

Artificial Grammar Learning and Neural Networks

Karl Magnus Petersson (karl.magnus.petersson@fcdonders.ru.nl)
F.C. Donders Centre for Cognitive Neuroimaging,
Radboud University Nijmegen, The Netherlands

CSI, Center for Intelligent Systems, Universidade do Algarve, Portugal

Peter Grenholm (peter_grenholm@yahoo.se)
Cognitive Neurophysiology Research Group, Karolinska Institutet

171 76 Stockholm, Sweden

Christian Forkstam (christian.forkstam@cns.ki.se)
Cognitive Neurophysiology Research Group, Karolinska Institutet

171 76 Stockholm, Sweden

Abstract

Recent FMRI studies indicate that language related brain
regions are engaged in artificial grammar (AG) processing. In
the present study we investigate the Reber grammar by means
of formal analysis and network simulations. We outline a new
method for describing the network dynamics and propose an
approach to grammar extraction based on the state-space
dynamics of the network. We conclude that statistical
frequency-based and rule-based acquisition procedures can be
viewed as complementary perspectives on grammar learning,
and more generally, that classical cognitive models can be
viewed as a special case of a dynamical systems perspective
on information processing.
Keywords: artificial grammar learning, neural network,
dynamical systems.

Introduction
According to Chomsky a core feature of natural language
processing is the ‘infinite use of finite means’. The family
of right-linear phrase structure grammars, implementable in
the finite-state architecture (FSA), is a simple formal model
of this idea. The work of Reber (1967) suggested that
humans can learn AGs implicitly and that the relevant
structure is abstracted from the input. Reber (1967)
proposed that this process is intrinsic to natural language
learning and it has been suggested that AG learning (AGL)
is a relevant model for aspects of language acquisition
(Gomez & Gerken, 2000). Recent FMRI studies indicate
that language related brain regions are engaged in AG
processing (Petersson et al., 2004). Here we investigate the
Reber grammar (Figure 1) by means of formal analysis and
network simulations and outline an approach to grammar
extraction based on the network state-space dynamics.

Elementary formal analysis
We begin by showing that the Reber grammar, and in
certain respects similar AGs, can be learned by acquiring a
finite set of n-grams (for details see Grenholm, 2003). To
this end, we modify the Reber machine (RM0) by
connecting the final to the initial state with a #-labeled

transition (Figure 1). The modified RM1 outputs an infinite
symbol string: first an end-of-string symbol '#', then a Reber
string, a ‘#’, a new string, and so on indefinitely. It turns out
that to recognize all possible output strings of RM1, a
necessary and sufficient condition is to know a set, TG, of
48 trigrams. A string is generated by RM1 if and only if the
string starts with ‘#’ and only contains trigrams in TG. To
show this, we observe that the Reber grammar yields
exactly the same strings as RM2 (Figure 2). Assume that we
know RM1 and that we know the latest two symbols in an
output string from RM2. This determines the internal state
of RM1 and RM2. The set of possible bigrams is
{MT,MV,…,#V}.

Figure 1: The transition graph representation of RM1
corresponding to the Reber grammar.

We obtain the set of possible trigrams from RM2 if we take
these 21 bigrams and extend them according to Figure 2,
yielding TG={MTT,MTV,…,#VX}. It is clear that a string
is an output of RM1, if it starts with ‘#’ and only contains
trigrams in TG. Conversely, assume that a string begins
with one of the 48 trigrams, the first symbol of which is ‘#’.
The only possibilities are ‘#MT’, ‘#MV’, and ‘#VX’, which

M

T
V

V

X

X

R

T

M

R

#

 1726

determine unique states in RM2. Recursively, assume that
the last three symbols were C1C2C3. Then C2C3 is a possible
bigram, hence determines a unique internal state S in RM2.
If the next symbol is C4, by assumption C2C3C4 is a possible
trigram and C4 must be on one of the transitions from S, and
thus assigns a unique state to RM2. In this way, we can
traverse RM2 in a way that yields the desired output string.
It follows that the string is a possible output of RM1. This
suggests one reason for the success of fragment-learning
methods in acquiring the Reber grammar and similar AGs: a
machine that memorizes TG can in principle recognize the
Reber language.

