup 
and Discussion of Results,” the simulation experiment and 
numerical results are analyzed. Finally, “Conclusions and 
Further Works” gives summary and future prospects.

2 � Spherical Geometry and Definition 
of the Problem

Figure 1 shows a sphere. The radius r of the sphere is the 
distance from the point on the sphere to the center. In three-
dimensional space, the coordinates of each point on the 
sphere need to satisfy the relationship as shown in Eq. (1):

where r is the distance from a point on the sphere to the 
center, and it is the radius of the sphere, (x, y, z) are the 
coordinates of the points on the sphere in the three dimen-
sions [34] (Fig. 2).

2.1 � Representation of Points on a Sphere

Points on a sphere can be represented in cartesian coordi-
nates so that the shortest distance between two points on the 
sphere can be calculated using vector methods. The Carte-
sian vector point function can represent that point [35]:

In general, the standard equation for a sphere can be 
expressed in parametric form, and a spherical coordinate 
equation can be expressed with two parameters u and v 

(1)x2 + y2 + z2 = r2,

(2)P(u) = (x(u, v), y(u, v), z(u, v)).



International Journal of Computational Intelligence Systems            (2022) 15:5 	

1 3

Page 3 of 24      5 

between 0 and 1. A sphere of radius r with its center at the 
(0,0,0) can be expressed as [36]

where the two parameters u and v represent the longitude 
and latitude lines, respectively. In this paper, we use a sphere 

(3)x(u, v) = r ⋅ cos(2�u) ⋅ sin(�v)

(4)y(u, v) = r ⋅ sin(2�u) ⋅ sin(�v)

(5)z(u, v) = r ⋅ cos(�v),

with radius 1 for simulation. Therefore, it is easy to calculate 
the length of the path between two cities (Fig. 3).

2.2 � Shortest Path Between Two Cities on Sphere

On the surface of the earth, a geodesic is the curve that 
shows the shortest distance between two cities. The point 
at which the tangent plane through the center intersects the 
earth forms a great circle. The length of the shortest line 
between two points on the sphere is the length of the lower 
arc between two points in the great circle that passes through 
them [34]. In Fig. 4, there are two cities City1 and City2, in 
order to obtain the shortest distance between them. Take the 
scalar product of two vectors [34]:

Fig. 1   Sphere

Fig. 2   Latitude and longitude on the sphere

Fig. 3   The u and v of different cities

Fig. 4   The minimum distance between two cities
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The smaller angle between v1 and v2 is θ. Scalar values 
are computed as follows [34]:

The formula for the shortest distance between City1 and 
City2 on the sphere is [31]

Combining formulas (6) to (8), the distance formula is 
deduced as follows [31]:

2.3 � Definition of the Problem

In MTSP, there are multiple traveling agents visiting differ-
ent cities, and each city can only be visited once and only 
by one person. Given a set of n cities that a salesperson will 
visit, TSP looks for the shortest possible trip for the salesper-
son, which visits each city only once. MTSP can be briefly 
described as follows: Give an undirected graph G = (V, A), 
It consists of a set of vertices V and a set of arcs A, where 
m represents the total number of salespeople. The objective 
function is to divide V into m nonempty subsets {Si}mi=1 and 

(6)v⃗1 ⋅ v⃗2 =
||v⃗1||||v⃗2|| cos(𝜃).

(7)v⃗1 ⋅ v⃗2 = x1x2 + y1y2 + z1z2.

(8)d̂City1,City2 = r𝜃.

(9)d̂City1,City2 = r arc cos

(
x1x2 + y1y2 + z1z2

r2

)

.

calculate the minimum cost sum of all sets. Then the objec-
tive function value of MTSP can be obtained [49] as follows:

where the first sum represents the path through m salespeo-
ple, and the second sum represents the cycle of all the cities 
visited by the ith salesperson (the index of the first city vis-
ited by the ith salesperson is 1, and the index of the last city 
is ni ); xi

j,j+1
 represents the distance between the city j visited 

by the ith salesperson and j + 1 ; xi
ni,1

 represents the distance 
between the last city visited by the ith salesperson and the 
first city; ni value should not be less than the minimum num-
ber of cities specified by each salesperson [49].

