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Abstract 

Recent FMRI studies indicate that language related brain 
regions are engaged in artificial grammar (AG) processing. In 
the present study we investigate the Reber grammar by means 
of formal analysis and network simulations. We outline a new 
method for describing the network dynamics and propose an 
approach to grammar extraction based on the state-space 
dynamics of the network. We conclude that statistical 
frequency-based and rule-based acquisition procedures can be 
viewed as complementary perspectives on grammar learning, 
and more generally, that classical cognitive models can be 
viewed as a special case of a dynamical systems perspective 
on information processing. 
Keywords: artificial grammar learning, neural network, 
dynamical systems. 

Introduction 
According to Chomsky a core feature of natural language 
processing is the ‘infinite use of finite means’. The family 
of right-linear phrase structure grammars, implementable in 
the finite-state architecture (FSA), is a simple formal model 
of this idea. The work of Reber (1967) suggested that 
humans can learn AGs implicitly and that the relevant 
structure is abstracted from the input. Reber (1967) 
proposed that this process is intrinsic to natural language 
learning and it has been suggested that AG learning (AGL) 
is a relevant model for aspects of language acquisition 
(Gomez & Gerken, 2000). Recent FMRI studies indicate 
that language related brain regions are engaged in AG 
processing (Petersson et al., 2004). Here we investigate the 
Reber grammar (Figure 1) by means of formal analysis and 
network simulations and outline an approach to grammar 
extraction based on the network state-space dynamics. 

Elementary formal analysis 
We begin by showing that the Reber grammar, and in 
certain respects similar AGs, can be learned by acquiring a 
finite set of n-grams (for details see Grenholm, 2003). To 
this end, we modify the Reber machine (RM0) by 
connecting the final to the initial state with a #-labeled 

transition (Figure 1). The modified RM1 outputs an infinite 
symbol string: first an end-of-string symbol '#', then a Reber 
string, a ‘#’, a new string, and so on indefinitely. It turns out 
that to recognize all possible output strings of RM1, a 
necessary and sufficient condition is to know a set, TG, of 
48 trigrams. A string is generated by RM1 if and only if the 
string starts with ‘#’ and only contains trigrams in TG. To 
show this, we observe that the Reber grammar yields 
exactly the same strings as RM2 (Figure 2). Assume that we 
know RM1 and that we know the latest two symbols in an 
output string from RM2. This determines the internal state 
of RM1 and RM2. The set of possible bigrams is 
{MT,MV,…,#V}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: The transition graph representation of RM1 
corresponding to the Reber grammar. 

 
We obtain the set of possible trigrams from RM2 if we take 
these 21 bigrams and extend them according to Figure 2, 
yielding TG={MTT,MTV,…,#VX}. It is clear that a string 
is an output of RM1, if it starts with ‘#’ and only contains 
trigrams in TG. Conversely, assume that a string begins 
with one of the 48 trigrams, the first symbol of which is ‘#’. 
The only possibilities are ‘#MT’, ‘#MV’, and ‘#VX’, which 
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determine unique states in RM2. Recursively, assume that 
the last three symbols were C1C2C3. Then C2C3 is a possible 
bigram, hence determines a unique internal state S in RM2. 
If the next symbol is C4, by assumption C2C3C4 is a possible 
trigram and C4 must be on one of the transitions from S, and 
thus assigns a unique state to RM2. In this way, we can 
traverse RM2 in a way that yields the desired output string. 
It follows that the string is a possible output of RM1. This 
suggests one reason for the success of fragment-learning 
methods in acquiring the Reber grammar and similar AGs: a 
machine that memorizes TG can in principle recognize the 
Reber language. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: RM2 – The modified RM1. 
 
We can further characterize the properties of RM1 by 
information theoretic tools. We associate a random process 
Ψ with RM1 by setting Ψ[0]=‘#’ with probability one. Then 
beginning at the start state of RM1 and randomly selecting 
one of the possible transitions with equal probability. Let 
the value of Ψ[1] be the corresponding symbol. Continuing 
in this manner, randomly traversing RM1 yields a sequence 
of random symbols Ψ[n]. The random process obtained will 
be referred to as the Reber process, a hidden Markov 
process. We note that while RM1 and RM2 generate the 
same output strings, the corresponding random processes 
have different probability distributions. 