Figure 2: RM2 – The modified RM1.

We can further characterize the properties of RM1 by
information theoretic tools. We associate a random process
Ψ with RM1 by setting Ψ[0]=‘#’ with probability one. Then
beginning at the start state of RM1 and randomly selecting
one of the possible transitions with equal probability. Let
the value of Ψ[1] be the corresponding symbol. Continuing
in this manner, randomly traversing RM1 yields a sequence
of random symbols Ψ[n]. The random process obtained will
be referred to as the Reber process, a hidden Markov
process. We note that while RM1 and RM2 generate the
same output strings, the corresponding random processes
have different probability distributions.

Information theoretic analysis
In certain cases it is possible to define the entropy of a
discrete-time random process. This procedure starts with the
entropy of Ψ[n] that remains after conditioning on Ψ[0],…,
Ψ[n-1] and this conditional entropy will in our case
converge as n→∞. The elementary analysis implies that,
given two symbols of Ψ, the probabilities for the next
symbol are determined. Hence, Ψ is second-order Markov
and consequently we can determine its entropy (Goldie &
Pinch, 1991). In computing entropies, we followed the
procedures in section 2.7 of Goldie & Pinch (1991). Higher-
order Markov processes were transformed into Markov
processes of order one by considering strings as output of
the process instead of individual symbols (e.g., the output

MTVT is transformed to MT–TV–VT). The limit
distribution of the new Markov process was computed by an
iterative procedure yielding a numerical limit distribution.
The probabilities were rounded and verified to be stationary.
The entropy of Ψ was then calculated according to H(Ψ) =
−Σijπijlog(pij), where πij is the stationary distribution and
pij the transition probabilities of Ψ. We can thus measure
how much information that is contained in the last and next-
to-last symbol etc. Since the process takes its values among
six symbols, the entropy of a single symbol = 2.46 (≅ log
6), implies that these are approximately equally distributed.
If we know the latest symbol, the entropy of the next
decreases to 1.54 (≅ log 3), while given 2 symbols, which is
all there is to know for a second-order Markov process, the
entropy = 1.00 bits/symbol. This makes intuitive sense,
since most states of RM1 have two exit transitions.

Table 1: Measures of the conditional entropy.

Machine 0 1 2 3 4
RM1 2.46 1.54 1.00 1.00 1.00
RM2 2.25 1.58 1.19 1.14 1.13

We see that more of the information is contained in the last
compared to the next-to-last symbol, implying that one can
expect reasonably good performance by recognizing
bigrams alone. Similar results hold for RM2.

Neural network model
We proceed to outline a series of computer experiments
using predictive networks based on the simple recurrent
network (SRN) architecture (Elman, 1990). The networks
were trained on acquisition data generated from RM1
(Grenholm, 2003) with a gradient-descent error back-
propagation algorithm with adaptable learning rate and
momentum. The discrete-time SRN can be viewed as a
simple network analogue of the FSA. More specifically, at
time point n+1, the output λ(n+1)=N[ω(n),σ(n)] of the SRN
is a function of the input σ(n) and the previous internal state
ω(n) . The internal state ω(n)=[h(n),c(n)] consist of two
components: the state of the hidden layer of computational
units h(n) and the state of a 1-step short-term memory layer
c(n)=h(n-1). If we introduce the time-shift operator ∆ (i.e.,
∆β(n)=β(n+1)), the dynamics of the state transitions are
described by: ∆h(n):=A[ω(n),σ(n)], ∆c(n):=C[ω(n)]:=h(n);
equivalently,
 ∆ω(n) = U[ω(n),σ(n)] [1]
 ∆λ(n) = N[ω(n),σ(n)] [2]
where U[ω(n),σ(n)]:=(A[ω(n),σ(n)],C[ω(n)]). It is clear that
the form of [1,2] is identical to that of the dynamical
formulation of the FSA (cf., Eqs. [4,5]). This is an example
of a well-known result of McCulloch and Pitts (1943), who
showed that a particular class of networks is equivalent to
the FSA.