3 � Related Works

3.1 � Motivation

At present, for many practical application problems such 
as TSP problem, MST problem, MTSP problem, people 
cannot effectively obtain the optimal solution in a reason-
able time range. Therefore, metaheuristic optimization 
algorithms are being applied by more and more research-
ers from various fields to obtain satisfactory solutions 
such as hybrid PSO–GA algorithm for constrained opti-
mization problems [61], a hybrid GSA–GA algorithm for 
constrained optimization problems [59], GA–GSA hybrid 

(10)Minimize
∑m

i=1

(

xi
ni,1

+
∑ni−1

j=1
xi
j,j+1

)

,

Fig. 5   Encoding and decoding 
processes
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Fig. 6   Swap operator

Fig. 7   Reverse operator

Fig. 8   Insert operator
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algorithm for optimizing the performance of industrial 
systems using uncertain data [60], and a hybrid ITL-
HHO algorithm for solving numerical and engineering 
optimization problems [62]. This paper mainly studies 
the improvement of artificial electric field algorithm 
and its application in practical optimization problems. 
The motive of the improvement is to improve the mining 
capacity and exploration capacity of the original algo-
rithm, respectively, so as to further improve the overall 
optimization ability of the algorithm. Artificial electric 
field algorithm is a new intelligent optimization algo-
rithm based on physical laws proposed in 2019, so its 
improvement and application is relatively small. There-
fore, the purpose of improving the algorithm is to solve 
the practical optimization problem on one hand, on the 
other hand, to verify the optimization ability of the artifi-
cial electric field algorithm, overcome the shortcomings 
of the original algorithm, so as to broaden the application 
scope of the artificial electric field algorithm in practi-
cal life.

3.2 � Solution Encoding and Decoding

Sequence coding is the simplest and most efficient way to 
express MTSP solutions, using a series of numbers to rep-
resent each solution. There are two common approaches 
to using the sequential encoding approach to represent an 

MTSP solution. One uses a path sequence and a breakpoint 
sequence, and the other uses a path sequence and a city 
number sequence. Here, we adopt the real encoding method, 
which is suitable for most continuous algorithms to solve the 
MTSP problem. The following example shows how the real-
coded approach represents an MTSP solution. For example, 
suppose two salespeople have to visit 10 cities.

We use a single sequence coding scheme to represent a 
feasible solution. Compared with double sequence coding, 
the calculation is simpler and the processing is more con-
venient. [0.54 0.41 0.32 0.64 0.55 0.15 0.88 0.74 0.27 0.69 
0.56] can be described as a feasible solution. After sorting 
it from small to large, the corresponding sequence is [6 9 
3 2 1 5 11 4 10 8 7], and number 11 is the breakpoint. The 
sequence can be divided into two paths, which are [6 9 3 2 
1 5 6] and [4 10 8 7 4] (Fig. 5).

3.3 � Greedy State Transition Strategy

The state transition algorithm (STA) [50], a new heuristic 
search algorithm proposed by Zhou et al. [51], has out-
standing performance in solving optimization problems 
and is widely used in many practical problems [52]. In this 
paper, we introduce three kinds of state transfer operators, 
and combine them to propose a state transfer strategy. The 
three operators are Swap, Reverse, and Insert of three basic 
transformations.

Fig. 9   Proposed greedy state 
transition algorithm
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Greedy strategies always do what is best for the moment. 
In other words, instead of considering global optimality, the 
algorithm gets a local optimal solution in a certain sense. 
In the state transition strategy, we do not consider globally. 
After any operator produces a new solution, if the result 
is better, we accept the local change, so that the algorithm 

will keep getting closer to the global optimal solution. The 
MTSP problem is a combinatorial optimization problem, 
and the solution form is a sequence. Every state transfer will 
generate a feasible solution. Greedy thought is introduced, 
assuming that an optimal sequence can be obtained without 
considering the time complexity.

Swap Operator: Pick two positions i and j at random from 
the initial solution, and the corresponding values of i and j 
are exchanged.

where xnew is the immediate solution of x generated, i and j 
are two different positional indexes in x, respectively. Swap 
(xi,j) swaps the values of the positions corresponding to i 
and j (Fig. 6).