Information theoretic analysis 
In certain cases it is possible to define the entropy of a 
discrete-time random process. This procedure starts with the 
entropy of Ψ[n] that remains after conditioning on Ψ[0],…, 
Ψ[n-1] and this conditional entropy will in our case 
converge as n→∞. The elementary analysis implies that, 
given two symbols of Ψ, the probabilities for the next 
symbol are determined. Hence, Ψ is second-order Markov 
and consequently we can determine its entropy (Goldie & 
Pinch, 1991). In computing entropies, we followed the 
procedures in section 2.7 of Goldie & Pinch (1991). Higher-
order Markov processes were transformed into Markov 
processes of order one by considering strings as output of 
the process instead of individual symbols (e.g., the output 

MTVT is transformed to MT–TV–VT). The limit 
distribution of the new Markov process was computed by an 
iterative procedure yielding a numerical limit distribution. 
The probabilities were rounded and verified to be stationary. 
The entropy of Ψ was then calculated according to H(Ψ) = 
−Σijπijlog(pij), where πij is the stationary distribution and 
pij the transition probabilities of Ψ. We can thus measure 
how much information that is contained in the last and next-
to-last symbol etc. Since the process takes its values among 
six symbols, the entropy of a single symbol = 2.46 ( ≅ log 
6), implies that these are approximately equally distributed. 
If we know the latest symbol, the entropy of the next 
decreases to 1.54 (≅ log 3), while given 2 symbols, which is 
all there is to know for a second-order Markov process, the 
entropy = 1.00 bits/symbol. This makes intuitive sense, 
since most states of RM1 have two exit transitions. 
 

Table 1: Measures of the conditional entropy. 
 

Machine 0 1 2 3 4 
RM1 2.46 1.54 1.00 1.00 1.00 
RM2 2.25 1.58 1.19 1.14 1.13 

 
We see that more of the information is contained in the last 
compared to the next-to-last symbol, implying that one can 
expect reasonably good performance by recognizing 
bigrams alone. Similar results hold for RM2. 

Neural network model 
We proceed to outline a series of computer experiments 
using predictive networks based on the simple recurrent 
network (SRN) architecture (Elman, 1990). The networks 
were trained on acquisition data generated from RM1 
(Grenholm, 2003) with a gradient-descent error back-
propagation algorithm with adaptable learning rate and 
momentum. The discrete-time SRN can be viewed as a 
simple network analogue of the FSA. More specifically, at 
time point n+1, the output λ(n+1)=N[ω(n),σ(n)] of the SRN 
is a function of the input σ(n) and the previous internal state 
ω(n) . The internal state ω(n)=[h(n),c(n)] consist of two 
components: the state of the hidden layer of computational 
units h(n) and the state of a 1-step short-term memory layer 
c(n)=h(n-1). If we introduce the time-shift operator ∆ (i.e., 
∆β(n)=β(n+1)), the dynamics of the state transitions are 
described by: ∆h(n):=A[ω(n),σ(n)], ∆c(n):=C[ω(n)]:=h(n); 
equivalently, 
 ∆ω(n) = U[ω(n),σ(n)]   [1] 
 ∆λ(n) = N[ω(n),σ(n)]   [2] 
where U[ω(n),σ(n)]:=(A[ω(n),σ(n)],C[ω(n)]). It is clear that 
the form of [1,2] is identical to that of the dynamical 
formulation of the FSA (cf., Eqs. [4,5]). This is an example 
of a well-known result of McCulloch and Pitts (1943), who 
showed that a particular class of networks is equivalent to 
the FSA. 

Generally, learning and development can be 
implemented by making the system function, for example U 
and N of equation [1,2], dependent on adaptive parameters 
α, thus yielding a model space M:={Uα, Nα| α realizable by 
the system}. Learning (development) can then be 
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conceptualized as a trajectory in the model space M, 
determined by a learning dynamics L of the system: 
 ∆α(n) = L(α(n), σ(n), n)   [3] 
given an initial state α=α0; here L is explicitly dependent on 
time in order to capture the idea of innately specified 
developmental processes and (possible) dependence on the 
previous developmental history. In general, information 
processing and learning can be viewed as a coupled 
dynamical system, where the processing dynamics [1,2] is 
coupled with the learning dynamics [3]. If we replace the 
discrete time with a continuous time and specify the 
differential time changes, we have the general continuous-
time case. We note that the SRN differs in processing 
capacity from the FSA to the extent that it can be viewed as 
an analog model; in other words, to the extent that the SRN 
takes advantage of infinite processing precision. If this is 
not the case, or proper care is not taken with finite-precision 
simulations, the SRN simulation reduces to a FSA 
simulation, which might or might not capture relevant 
model behavior (McCauley, 1993). 