Generally, learning and development can be
implemented by making the system function, for example U
and N of equation [1,2], dependent on adaptive parameters
α, thus yielding a model space M:={Uα, Nα| α realizable by
the system}. Learning (development) can then be

M

T
V

V X

R
T

M

R

T V

M

R

 1727

conceptualized as a trajectory in the model space M,
determined by a learning dynamics L of the system:
 ∆α(n) = L(α(n), σ(n), n) [3]
given an initial state α=α0; here L is explicitly dependent on
time in order to capture the idea of innately specified
developmental processes and (possible) dependence on the
previous developmental history. In general, information
processing and learning can be viewed as a coupled
dynamical system, where the processing dynamics [1,2] is
coupled with the learning dynamics [3]. If we replace the
discrete time with a continuous time and specify the
differential time changes, we have the general continuous-
time case. We note that the SRN differs in processing
capacity from the FSA to the extent that it can be viewed as
an analog model; in other words, to the extent that the SRN
takes advantage of infinite processing precision. If this is
not the case, or proper care is not taken with finite-precision
simulations, the SRN simulation reduces to a FSA
simulation, which might or might not capture relevant
model behavior (McCauley, 1993).

Performance evaluation
Four different methods for performance evaluation were
used: (A) The output of the network was compared with the
next symbol in the test sequence. This difference is
precisely what the learning process aims to minimize. Since
the next symbol of the test sequence is a random variable,
perfect prediction performance is impossible, and one
approach is to compute the theoretically best performance in
terms of generalization performance and compare the actual
performance with this. Here the output was interpreted using
a winner-take-all competitive architecture in the output
layer. (B) It is possible to interpret the normalized output of
the network as a probability distribution for the next
symbol. This is then compared with the theoretical
probability distribution of RM1. (C) The third method
mimics human experiments on AGL, in which the network
is set to discriminate between correct and incorrect strings in
a grammaticality classification task. In method C1, we
introduced a grammatical string between strings to be
classified (cf., below), in order to force the network to settle
in a start-of-word state. We denote method C by C2 when
we do not use this reset procedure. (D) Here we attempted
to measure how far the internal state of the network deviates
from what can be considered the typical behavior in terms
of its state-space dynamics. This is described in greater
detail below and attempts to analyze the internal behavior of
trained network. The basic question is whether the nodes in
the hidden layer capture features that are interpretable with
respect to underlying generative mechanism. To this end,
we constructed a competitive network, which was trained to
classify the outputs of the hidden nodes.

Simulation results
From the Reber process, a sequence of 1000 symbols was
generated (127 strings). In the first series of experiments,
five SRNs were defined with the following architecture: 6
nodes in the input/output layers, and 2k nodes (k = 1-5) in
the hidden layer (transfer function in the hidden layer:

inverse tangent; output layer: linear). With randomly
initialized weights, the mean squared error was used as the
objective cost function for the learning process (gradient-
descent back-propagation with adaptable learning rate and
momentum). The symbols were translated into a vector
representation with six elements (0.8 in one position and
else -0.2). The networks were trained for 200 epochs using
one symbol of the acquisition sequence as input and the next
symbol as target. The results of the first series of
experiments (mean learning error on the acquisition data for
10 networks of each size) indicate that the smaller networks
(2, 4 hidden nodes) have smaller error in the beginning,
while the larger networks perform better in the end (8-32).
There was no performance gain when the number of hidden
nodes increased above 8. In epochs 40-200, the performance
curves continue almost horizontally, essentially replicating
previous results (data not shown). In a second series of
experiments, the networks were evaluated using methods A-
D on an independent string set. Evaluation by method A and
B is straightforward and in order to evaluate the networks
by method C and D we generated a list of Reber and non-
Reber strings. The latter were generated from a first-order
Markov process with the same bigram statistics as the Reber
process. The list contained 1000 symbols (50% strings from
the Reber process). In method C, we interpreted the
network’s output as probabilities and multiplied these for
each symbol in the test string, yielding a maximum-
likelihood score for each string. These were normalized by
taking the logarithm and dividing by string-length. We
measured performance according to how many non-Reber
strings that scored better than Reber strings. In order to
improve performance, resetting was used in C1 by feeding
MV#MV#MV#MV as input between each test string. In this
way, the network settles in its start-of-word position. For
method D, we first trained a competitive network with 24
nodes for 10000 epochs on the activation pattern of the SRN
hidden nodes. The adaptive algorithm used was developed
from the algorithms described in section 2.5 of Haykin
(1998).

