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Artificial gravity field, astrophysical analogues, and

topological phase transitions in strained topological

semimetals
Shan Guan1,2, Zhi-Ming Yu1,2, Ying Liu2, Gui-Bin Liu1, Liang Dong3, Yunhao Lu4, Yugui Yao1 and Shengyuan A. Yang2

Effective gravity and gauge fields are emergent properties intrinsic for low-energy quasiparticles in topological semimetals. Here,
taking two Dirac semimetals as examples, we demonstrate that applied lattice strain can generate warped spacetime, with
fascinating analogues in astrophysics. Particularly, we study the possibility of simulating black-hole/white-hole event horizons and
gravitational lensing effect. Furthermore, we discover strain-induced topological phase transitions, both in the bulk materials and in
their thin films. Especially in thin films, the transition between the quantum spin Hall and the trivial insulating phases can be
achieved by a small strain, naturally leading to the proposition of a novel piezo-topological transistor device. Possible experimental
realizations and analogue of Hawking radiation effect are discussed. Our result bridges multiple disciplines, revealing topological
semimetals as a unique table-top platform for exploring interesting phenomena in astrophysics and general relativity; it also
suggests realistic materials and methods to achieve controlled topological phase transitions with great potential for device
applications.
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INTRODUCTION

Relativity is a fundamental aspect for all elementary particles in
the high-energy regime. In condensed matter physics, however,
the relevant energy scale we probe is much lower (compared with,
e.g., the electron rest mass), hence the electronic dynamics is
usually considered as non-relativistic. Nonetheless, due to inter-
actions with lattice and between electrons themselves, the
electron properties in crystalline solids are strongly renormalized,
and the resulting low-energy electron quasiparticles can behave
drastically different from free electrons. Remarkably, in a class of
recently discovered topological semimetal materials, the band
structures feature nontrivial band-crossings close to the Fermi
level, around which the low-energy quasiparticles become
massless and resemble relativistic particles. For example, in so-
called Weyl semimetals, the Fermi surface consists of isolated
band-crossing points, each carrying a topological charge of ±1
corresponding to its chirality, and the low-energy quasiparticles
mimic the Weyl fermions in high-energy physics.1, 2 With further
protection from crystalline symmetry, a pair of Weyl points can be
stabilized at the same point (called the Dirac point) in the
energy–momentum space, realizing the Dirac semimetal (DSM)
phase.3 A number of 3D materials have been predicted to host
Weyl/Dirac points.4–9 Some of them, including the DSMs Na3Bi and
Cd3As2,

10, 11 have been confirmed in recent experiments.12–19

These topological semimetals offer a versatile platform for
simulating relativistic particles and their many fascinating
phenomena.20–22 Indeed, the nontrivial topology of the band-
crossing point dictates the emergence of Lorentz symmetry for
the low-energy quasiparticles:23–25 the inverse quasiparticle

propagator can be written in a general and manifestly covariant
form

G�1 ¼ σαeμα pμ � p 0ð Þ
μ

� �

; ð1Þ

where pμ is the covariant energy-momentum four-vector, p
0ð Þ
μ

corresponds to the location of the Weyl point, σα = (1,σ) with σ the
vector of Pauli matrices, and all material-specific model para-
meters are encoded in the tetrad field eμα. Consequently, the
relativistic spectrum follows the equation:

gμν pμ � p 0ð Þ
μ

� �

pν � p 0ð Þ
ν

� �

¼ 0; ð2Þ

where gμν ¼ ηαβeμαe
ν

β (ηαβ = diag(−1,1,1,1)) plays the role of an
effective spacetime metric and p

0ð Þ
μ acts as an effective U(1) gauge

potential, constituting the “fermionic vacuum” where the low-
energy quasiparticles live. Here gμv and p