Reverse Operator: Pick two positions i and j at random 
from the initial solution, and then reverse the values between 
i and j.

where xnew is the immediate solution of x generated, and i 
and j are two different positional indexes in x, respectively. 
Reverse (xi,j) indicates the reverse order of all values from 
i to j (Fig. 7).

Insert Operator: Two positions i and j are randomly 
selected from the initial solution, and the corresponding 
value for position i is inserted after position j.

(11)xnew = Swap (xi,j),

(12)xnew = Reverse (xi,j),

(13)xnew = Insert (xi,j),

Fig. 10   AEFA

Fig. 11   AEFA flowchart
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where xnew is the immediate solution of x generated, and i 
and j are two different positional indexes in x, respectively. 
Insert (xi,j) means that the value corresponding to position i 
is inserted after position j (Fig. 8).

Figure  9 shows the proposed greedy state transition 
algorithm.

3.4 � The Principle of AEFA

In AEFA systems, the individual is described as a point 
particle that moves under electrostatic attraction. AEFA is 
based on Coulomb's law [37]. The initialization of an indi-
vidual in AEFA is shown in Eq. (14).

where N represents the total number of individuals, that is, 
the total number of charged particles in the system, and D 
represents the dimension of the problem. In the algorithm, it 
is necessary to obtain the individual optimal particle in each 
iteration process as shown in Eq. (15).

In the process of iteration t, the force of any individual J 
acting on particle I is expressed by Eq. (16).

(14)
Xi(t) = (X1

i
,X2

i
,… ,XD

i
) i = 1, 2,… ,N and d = 1, 2,… ,D

(15)Pd
i
(t + 1) =

{
Xd
i
(t + 1)

Pd
i
(t)

if f (Xi(t + 1)) ≤ f (P
i
(t))

if f (Xi(t + 1)) > f (P
i
(t))

.

Fig. 12   GSTAEFA
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where Qi(t) and Qj(t) are the amount of charge in different 
individuals. K is Coulomb's constant, ε is used to prevent the 
denominator from being 0, and R is the Euclidian distance 
between two individuals. Formulas 17 and 18 give the cal-
culation method of R.

where parameters α and K0 are two important parameters 
to balance the exploration and development capabilities of 
the algorithm.

The resultant force of particle i in the iterative process is 
shown in Formula (19).

where rand is a random number in the range of [0, 1] that 
conforms to the uniform distribution. Then the resultant 
force can be calculated through the above equation, and the 

(16)Fd
ij
(t) = K(t)

Qi(t) ⋅ Qj(t) ⋅ (P
d
j
(t) − Xd

i
(t))

Rij(t) + �
,

(17)Rij(t) =
‖‖
‖
Xi(t),Xj(t)

‖‖
‖2
,

(18)K(t) = K0 ⋅ e

(
−�

iter

max iter

)

,

(19)Fd
i
(t) =

N∑

j=1,j≠i

rand ⋅ Fd
ij
(t),

electric field strength E of the current particle can be cal-
culated next.

The current individual acceleration is deduced by calcu-
lating the power plant strength and the resultant force.

Combined with Newton's law of motion, given the cur-
rent velocity and acceleration of the individual, calculate the 
velocity and position at the next moment.

After mastering the above principles of AEFA, we can 
describe AEFA in the form of pseudocode, as shown in the 
figure below (Fig. 10):

Figure 11 is the flowchart of AEFA. The algorithm of 
AEFA is simple in logic and easy to implement, with less 
parameter to be optimized.

(20)Ed
i
(t) =

Fd
i
(t)

Qi(t)
.

(21)ad
i
(t) =

Qi(t) ⋅ E
d
i
(t)

Mi(t)

(22)Vd
i
(t + 1) = rand ⋅ Vd

i
(t) + ad

i
(t),

(23)Xd
i
(t + 1) = Xd

i
(t) + Vd

i
(t + 1).