Table 2: Performance evaluation according to methods A
and B. Mean from 8 networks of each size (± SD).

#Hidden Nodes A B
2 .114±.002 .037±.002
4 .094±.004 .017±.004
8 .088±.002 .010±.002
16 .086±.003 .009±.003
32 .085±.002 .008±.002
Best possible .076 0

We then measured, for each symbol, the state-space distance
from the activation of the hidden nodes to the closest node
in the competitive network. We computed the mean value of
these distances for all symbols in a test string. Heuristically,
if the mean distance is large, the word is likely to be non-
grammatical. The rest of the evaluation was performed as in
method C. We evaluated the generalization capacity on an

 1728

independent string set, using the methods A-D described
above, see Table 2 and 3.

Table 3: Performance evaluation according to methods C
and D. Mean from 8 networks of each size (± SD).

#Hidden Nodes C1 C2 D
2 60±4% 60±5% 61±2%
4 79±6% 81±5% 68±6%
8 91±3% 87±5% 75±5%
16 93±2% 74±6% 83±5%
32 94±2% 73±4% 81±5%
Best possible 100% 100% 100%

Figure 3: The upper part shows the activation of the hidden
nodes plotted along the first three principal axes obtained by
PCA. The dots are coded to correspond to the seven internal
states of RM1. The diagram shows that dots corresponding
to the same internal state are geometrically close (dashed
ellipses). The filled circles in the diagram are centered at the
24 nodes of a trained competitive network. The lower part
of the diagram plots all activation points according to their
distance from the closest node in the competitive network.

The theoretically best performance was calculated from the
full knowledge of the state transitions between internal
states of RM1. The behavior of the competitive network,
characterized by the first three principal components, is
illustrated in Figure 3. We see that the competitive network
is able to discriminate between activation states of the
hidden nodes corresponding to different states of RM1: to
every RM1-state corresponds one region of state-space.
Thus the state-space dynamics of the network reproduces
the dynamics of the Reber machine, and the combined
approach of analyzing the behavior of the hidden nodes with
a competitive network and PCA provides one approach to
grammar extraction from the state-space dynamics of the
recurrent network. We note that grammar extraction as
outlined here is related to the symbolic dynamics approach
used in the analysis of non-linear dynamical systems (cf.,
Badii & Politi, 1997).

Discussion
There was no significant performance increase with more
than 8 hidden nodes on the training data. These nodes have
two main tasks: process memory and computation. The
information theoretical analysis suggests that the memory
required is on the order of 2-3 bits (~2-3 nodes; cf., Table
1). The reason performance improved with 8 hidden nodes
is likely related to the requirements of the output
representation. In general, there is a risk of over-learning
using large networks on small acquisition samples, leading
to sub-optimal generalization performance and less efficient
acquisition of the underlying structure in the input (Haykin,
1998). In the present study, this was not a major problem
(cf., Table 2 and 3), and is likely related to the close match
between the SRN architecture and Markov processes. As
noted above, the SRN architecture can be viewed as a time-
discrete analog version of the FSA. To make this explicit,
we take a dynamical systems perspective on the classical
computational models (Davis, Sigal, & Weyuker, 1994); let
Σ be the input space (σ∈Σ), Ω the space of internal states
(ω∈Ω), and Λ the output space (λ∈Λ). The possible
transitions between internal states are determined by a
transition function T:ΩxΣ→Ω and the outputs by a function
R:ΩxΣ→Λ. In other words, at processing step n, the system
receives input σ(n) in state ω(n), and changes its state into
ω(n+1) while generating the output λ(n+1) according to:
 ∆ω(n) = T[ω(n), σ(n)] [4]
 ∆λ(n) = R[ω(n), σ(n)] [5]
In this way, the system traces a trajectory in state-space,
forced by the input, and thus generating an output sequence.
Within the framework of Church-Turing computability Σ,
Ω, and Λ are all finite and thus T and R are finitely
specified. It is clear then that these models represent a
special class of dynamical systems (Petersson, 2004b).
Furthermore, we note that the form of [4,5] is identical with
that of equations [1,2]. Here we have not explicitly
described the system’s memory organization. In all classical
architectures, the transition function T:ΩxΣ→Ω can be
realized in a FSA. Thus, with respect to the mechanism
subserving transitions between internal states there is no
fundamental distinction in terms of machine complexity
between the different computational architectures. However,
as indicated by the Chomsky hierarchy (Davis, Sigal, &
Weyuker, 1994), there are differences in structural
expressivity. These differences are fundamentally related to
the interaction between the generative mechanism and the
available memory organization. The most important
determinant of structural expressivity is the availability (or
not) of infinite storage capacity. Thus, it is the
characteristics of the memory organization, which in a
fundamental sense, allow the architecture to recursively
employ its processing capacities inherent in T, to realize
functions of high complexity or complex levels of
expressivity.