0ð Þ
μ are fully determined

by the material band structure, and their spatial and temporal
variation may give rise to effective gravity and gauge fields,
respectively. As a direct manifestation of the emergent relativistic
symmetry, the effective spacetime metric gμv offers intriguing
possibility to probe effects from general relativity in solid-state
systems. Such possibility has not been explored so far.
Meanwhile, topological semimetals represent the neighbor

state to various topological quantum phases. Particularly, DSMs
are long believed to be an ideal platform for the systematic study
of topological phase transitions (TPTs). However, a realistic
approach to achieve controllable and reversible TPTs is still
missing. Such an approach is much desired because of its
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significance in both fundamental physics investigation and in
potential topological device applications.
In this work, we show that both objectives mentioned above

can be achieved via lattice strain in topological semimetals. As a
notable advantage, the solid-state systems admit an easy tuning
of their properties by strain. Taking two DSMs as concrete
examples and with first-principles calculations, we demonstrate
that the quasiparticle spectrum can be efficiently controlled by
uniaxial strain. We show that an inhomogeneous strain profile can
generate warped spacetime with fascinating analogues in
astrophysics. Particularly, we analyze the possibility to simulate
black-hole/white-hole event horizons and gravitational lensing
effect. Furthermore, we find that a larger strain can completely
change the fermionic vacuum, leading to a TPT between DSM and
trivial insulator phases, during which the two Dirac points collide
at the Γ point and pair-annihilate. More importantly, for a quasi-2D
DSM thin film, a small strain is sufficient to control a TPT between
quantum spin Hall (QSH) and trivial insulator phases. This is
regarded as a key to the realization of a topological transistor. The
discovery here allows us to propose a novel piezo-topological
transistor device. Thus, our work not only establishes bridges
between distinct disciplines such as condensed matter physics,
astrophysics, and general relativity, it also reveals realistic platform
and methods to study the intriguing topological phase transitions
and to achieve unprecedented device functionalities for
applications.

RESULTS

Strain tuning and TPT in bulk material

In this work, we take the two DSMs Na3Bi and Cd3As2 as concrete
examples to demonstrate our general idea. These two materials
represent the first two topological semimetals that have been
confirmed by experiment.12–15 We choose them as examples
because they share a relatively simple low-energy bulk band
structure. Both materials have a single pair of Dirac points located
at kz = ±kD on the kz-axis near the Γ point of the Brillouin zone.10, 11

Each Dirac point is four-fold degenerate, consisting of two Weyl
points of opposite chirality. The decoupling of the two Weyl points
(hence the stability of the Dirac point) is protected by the C3 (C4)
rotational symmetry of Na3Bi (Cd3As2). The band ordering is

inverted at the Γ point, as it should be for the realization of band-
crossing points.
In this work, we focus on the uniaxial strain along the crystalline

c-axis (z-direction; see Fig. 1a), which preserves the corresponding
rotational symmetry hence the existence of Dirac points. The low-
energy effective model can be written for each Dirac point. For
example, the quasiparticles around the Dirac point at kz = +kD are
described by two copies of the Weyl Hamiltonian:10, 11

H± ¼ ± v?kxσx þ v?kyσy þ vz kz � kDð Þσz þ w kz � kDð Þ; ð3Þ

each with a definite chirality corresponding to the subscript of H.
Here v⊥ and vz are the Fermi velocities in the xy-plane and along
the z-axis, respectively (we set ħ = 1), and the last term in Eq. (3)
tilts the spectrum along kz. The model for the other Dirac point at
kz = −kD can be simply obtained from (3) by a time reversal
operation.
Under moderate uniaxial strain, the form of model (3) is

preserved, only the model parameters change with strain. The
parameters can be evaluated by fitting the first-principles band
structure. Since the two materials show qualitatively similar
behavior, in the following presentation, our discussion will be
mainly based on the results of Na3Bi. (The first-principles
calculation method and the results for Cd3As2 are presented
in Supplementary Information.) The band structures of Na3Bi for
several representative strains are shown in Fig. 1b–e. Here strain
ε ¼ ‘� ‘0ð Þ=‘0 where ℓ is the lattice parameter along c-axis and
ℓ0 is its equilibrium value. The values of model parameters vs.
strain are plotted in Fig. 2. Importantly, one observes that with
compressive strain, kD decreases and approaches zero at a critical
strain εc~−6.2%. This means that the locations of the two Dirac
points are shifted towards the Γ point by strain and collide with
each other at εc. Beyond this point, the effective model (3) is no
longer valid. From the first-principles band structure (Fig. 1c–e),
one can see that the two Dirac points annihilate with each other
and eventually a finite gap is opened in the spectrum, leading to a
band insulator at large strains. In this process, the direct gap at the
Γ point, which indicates the strength of band inversion, shrinks
and changes sign at εc, marking a reversal of band ordering
around the Γ point (from inverted ordering to normal ordering).
Thus, the transition at εc represents a TPT from a DSM phase to a
trivial insulator phase (the change in Fermi surface topology
means that it is also a Lifshitz transition).