Performance evaluation 
Four different methods for performance evaluation were 
used: (A) The output of the network was compared with the 
next symbol in the test sequence. This difference is 
precisely what the learning process aims to minimize. Since 
the next symbol of the test sequence is a random variable, 
perfect prediction performance is impossible, and one 
approach is to compute the theoretically best performance in 
terms of generalization performance and compare the actual 
performance with this. Here the output was interpreted using 
a winner-take-all competitive architecture in the output 
layer. (B) It is possible to interpret the normalized output of 
the network as a probability distribution for the next 
symbol. This is then compared with the theoretical 
probability distribution of RM1. (C) The third method 
mimics human experiments on AGL, in which the network 
is set to discriminate between correct and incorrect strings in 
a grammaticality classification task. In method C1, we 
introduced a grammatical string between strings to be 
classified (cf., below), in order to force the network to settle 
in a start-of-word state. We denote method C by C2 when 
we do not use this reset procedure. (D) Here we attempted 
to measure how far the internal state of the network deviates 
from what can be considered the typical behavior in terms 
of its state-space dynamics. This is described in greater 
detail below and attempts to analyze the internal behavior of 
trained network. The basic question is whether the nodes in 
the hidden layer capture features that are interpretable with 
respect to underlying generative mechanism. To this end, 
we constructed a competitive network, which was trained to 
classify the outputs of the hidden nodes. 

Simulation results 
From the Reber process, a sequence of 1000 symbols was 
generated (127 strings). In the first series of experiments, 
five SRNs were defined with the following architecture: 6 
nodes in the input/output layers, and 2k nodes (k = 1-5) in 
the hidden layer (transfer function in the hidden layer: 

inverse tangent; output layer: linear). With randomly 
initialized weights, the mean squared error was used as the 
objective cost function for the learning process (gradient-
descent back-propagation with adaptable learning rate and 
momentum). The symbols were translated into a vector 
representation with six elements (0.8 in one position and 
else -0.2). The networks were trained for 200 epochs using 
one symbol of the acquisition sequence as input and the next 
symbol as target. The results of the first series of 
experiments (mean learning error on the acquisition data for 
10 networks of each size) indicate that the smaller networks 
(2, 4 hidden nodes) have smaller error in the beginning, 
while the larger networks perform better in the end (8-32). 
There was no performance gain when the number of hidden 
nodes increased above 8. In epochs 40-200, the performance 
curves continue almost horizontally, essentially replicating 
previous results (data not shown). In a second series of 
experiments, the networks were evaluated using methods A-
D on an independent string set. Evaluation by method A and 
B is straightforward and in order to evaluate the networks 
by method C and D we generated a list of Reber and non-
Reber strings. The latter were generated from a first-order 
Markov process with the same bigram statistics as the Reber 
process. The list contained 1000 symbols (50% strings from 
the Reber process). In method C, we interpreted the 
network’s output as probabilities and multiplied these for 
each symbol in the test string, yielding a maximum-
likelihood score for each string. These were normalized by 
taking the logarithm and dividing by string-length. We 
measured performance according to how many non-Reber 
strings that scored better than Reber strings. In order to 
improve performance, resetting was used in C1 by feeding 
MV#MV#MV#MV as input between each test string. In this 
way, the network settles in its start-of-word position. For 
method D, we first trained a competitive network with 24 
nodes for 10000 epochs on the activation pattern of the SRN 
hidden nodes. The adaptive algorithm used was developed 
from the algorithms described in section 2.5 of Haykin 
(1998). 
 

Table 2: Performance evaluation according to methods A 
and B. Mean from 8 networks of each size (± SD). 