Fig. 13   GSTAEFA flowchart
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Table 1   The results of different algorithms

City Metric GSTAEFA AEFA SA GA FA ABC SMA GBO FPA

25 Best 12.2659 17.8427 13.0189 22.4515 13.3187 16.5753 13.4363 16.7849 18.2515
Worst 13.3031 27.6676 17.3576 27.1218 21.1041 22.7531 19.0105 23.8987 26.1379
Mean 12.6859 22.9612 14.5134 25.1259 17.4966 19.8188 16.0500 20.0828 22.6546
Std 0.2574 2.6717 0.8282 1.0375 2.0343 1.7699 1.3341 1.9401 2.1432

50 Best 18.9704 39.7550 21.3992 56.7231 26.5726 47.4343 33.8753 39.8742 50.1582
Worst 21.6607 52.7779 27.3104 61.8521 43.5759 58.4299 47.5290 56.4006 59.9728
Mean 20.1615 46.7592 24.3748 59.3237 35.7598 55.0358 39.6150 47.4063 56.3602
Std 0.7480 3.1937 1.4055 1.3211 3.9125 2.2966 2.9162 4.5322 2.5860

100 Best 30.6540 92.5786 37.5775 121.9332 62.6927 116.0651 82.5532 97.6291 111.4641
Worst 37.0926 115.0049 45.7418 132.5262 86.5049 129.7012 113.0407 116.4376 131.7030
Mean 33.1572 101.2104 40.8490 128.7085 77.2783 125.4620 94.7354 106.1319 125.4348
Std 1.7512 4.1576 1.8741 2.4613 5.7260 3.0183 6.7852 5.1330 4.8862

150 Best 41.0929 151.8082 54.2255 194.2023 109.2390 188.8349 137.6719 149.8335 188.2387
Worst 48.5411 173.0375 64.7362 205.2288 136.2112 200.4998 173.5753 190.3252 205.6513
Mean 45.3411 162.7115 59.2002 200.9191 122.8757 196.9506 154.4054 174.0331 199.1189
Std 1.6539 5.8761 2.9220 2.6880 6.9193 2.4236 9.9721 8.0075 4.3373

200 Best 52.1173 200.2330 74.0615 266.5113 157.2991 257.3318 205.7324 219.1170 242.0012
Worst 67.5497 249.2681 85.8465 276.1055 183.5040 272.6618 253.2867 257.3528 276.4259
Mean 60.2786 220.6967 79.1095 272.1671 170.4854 267.6942 223.0627 239.0869 269.7285
Std 3.6175 9.3922 2.7561 2.1960 7.2560 3.7414 11.0059 9.7603 6.2704

300 Best 91.4491 336.8330 122.0842 412.3508 266.4446 402.4688 330.6292 363.6838 410.6104
Worst 113.3120 369.8211 135.6951 426.2965 318.7650 421.0053 391.1878 401.4178 427.5726
Mean 100.8531 352.4861 129.1399 419.8391 291.0377 416.9570 366.9345 381.1536 418.8782
Std 5.4146 8.9164 3.8978 3.4250 14.2221 3.8217 13.3297 10.6900 3.7614

400 Best 133.3439 450.6558 173.6742 558.3877 344.6362 552.9211 487.0252 476.5118 543.2884
Worst 153.3989 509.7010 194.8835 575.4567 453.8138 568.1294 533.4852 552.0739 570.9623
Mean 143.8503 487.3507 180.5232 567.2465 417.1712 562.0554 507.2280 525.9420 560.7849
Std 5.4086 12.5566 4.6852 3.8799 25.5232 3.8317 13.4703 16.0116 6.5265

500 Best 178.2932 594.2182 230.5083 708.6881 491.6034 697.5049 630.5138 639.1904 672.3726
Worst 205.4165 656.6768 251.8035 727.6473 711.6490 721.7767 696.3405 698.2988 720.6142
Mean 194.5212 625.4403 239.5992 721.3680 568.3318 713.4527 660.6123 671.7454 708.4456
Std 7.0451 15.1778 5.4465 4.3418 47.8250 6.0320 15.0767 17.0345 10.4925

Fig. 14   Results from 30 separate runs Fig. 15   Results from 30 separate runs
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3.5 � Artificial Electric Field Algorithm Based 
on Greedy State Transition

Although AEFA has many advantages, it still needs to be 
improved. For example, the algorithm can be improved to 
speed up convergence and reduce the probability of falling 
into local solutions. Therefore, we add the greedy state tran-
sition strategy in this paper to improve its performance after 
combining with the original algorithm. The local search 
mechanism improves the ability of AEFA to search deeper 
in the solution space to obtain better solutions. In the opti-
mization process of AEFA, the optimal individuals in each 

generation are selected for local search using GST strategy 
to obtain better individuals. After each GST operation, a 
second-best solution is obtained, which is returned to AEFA 
and the next search begins. Figure 12 is the pseudocode for 
GSTAEFA, and Fig. 13 is the flowchart of GSTAEFA.