Fig. 1 First-principles band structure results for Na3Bi. a Schematic representation of Na3Bi lattice structure under uniaxial strain. b Band
structure without strain. c–e Enlarged band structures near the Γ point along the kz-axis for strain value c 0%, d −3%, and e −7%. The Dirac
points are indicated by the red arrow in b and by red dots in c, d
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Before proceeding, we note that, first, the value of critical strain
is correlated with the band inversion strength: Cd3As2 has a
smaller inverted gap at the Γ point than Na3Bi, hence its critical
strain (~−1.3%) is also smaller, making the TPT comparatively
easier to achieve. Second, the TPT completely changes the
fermionic vacuum, from that of massless Dirac particles to massive
particles with a finite excitation gap, which should be easily
probed in spectroscopic or transport experiment.

Artificial gravity field and astrophysical analogues

Now let’s consider the regime of small strains, for which the
system lies within the DSM phase away from the TPT, such that
the quasiparticles are well-described by model (3). Artificial fields
are generated when we allow spacetime variation of the applied
strain. Here we focus on static strain profiles and require that the
strain is slowly varying on the scale of lattice constant, i.e.,
∇εj j � ‘�1

0 , such that the strain effect can be captured by a local
Hamiltonian with spatially-dependent parameters (as in Eq. (3)),
forming a smooth background where the quasiparticles move
around. Below, in discussing the quasiparticle propagation in the
presence of a nontrivial spacetime metric, we adopt a quasi-
classical description, which would further require that the strain is
slowly varying compared with the Fermi wavelength ( ∇εj j � λ�1

F ).
The effective spacetime metric can be obtained by a direct

comparison of model (3) with Eqs. (1) and (2). Then the coordinate
differential, which characterizes the spacetime geometry, can be
obtained as

ds2 ¼ gμνdx
μdxν ¼ �dt2 þ

1

v2?
dx2 þ dy2
� �

þ
1

v2z
dz � wdtð Þ2:

ð4Þ

Interestingly, one observes that the tilt parameter w mixes the
space and time components. Its effect is like viewing an untilted
spectrum (with w = 0) in a moving reference frame with speed w.
Indeed, in retrospect, one realizes that the tilt term in Eq. (3) is just
the Doppler shift when (Galilean) transformed to the moving
frame. With inhomogeneous static strain, the parameters v⊥, vz
and w become functions of spatial coordinates. In the following,
we consider two simple example configurations.
In the first example, we focus on the quasiparticle motion along

the z-direction, assuming parameters depend only on z and
ignoring the x and y coordinates. With a general coordinate
transformation t ¼ t þ

R

zw z0ð Þdz0= v2z z0ð Þ � w2 z0ð Þ
� �

, the effective

metric can be written as

ds2 ¼ � 1�
w

vz

� 	2
" #

dt
2
þ

1

v2z

dz2

1� w
vz

� �2

 � :

ð5Þ

One notes that this metric shares the same form as the
radial part of the familiar Schwarzschild metric for a spherical
gravitating source.23, 26 From the analogy, one can directly obtain
the effective gravitational potential Φ zð Þ ¼ � 1=2ð Þ w=vzð Þ2 (here
defined as dimensionless, as in units of v2z 1ð Þ) and the
corresponding gravitational field � d=dzð ÞΦẑ. The analogy can
be made more precise if we design the strain profile such that
Φ zð Þ / � 1=zð Þ (which can be done in certain region excluding the
z = 0 singularity), simulating the gravity of an object located at z =
0 with a mass of −zΦ(z)/G, where G is the Newton’s constant.
The Schwarzschild metric has a coordinate singularity at the so-

called Schwarzschild radius corresponding to an event horizon,
where the space-like and time-like coordinates switch roles.26 One
naturally speculates the possibility of similar physics here. In Eq.
(5), this occurs where the value |w/vz| crosses 1. The underlying
physics can be easily understood as in Fig. 3a. Assuming that vz, w
> 0, and w/vz > 1(<1) for z < zh(>zh) denoted as region A (B). Then
from the quasiparticle spectrum, in region B, we have both left-
and right-propagating modes; whereas in region A, since the tilt
w dominates over the Fermi velocity vz, the spectrum is tipped
over, as a result, only the right-propagating modes exist (see
Fig. 3a, top panel). This means that any quasiparticle in region A
must cross the point z = zh and be emitted into region B.
Therefore, this point represents a white-hole horizon for the
quasiparticles. In addition, due to time reversal, the quasiparticles
at the other Dirac point would observe z = zh as a black-hole
horizon: a particle crosses the horizon from region B to region A
cannot get back (see Fig. 3a, bottom panel).
For the two DSM materials considered here, we do not find the

case with |w/vz| > 1 (at least for the uniaxial strain considered
here). In fact, this case corresponds to so-called type-II Weyl/Dirac
points, which has recently been predicted in several materials.27–30