In addition, we evaluated network performance on test
data with the same bigram statistics as the Reber process.
This is a harder task than commonly employed in AGL
experiments on humans or with computers. We were able to
obtain better than 90% network performance as

 1729

characterized by method C1, which is not surprising on
theoretical grounds but suggests that the lower SRN
performance reported in the literature is related to the
evaluation method C2. In particular, when a large SRN is
tested using C2, a single incorrect symbol can induce
activation patterns that are quite distant from the regions of
state-space on which it was trained. The state-space
trajectories then remain distant for several subsequent input
symbols from 'typical' trajectories to which the SRN has
been exposed. A grammatical string that is processed
subsequently to an incorrect string can thus obtain a low
grammaticality score due to transient network behavior.

Grammar learning
Grammar learning, whether natural or artificial, is
commonly conceptualized either in terms of a structure-
based ('rule') acquisition mechanisms or statistical learning
mechanisms. Our analysis of activation patterns suggests
that the SRN architecture can learn to represent the rules of
the grammar in its state-space dynamics. Conversely, the
elementary analysis shows that a finite set of string
fragments is sufficient for Reber language recognition.
Thus, it appears that these perspectives on grammar learning
are complementary rather than mutually exclusive, at least
in the case of finite-state grammars. Some aspects of natural
language (e.g., syntax) are amenable to an analysis within
the classical cognitive science framework, which suggests
that isomorphic models of cognition can be found within the
framework of Church-Turing computability (Davis, Sigal, &
Weyuker, 1994). These language models typically allow for
a greater structural expressivity than can be (strictly)
implemented in the FSA. For example, the different
architectures of the Chomsky hierarchy allow for different
types of recursion, a feature thought to be at the core of the
language faculty (Hauser et al., 2002). Unlimited
embedding recursion is supported by the push-down
architecture, while unlimited cross-dependency recursion
requires a linearly-bound architecture (Davis et al., 1994);
none of these are characteristic of human performance. In
contrast, the FSA supports unlimited concatenation
recursion and can support finite recursion of general type.
This is also characteristic of human performance. It is well
accepted that neurobiological and functional brain
constraints have important implications for the
characteristics of the language faculty (Hauser et al., 2002).
It seems natural to assume that the brain is finite with
respect to its memory organization. Now, if one assumes
that the brain implements a classical model of language,
then it follows immediately from the assumption of a finite
memory organization that this model can be implemented in
a FSA, although a context-sensitive or any other suitable
formalism might be used as long as the finite memory
organization is appropriately handled. In short, a finite-state
machine will behave as a Turing machine as long as the
memory limitations are not encountered. However, one can
take the view that classical cognitive models of language are
approximate abstract descriptions of brain properties. A

complementary perspective is offered by network models of
language processing. The network perspective represents a
special case of the recently revived dynamical systems
perspective on analog information processing (Siegelmann
& Fishman, 1998) as a model for cognition (e.g., Petersson,
2004). From a neurophysiological perspective, the natural
generalization of the classical finiteness in this context is the
property of state-space compactness (Petersson, 2005a). If
one assumes that the brain sustains some level of noise or
does not utilize infinite precision processing (either of these
assumptions seems necessary for physically realizability), it
can be argued on qualitative grounds that 'natural language',
viewed as a neurobiological system, might be well-
approximated by finite-state behavior (Petersson, 2005a).