 
#Hidden Nodes A B 
2 .114±.002 .037±.002 
4 .094±.004 .017±.004 
8 .088±.002 .010±.002 
16 .086±.003 .009±.003 
32 .085±.002 .008±.002 
Best possible .076 0 

 
We then measured, for each symbol, the state-space distance 
from the activation of the hidden nodes to the closest node 
in the competitive network. We computed the mean value of 
these distances for all symbols in a test string. Heuristically, 
if the mean distance is large, the word is likely to be non-
grammatical. The rest of the evaluation was performed as in 
method C. We evaluated the generalization capacity on an 
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independent string set, using the methods A-D described 
above, see Table 2 and 3. 
 

Table 3: Performance evaluation according to methods C 
and D. Mean from 8 networks of each size (± SD). 

 
#Hidden Nodes C1 C2 D 
2 60±4% 60±5% 61±2% 
4 79±6% 81±5% 68±6% 
8 91±3% 87±5% 75±5% 
16 93±2% 74±6% 83±5% 
32 94±2% 73±4% 81±5% 
Best possible 100% 100% 100% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: The upper part shows the activation of the hidden 
nodes plotted along the first three principal axes obtained by 
PCA. The dots are coded to correspond to the seven internal 
states of RM1. The diagram shows that dots corresponding 
to the same internal state are geometrically close (dashed 
ellipses). The filled circles in the diagram are centered at the 
24 nodes of a trained competitive network. The lower part 
of the diagram plots all activation points according to their 
distance from the closest node in the competitive network. 
 
The theoretically best performance was calculated from the 
full knowledge of the state transitions between internal 
states of RM1. The behavior of the competitive network, 
characterized by the first three principal components, is 
illustrated in Figure 3. We see that the competitive network 
is able to discriminate between activation states of the 
hidden nodes corresponding to different states of RM1: to 
every RM1-state corresponds one region of state-space. 
Thus the state-space dynamics of the network reproduces 
the dynamics of the Reber machine, and the combined 
approach of analyzing the behavior of the hidden nodes with 
a competitive network and PCA provides one approach to 
grammar extraction from the state-space dynamics of the 
recurrent network. We note that grammar extraction as 
outlined here is related to the symbolic dynamics approach 
used in the analysis of non-linear dynamical systems (cf., 
Badii & Politi, 1997). 

Discussion 
There was no significant performance increase with more 
than 8 hidden nodes on the training data. These nodes have 
two main tasks: process memory and computation. The 
information theoretical analysis suggests that the memory 
required is on the order of 2-3 bits (~2-3 nodes; cf., Table 
1). The reason performance improved with 8 hidden nodes 
is likely related to the requirements of the output 
representation. In general, there is a risk of over-learning 
using large networks on small acquisition samples, leading 
to sub-optimal generalization performance and less efficient 
acquisition of the underlying structure in the input (Haykin, 
1998). In the present study, this was not a major problem 
(cf., Table 2 and 3), and is likely related to the close match 
between the SRN architecture and Markov processes. As 
noted above, the SRN architecture can be viewed as a time-
discrete analog version of the FSA. To make this explicit, 
we take a dynamical systems perspective on the classical 
computational models (Davis, Sigal, & Weyuker, 1994); let 
Σ be the input space (σ∈Σ), Ω the space of internal states 
(ω∈Ω), and Λ the output space (λ∈Λ). The possible 
transitions between internal states are determined by a 
transition function T:ΩxΣ→Ω and the outputs by a function 
R:ΩxΣ→Λ. In other words, at processing step n, the system 
receives input  σ(n) in state ω(n), and changes its state into 
ω(n+1) while generating the output λ(n+1) according to: 
 ∆ω(n) = T[ω(n),  σ(n)]   [4] 
 ∆λ(n) = R[ω(n),  σ(n)]   [5] 
In this way, the system traces a trajectory in state-space, 
forced by the input, and thus generating an output sequence. 
Within the framework of Church-Turing computability Σ, 
Ω, and Λ are all finite and thus T and R are finitely 
specified. It is clear then that these models represent a 
special class of dynamical systems (Petersson, 2004b). 
Furthermore, we note that the form of [4,5] is identical with 
that of equations [1,2]. Here we have not explicitly 
described the system’s memory organization. In all classical 
architectures, the transition function T:ΩxΣ→Ω can be 
realized in a FSA. Thus, with respect to the mechanism 
subserving transitions between internal states there is no 
fundamental distinction in terms of machine complexity 
between the different computational architectures. However, 
as indicated by the Chomsky hierarchy (Davis, Sigal, & 
Weyuker, 1994), there are differences in structural 
expressivity. These differences are fundamentally related to 
the interaction between the generative mechanism and the 
available memory organization. The most important 
determinant of structural expressivity is the availability (or 
not) of infinite storage capacity. Thus, it is the 
characteristics of the memory organization, which in a 
fundamental sense, allow the architecture to recursively 
employ its processing capacities inherent in T, to realize 
functions of high complexity or complex levels of 
expressivity. 