3.6 � GSTAEFA Complexity Analysis

The complexity of any optimization algorithm is mainly 
derived from the algorithm itself and the evaluation of the 
objective function. In our algorithm, the complexity mainly 

Fig. 16   Results from 30 separate runs

Fig. 17   Results from 30 separate runs

Fig. 18   Results from 30 separate runs

Fig. 19   Results from 30 separate runs
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Fig. 20   Results from 30 separate runs

Fig. 21   Results from 30 separate runs

Fig. 22   Variance value and variance divergence

Fig. 23   Variance value and variance divergence

Fig. 24   Variance value and variance divergence

Fig. 25   Variance value and variance divergence
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comes from the following parts: the maximum number of 
iterations T, the number of electrons N, the dimension D 
of the problem to be solved, and local search strategy GST 
run times t. Therefore, the time complexity of AEFA, GST, 
and GSTAEFA can be estimated. AEFA: O(t × N × D), GST: 
O(t × it × D), and GSTAEFA: O(t × (N × d + it × D)).

4 � Experimental Setup and Discussion 
of Results

We chose a more suitable hardware environment for the 
simulation of the algorithm, and maintained the principle 
of fairness in evaluating the algorithm performance. All 

Fig. 26   Variance value and variance divergence

Fig. 27   Variance value and variance divergence

Fig. 28   Variance value and variance divergence

Fig. 29   Variance value and variance divergence
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the comparison algorithms were run on the same machine. 
The software environment was MATLAB (R 2018a), and 
the hardware environment was Intel Core i3-6100 pro-
cessor and 8 GB memory. The experimental results were 
compared with algorithms that have been applied to solve 
related problems, including ABC, FPA, GA, FA, SA and 
other latest metaheruristic algorithms, including AEFA, 
GBO, and SMA.

4.1 � Test Problems

Since the problem in this study is new, some test questions 
are needed to evaluate the proposed metaheuristic algorithm. 
For this purpose, seven size test questions were considered 
from the data collected in the relevant article [34]. The 

number of cities in each question is 25, 50, 100, 150, 200, 
300, and 400. Finally, in order to improve the persuasiveness 
of the algorithm, we increased the number to 500 cities to 
test the performance of the algorithm.

4.2 � Experiment Setting

In the experimental process, to ensure fairness, the num-
ber of individuals of all the comparison algorithms was set 
to 30, and the algorithm controls the end of the algorithm 
according to the value of Iterations, and its value is 1000. 
To carry out the final experiment on the test problem, some 
problems are considered to obtain better solutions, and a 

Fig. 30   Convergence diagram of all test algorithms

Fig. 31   Convergence diagram of all test algorithms

Fig. 32   Convergence diagram of all test algorithms

Fig. 33   Convergence diagram of all test algorithms
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fair comparative study is also provided for the algorithm. 
Each algorithm uses standard parameters. To reduce the 
randomness of the algorithm, each algorithm was run 30 
times for each test problem. The minimum value, maximum 
value, average value, and standard deviation of the obtained 
objective function were compared, and Friedman rank sum 
test and P value test were performed on the results of all 
algorithms.

GSTAEFA: NP = 30, Coulomb’s constant K0 is 500, the 
number of local searches is 100.

AEFA: NP = 30, Coulomb’s constant K0 is 500 [37].

Fig. 34   Convergence diagram of all test algorithms

Fig. 35   Convergence diagram of all test algorithms

Fig. 36   Convergence diagram of all test algorithms

Fig. 37   Convergence diagram of all test algorithms

Fig. 38   The optimal planning of 5 salesmen in 25 cities
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SA: the number of local searches is 100 [18].
GA: NP = 30, pc is 0.8, pm is 0.8 [31].
FA: NP = 30, alpha is 0.8, beta is 0.8, mutation is 0.8, 

mutation damping ratio is 0.8 [53].
ABC: NP = 30, (Employed bees + Onlooker bees), Food 

number = NP/2, acceleration coefficient reduces exponen-
tially from 2 to 0 [11].