Returning to the issue of grammar learning, it is possible
to take a view that is placed somewhere between the two
more common conceptualizations. The generative
mechanisms of the Reber machine is easily translated into a
Minimalist-type or unification-based framework (Chomsky,
2005; Joshi & Schabes, 1997) as suggested in Petersson et
al. (2004). Specifically, given a transition from state sj to sk
when the terminal symbol T is recognized (sj→Tsk in the
transition graph), this is translated into a lexical item or
feature vector [sj,T,sk], where sj and sk should be interpreted
as 'syntactic' or 'control' features ('specifier' feature: sj, and
'complement' feature sk) and T as a 'surface' or
'phonological' feature. A finite transition graph thus
generates a finite number of lexical items. The syntactic
features of these representations could very well be
generated or estimated based on a statistical learning
mechanism. Moreover, there is no need for a specific 'rule'
acquisition mechanism, because the parsing process might
use general structure integration mechanisms already in
place for merging or unifying structured representations. We
note that the syntactic features of lexical items have
acquired a particular functional role in this picture. This can
be described in terms of governing or monitoring of the
integration process based on selecting pieces of information
that can be merged. In other words, the finite-state control
has been distributed over a mental lexicon (long-term
memory) among the lexical items in terms of control
features. In the unification picture, the lexical item [sj,T,sk]
corresponds to stored trees ('treelets') with foot- (i.e., sk) and
root-nodes (i.e., sj), which are merged or unified in a
unification space. Thus, again, important aspects of the
finite-state control is allocated to the mental lexicon and the
foot- and root-nodes of the lexical items now come to
govern the unification process based on selecting the
representations that can be recursively integrated. This view
on grammar acquisition is more akin to lexical learning in
that it suggests that simple structured representations
[sj,T,sk] are created during acquisition. In essence, this re-
traces a major trend in theoretical linguistics in which more
of the grammar is shifted to the mental lexicon and the
distinction between lexical items and grammatical rules is
beginning to evaporate.

 1730

Information processing in dynamical systems
It is well-known that the class of symbolic processing
models can be captured within the Church-Turing
framework, which is computationally equivalent to the class
of partially recursive functions (Davis, Sigal, & Weyuker,
1994; Rogers, 2002). Hence it is possible to simulate all
finitely specified symbolic models as processes on numbers.
Furthermore, it is known that these can be emulated in
dynamical systems, including low-dimensional smooth
dynamical systems (Moore, 1991), analog recurrent
networks (Siegelmann & Fishman, 1998), and spiking
networks (Maass, 1996). Generally, network approaches
offer interesting possibilities to model cognition within a
non-classical dynamical systems framework. For example, a
rich class of dynamical systems can be implemented in
recurrent network architectures (Siegelmann & Fishman,
1998; Legenstein & Maass, 2005). The recurrent network
architecture can be viewed as a finite set of analog registers
(e.g., membrane potentials) that processes information
concurrently and interactively. It is natural to model
cognitive brain functions in terms of spiking recurrent
networks and since the brain only represents 'numbers' in
terms of membrane potentials, inter-spike-intervals, or any
appropriate set of dynamical variables, it is clear that the
human brain does not represent cognitive structures in a
simple transparent manner. However, general dynamical
system theory is obviously too rich as a framework for
formulating explicit models of cognitive brain functions.
For example, it turns out that for any given state-space one
can find a universal dynamical system whose traces will
generate any dynamics on the state-space (Lasota &
Mackey, 1994). Thus, what is needed is a specification of
cognitively relevant constraints as well as processing
principles relevant for neurobiological networks subserving
information processing in the brain (Petersson, 2005b). Any
real progress on this front would represent a significant
generalization of Chomsky's concept of knowledge and
competence. On a final note, the existence of universal
dynamical systems, which in general are infinite
dimensional, suggests an additional possibility. In general,
mapping data non-linearly into a high-dimensional space
typically makes the data linearly separable and thus easier to
learn. The dynamical version of this in conjunction with the
possibility that the neural infrastructure supports dynamics
of very high-dimensionality might suggest that brains can
learn 'traces' and thus acquire a rich spectrum of cognitive
skills using what appears to be surprisingly stereotypic
architecture at a microscopic level (Petersson, 2005b).