In addition, we evaluated network performance on test 
data with the same bigram statistics as the Reber process. 
This is a harder task than commonly employed in AGL 
experiments on humans or with computers. We were able to 
obtain better than 90% network performance as 
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characterized by method C1, which is not surprising on 
theoretical grounds but suggests that the lower SRN 
performance reported in the literature is related to the 
evaluation method C2. In particular, when a large SRN is 
tested using C2, a single incorrect symbol can induce 
activation patterns that are quite distant from the regions of 
state-space on which it was trained. The state-space 
trajectories then remain distant for several subsequent input 
symbols from 'typical' trajectories to which the SRN has 
been exposed. A grammatical string that is processed 
subsequently to an incorrect string can thus obtain a low 
grammaticality score due to transient network behavior. 

Grammar learning 
Grammar learning, whether natural or artificial, is 
commonly conceptualized either in terms of a structure-
based ('rule') acquisition mechanisms or statistical learning 
mechanisms. Our analysis of activation patterns suggests 
that the SRN architecture can learn to represent the rules of 
the grammar in its state-space dynamics. Conversely, the 
elementary analysis shows that a finite set of string 
fragments is sufficient for Reber language recognition. 
Thus, it appears that these perspectives on grammar learning 
are complementary rather than mutually exclusive, at least 
in the case of finite-state grammars. Some aspects of natural 
language (e.g., syntax) are amenable to an analysis within 
the classical cognitive science framework, which suggests 
that isomorphic models of cognition can be found within the 
framework of Church-Turing computability (Davis, Sigal, & 
Weyuker, 1994). These language models typically allow for 
a greater structural expressivity than can be (strictly) 
implemented in the FSA. For example, the different 
architectures of the Chomsky hierarchy allow for different 
types of recursion, a feature thought to be at the core of the 
language faculty (Hauser et al., 2002). Unlimited 
embedding recursion is supported by the push-down 
architecture, while unlimited cross-dependency recursion 
requires a linearly-bound architecture (Davis et al., 1994); 
none of these are characteristic of human performance. In 
contrast, the FSA supports unlimited concatenation 
recursion and can support finite recursion of general type. 
This is also characteristic of human performance. It is well 
accepted that neurobiological and functional brain 
constraints have important implications for the 
characteristics of the language faculty (Hauser et al., 2002). 
It seems natural to assume that the brain is finite with 
respect to its memory organization. Now, if one assumes 
that the brain implements a classical model of language, 
then it follows immediately from the assumption of a finite 
memory organization that this model can be implemented in 
a FSA, although a context-sensitive or any other suitable 
formalism might be used as long as the finite memory 
organization is appropriately handled. In short, a finite-state 
machine will behave as a Turing machine as long as the 
memory limitations are not encountered. However, one can 
take the view that classical cognitive models of language are 
approximate abstract descriptions of brain properties. A 

complementary perspective is offered by network models of 
language processing. The network perspective represents a 
special case of the recently revived dynamical systems 
perspective on analog information processing (Siegelmann 
& Fishman, 1998) as a model for cognition (e.g., Petersson, 
2004). From a neurophysiological perspective, the natural 
generalization of the classical finiteness in this context is the 
property of state-space compactness (Petersson, 2005a). If 
one assumes that the brain sustains some level of noise or 
does not utilize infinite precision processing (either of these 
assumptions seems necessary for physically realizability), it 
can be argued on qualitative grounds that 'natural language', 
viewed as a neurobiological system, might be well-
approximated by finite-state behavior (Petersson, 2005a). 