SMA: NP = 30, parameter z is 0.003 [55].
GBO: NP = 30, β is 0.2 to 1.2, Probability Parameter is 

0.5 [56].
FPA: NP = 30, the transfer probability of global and local 

pollination of flowers was 0.8 [54].

Fig. 39   The optimal planning of 5 salesmen in 50 cities

Fig. 40   The optimal planning of 5 salesmen in 100 cities

Fig. 41   The optimal planning of 5 salesmen in 150 cities

Fig. 42   The optimal planning of 5 salesmen in 200 cities
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Fig. 43   The optimal planning of 5 salesmen in 300 cities

Fig. 44   The optimal planning of 5 salesmen in 400 cities

Fig. 45   The optimal planning of 5 salesmen in 500 cities

Fig. 46   Path lengths for different salesmen

4.3 � Analysis and Comparison of Experimental 
Results

Next, we explore how the number of cities affects the 
solution and compare the test results of nine algorithms. 

The complexity of the problem is mainly determined by 
the number of cities, the more cities, the more difficult 
to solve. Each algorithm runs 30 times independently for 
different numbers of cities. Table 1 shows the test values 
of all algorithms at different points on the sphere, where 
“City” represents the number of cities.

As shown in Table 1, GSTAEFA was significantly supe-
rior to other algorithms. In all cases, GSTAEFA obtained 
the highest accuracy of the results, and at the same time, 
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the average value in all cases was also the best. In the 
case of fewer cities, the results obtained by different algo-
rithms are very close, but GSTAEFA has the best stability. 
It can be analyzed from the results that when the number 
of points on the sphere increases, the searching ability of 
other algorithms will be greatly reduced, and when the 
number of cities is 200, 300, 400, and 500, the stability of 
SA, GA, and ABC is better than that of GSTAEFA, while 
the results of GSTAEFA algorithm are 52.1173, 91.4491, 

133.3439, and 178.2932, respectively. Development per-
formance is optimal.

Figures 14, 15, 16, 17, 18, 19, 20, and 21 show a line plot 
of the 30 times result optimal values. When the dimension of 
the problem is low, the results of the algorithm proposed by 
us are not different from other algorithms, but the accuracy 
of the results is always higher than other algorithms. With 
the continuous increase of the number of cities, the accuracy 
of GSTAEFA algorithm gradually opened a gap with other 

Fig. 47   Path lengths for different salesmen

Fig. 48   Path lengths for different salesmen

Fig. 49   Path lengths for different salesmen

Fig. 50   Path lengths for different salesmen
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algorithms. In the variance diagram and scatter diagram 
shown in Figs. 22, 23, 24, 25, 26, 27, 28, and 29, it can be 
seen that GSTAEFA has good stability, and the results of 
each time are around the range of the variance diagram. It 
can be seen from the scatter diagram that the points of AEFA 
and FA are relatively discrete and have poor stability.

To visually demonstrate the power of all algorithms when 
solving SMTSP, we use the convergence curve shown in 
Figs. 30, 31, 32, 33, 34, 35, 36, and 37. Before the execution 
of the algorithm is finished, the results of other algorithms 
have been stabilized in a local solution range. The conver-
gence effect of SA was similar to that of GSTAEFA, but 
the convergence speed and accuracy of SA were lower than 

that of GSTAEFA. Although the optimal solution procedure 
may not be given, we can conclude that on most data sets, 
GSTAEFA can obtain the best results and converge faster 
than the compared algorithm.

Figures 38, 39, 40, 41, 42, 43, 44, and 45 intuitively 
show the optimal path searched by GSTAEFA. All cities 
and routes can be seen simultaneously in transparent mode. 
It should be noted that the routes shown in the figure are 
all approximately globally optimal, especially in large-scale 
problems.

We present a bar chart of five path lengths with differ-
ent number of cities, as shown in Figs. 46, 47, 48, 49, 50, 
51, 52, and 53. It can be seen that the path length of each 

Fig. 51   Path lengths for different salesmen

Fig. 52   Path lengths for different salesmen

Fig. 53   Path lengths for different salesmen

Fig. 54   CPU time of different algorithms
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Fig. 55   CPU time of different algorithms

Fig. 56   CPU time of different algorithms

Fig. 57   CPU time of different algorithms

Fig. 58   CPU time of different algorithms

salesperson is smaller than other algorithms, so the sum 
of all paths must be better than other algorithms. So far, 
our proposed algorithm has a great advantage in finding 
the optimal solution, regardless of the size of the city.