References
Badii, R., & Politi, A. (1997). Complexity: Hierarchical

Structures and Scaling in Physics. Cambridge, UK:
Cambridge University Press.

Chomsky, N. (2005). Three factors in language design.
Linguistic Inquiry, 36, 1 - 22.

Davis, M. D., Sigal, R., & Weyuker, E. J. (1994).
Computability, Complexity, and Languages:

Fundamentals of Theoretical Computer Science (2 ed.).
San Diego, CA: Academic Press.

Elman, J. L. (1990). Finding structure in time. Cognitive
Science, 14, 179-211.

Goldie, C. M., & Pinch, R. G. E. (1991). Communication
Theory. Cambridge, UK: Cambridge University Press.

Gomez, R. L., & Gerken, L. (2000). Infant artificial
language learning and language acquisition. Trends in
Cognitive Sciences, 4, 178-186.

Grenholm, P. (2003). Artificial Grammar Learning - Rules
and Statistics. Stockholm, Sweden: Karolinska Institutet.

Hauser, M. D., Chomsky, N., Fitch, W. T. (2002). The
faculty of language. Science 198, 1569-1579.

Haykin, S. (1998). Neural Networks: A Comprehensive
Foundation, 2nd ed. Upper Saddle River, NJ: Prentice
Hall.

Joshi, A. K., & Schabes, Y. (1997). Tree-adjoining
grammars. In A. Salomaa (Ed.), Handbook of Formal
Languages (Vol. 3: Beyond words). Berlin: Springer
Verlag.

Lasota, A., & Mackey, M. C. (1994). Chaos, Fractals, and
Noise: Stochastic Aspects of Dynamics. New York:
Springer-Verlag.

Legenstein, R., & Maass, W. (2005, preprint). What makes
a dynamical system computationally powerful? In S.
Haykin, J. C. Principe, T. J. Sejnowski, and J. G.
McWhirter (eds.), New Directions in Statistical Signal
Processing: From Systems to Brain. Cambridge, MA:
MIT Press.

Maass, W. (1996). Lower bounds for the computational
power of networks of spiking neurons. Neural
Computation 8, 1-40.

McCauley, J. L. (1993). Chaos, Dynamics, and Fractals: An
Algorithmic Approach to Deterministic Chaos.
Cambridge, UK: Cambridge University Press.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of
the ideas immanent in nervous activity. Bull. Math.
Biophysics 5, 115-133.

Moore, C. (1991). Generalized shifts: Unpredictability and
undecidability in dynamical systems. Nonlinearity, 4,
199-230.

Petersson, K. M., Forkstam, C., & Ingvar, M. (2004).
Artificial syntactic violations activate Broca's region.
Cognitive Science, 28, 383-407.

Petersson, K. M. (2004). The human brain, language, and
implicit learning. Impuls - Journal of Psychology
(Norwegian), 58(3), 62-72.

Petersson, K. M. (2005a). On the relevance of the
neurobiological analogue of the finite-state architecture.
Neurocomputing, 65-66, 825-832.

Petersson, K. M. (2005b). Learning and Memory in the
Human Brain. Stockholm, Sweden: Karolinska University
Press.

Reber, A. S. (1967). Implicit learning of artificial grammar.
J. Verb. Learn. & Verb. Behav., 6, 855-863.

Rogers, H. (2002). Theory of Recursive Functions and
Effective Computability. Cambridge, MA: MIT Press.

Siegelmann, H. T., & Fishman, S. (1998). Analog
computation with dynamical systems. Physica D, 120,
214-235.

 1731

	Introduction
	Elementary formal analysis
	Information theoretic analysis
	Neural network model
	Performance evaluation
	Simulation results

	Discussion
	Grammar learning
	Information processing in dynamical systems

	References