Returning to the issue of grammar learning, it is possible 
to take a view that is placed somewhere between the two 
more common conceptualizations. The generative 
mechanisms of the Reber machine is easily translated into a 
Minimalist-type or unification-based framework (Chomsky, 
2005; Joshi & Schabes, 1997) as suggested in Petersson et 
al. (2004). Specifically, given a transition from state sj to sk 
when the terminal symbol T is recognized (sj→Tsk in the 
transition graph), this is translated into a lexical item or 
feature vector [sj,T,sk], where sj and sk should be interpreted 
as 'syntactic' or 'control' features ('specifier' feature: sj, and 
'complement' feature sk) and T as a 'surface' or 
'phonological' feature. A finite transition graph thus 
generates a finite number of lexical items. The syntactic 
features of these representations could very well be 
generated or estimated based on a statistical learning 
mechanism. Moreover, there is no need for a specific 'rule' 
acquisition mechanism, because the parsing process might 
use general structure integration mechanisms already in 
place for merging or unifying structured representations. We 
note that the syntactic features of lexical items have 
acquired a particular functional role in this picture. This can 
be described in terms of governing or monitoring of the 
integration process based on selecting pieces of information 
that can be merged. In other words, the finite-state control 
has been distributed over a mental lexicon (long-term 
memory) among the lexical items in terms of control 
features. In the unification picture, the lexical item [sj,T,sk] 
corresponds to stored trees ('treelets') with foot- (i.e., sk) and 
root-nodes (i.e., sj), which are merged or unified in a 
unification space. Thus, again, important aspects of the 
finite-state control is allocated to the mental lexicon and the 
foot- and root-nodes of the lexical items now come to 
govern the unification process based on selecting the 
representations that can be recursively integrated. This view 
on grammar acquisition is more akin to lexical learning in 
that it suggests that simple structured representations 
[sj,T,sk] are created during acquisition. In essence, this re-
traces a major trend in theoretical linguistics in which more 
of the grammar is shifted to the mental lexicon and the 
distinction between lexical items and grammatical rules is 
beginning to evaporate. 
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Information processing in dynamical systems 
It is well-known that the class of symbolic processing 
models can be captured within the Church-Turing 
framework, which is computationally equivalent to the class 
of partially recursive functions (Davis, Sigal, & Weyuker, 
1994; Rogers, 2002). Hence it is possible to simulate all 
finitely specified symbolic models as processes on numbers. 
Furthermore, it is known that these can be emulated in 
dynamical systems, including low-dimensional smooth 
dynamical systems (Moore, 1991), analog recurrent 
networks (Siegelmann & Fishman, 1998), and spiking 
networks (Maass, 1996). Generally, network approaches 
offer interesting possibilities to model cognition within a 
non-classical dynamical systems framework. For example, a 
rich class of dynamical systems can be implemented in 
recurrent network architectures (Siegelmann & Fishman, 
1998; Legenstein & Maass, 2005). The recurrent network 
architecture can be viewed as a finite set of analog registers 
(e.g., membrane potentials) that processes information 
concurrently and interactively. It is natural to model 
cognitive brain functions in terms of spiking recurrent 
networks and since the brain only represents 'numbers' in 
terms of membrane potentials, inter-spike-intervals, or any 
appropriate set of dynamical variables, it is clear that the 
human brain does not represent cognitive structures in a 
simple transparent manner. However, general dynamical 
system theory is obviously too rich as a framework for 
formulating explicit models of cognitive brain functions. 
For example, it turns out that for any given state-space one 
can find a universal dynamical system whose traces will 
generate any dynamics on the state-space (Lasota & 
Mackey, 1994). Thus, what is needed is a specification of 
cognitively relevant constraints as well as processing 
principles relevant for neurobiological networks subserving 
information processing in the brain (Petersson, 2005b). Any 
real progress on this front would represent a significant 
generalization of Chomsky's concept of knowledge and 
competence. On a final note, the existence of universal 
dynamical systems, which in general are infinite 
dimensional, suggests an additional possibility. In general, 
mapping data non-linearly into a high-dimensional space 
typically makes the data linearly separable and thus easier to 
learn. The dynamical version of this in conjunction with the 
possibility that the neural infrastructure supports dynamics 
of very high-dimensionality might suggest that brains can 
learn 'traces' and thus acquire a rich spectrum of cognitive 
skills using what appears to be surprisingly stereotypic 
architecture at a microscopic level (Petersson, 2005b). 
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