As shown in Figs. 54, 55, 56, 57, 58, 59, 60, and 61, 
we show a bar chart of CPU elapsed time for different 
algorithms. In the case of lower dimension, the running 
time of GSTAEFA is relatively large, but the convergence 
accuracy is the highest. And as the problem dimension 
increases, GSTAEFA's time performance becomes more 
and more outstanding.

4.4 � Statistical Analysis

In order to conduct statistical analysis on the experimental 
results, two nonparametric tests, Friedman test [57] and 
Wilcoxon signed-rank test [58], were used to evaluate the 
performance of the proposed algorithm. Friedman's test is 
a statistical test for the consistency of multiple correlated 
samples. The test calculates the ranking of the shortest 
distance achieved by each algorithm on each instance, with 
a best value of 1 and a worst value of 9. Table 2 shows the 
average ranking obtained by the nine algorithms using the 
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Friedman test at the 95% confidence level. As you can see, 
our proposed algorithm ranks first. Experimental results 
show that the proposed GSTAEFA search strategy is effec-
tive in solving the SMTSP problem, and its capabilities are 
the best among the compared algorithms.

Wilcoxon signed-rank test is a nonparametric test. Sta-
tistical test of rank is based on sample observation. The 
test results were used to compare the differences between 
the algorithms. Less than 5% indicates that the proposed 
algorithm is good enough. Table 3 shows the detection 
results. P values less than 0.05 indicate that GSTAEFA has 
a good performance in statistics. In the table, the value is 
greater than or equal to 0.05. All detection results are less 

than 0.05, indicating that the performance of GSTAEFA 
is irreplaceable.

From the above two non-parametric test, we can clearly 
see that GSTAEFA is superior to other advanced methods 
in solving SMTSP, and the algorithm is obviously different 
from other algorithms. It shows that GSTAEFA is irreplace-
able when solving SMTSP.

5 � Conclusions and Further Works

In this paper, a hybrid algorithm GSTAEFA based on tra-
ditional AEFA hybrid greedy state transition strategy is 
proposed. AEFA is an effective naturally inspired algo-
rithm which relies on Coulomb's electrostatic law and 
Newton's laws of motion. It has been successfully applied 
to various types of optimization problems and obtained 
efficient solutions. Although AEFA has a satisfactory 
exploration experience, its development capability is its 

Fig. 59   CPU time of different algorithms

Fig. 60   CPU time of different algorithms

Fig. 61   CPU time of different algorithms

Table 2   Friedman test results for different algorithms

Algorithm Friedman rank Rank

GSTAEFA 1.00 1
AEFA 4.92 5
SA 2.03 2
GA 8.61 9
FA 3.23 3
ABC 7.28 7
SMA 4.46 4
GBO 5.69 6
FPA 7.76 8
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main disadvantage. In order to overcome these problems 
of AEFA and improve its development ability, greedy state 
transfer strategy is considered in the proposed algorithm 
to effectively improve its development ability, which will 
make it more efficient, more effective, and easier to solve 
various combinatorial optimization problems. We apply 
GSTAEFA to solve a new spherical multi-traveler prob-
lem, which is considered as the shortest path problem for 
multiple travel agencies around the world, and test the 
performance of the algorithm with different dimensional 
examples. The results show that the artificial electric field 
algorithm based on greedy state transition strategy is supe-
rior to the classical algorithm.

In addition, GSTAEFA is weak in time complexity, so 
it still has room for further optimization. In the future, 
we will consider reducing the time cost of the algorithm 
while ensuring the solution accuracy. We can try to reduce 
the local search times according to probability to reduce 
the time complexity. Finally, we focus on single-target 
SMTSP, so it is interesting that our algorithm can be used 
to solve multi-target projects. As a future research, the for-
mulas proposed in this study can be used to obtain Pareto 
optimal or nondominated solutions through multi-objec-
tive precise and multi-objective metaheuristic solutions.
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