Hence, according to our analysis, an event horizon can in principle
be realized at the boundary between type-I and type-II regions. It
should be noted that for type-II materials, the Fermi surface
geometry completely changes, typically involving multiple elec-
tron and hole pockets. The above discussion holds only for the
quasiparticles close to the Weyl/Dirac point; for quasiparticples
away from the point, they will not necessarily perceive the event
horizons. Nevertheless, the horizon in such case still has physical
meaning as the phase boundary separating two fermionic vacua
with different topology of the spectrum: with Fermi point on one
side and with Fermi surface on the other side.

Fig. 2 Model parameter vs. strain. The model parameters a v⊥, vz, w, and b kD in Eq. (3) as a function of strain obtained by fitting the first-
principles band structures of Na3Bi
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In the second example, we focus on the quasiparticle motion in
the xy-plane (ignoring the z-dimension) and consider the
analogue of gravitational lensing effect. Then in terms of polar
coordinates, we find that

ds2 ¼ � 1�
w

vz

� 	2
" #

dt2 þ
1

v2?
dρ2 þ ρ2dϕ2
� �

: ð6Þ

Following the standard procedure,26 one finds the quasiparticle
effective “speed of light” viewed by a remote observer at ρ =∞,

c ρð Þ ¼ v?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
w

vz

� 	2
s

: ð7Þ

Then the propagation of the quasiparticle can be conveniently
described by an effective vacuum index of refraction n(ρ) =
c(ρ =∞)/c(ρ), naturally leading to the bending of particle
trajectories (corresponding to the geodesic in the warped
spacetime) with inhomogeneous strains, like in geometric optics.
One notes that here the same n holds for both Dirac points. The
variation of n vs. strain is plotted in Fig. 3b.
To simulate the real gravitational lensing in astronomy, one can

design a strain profile (using Fig. 3b), such that n(ρ) = [1 + 2Φ(ρ)]−1

with Φ ρð Þ / � 1
ρ
in a region excluding the singularity at ρ = 0.

Assuming the quasiparticle trajectory lies in this region and the
variation of n is small and smooth, the classical gravitational
lensing result directly applies:26 the deflection angle δϕ of a
quasiparticle trajectory (see Fig. 3c) with the closest approaching
distance ρmin(≈ the impact parameter) is given by

δϕ � �4Φ ρminð Þ: ð8Þ

Interestingly, since one can control both the vacuum state at ρ
=∞ and the sign of applied strain, it is possible to realize n(ρ) < 1,
which corresponds to an anti-gravitating source, for which the
quasiparticle trajectories are repelled from the source (Fig. 3d).

TPT in thin film and piezo-topological transistor

The TPT in the bulk typically requires a large strain (which is still
within the linear elastic regime for the two materials, as shown
in Supplementary Information). In the following, we show that a
related TPT is more readily achievable in a DSM thin film by small
strains.
First of all, one notes that in the bulk band structure of both

DSMs, the gap is inverted in-between the two Dirac points, i.e.,
considering a 2D slice of the bulk Brillouin zone perpendicular to
the kz-axis, its gap is inverted if the slice lies in-between the two
Dirac points, and is non-inverted otherwise. For a Na3Bi (or Cd3As2)
thin film confined in z-direction,31, 32 the electron motion along z
is quantized into discrete quantum well levels, forming quantum
well subbands in the spectrum.33, 34 The resulting system
generally becomes semiconducting. In the quantum well approx-
imation,35 each subband corresponds to a 2D slice in the original

3D band structure with an effective wave-vector ~kz

� �

m
¼ mπ=L,

where the integer m(=1,2…) labels the subbands and L is the film
thickness. Thus, the gap of the mth-subband is inverted (non-

inverted) if ~kz

� �

m
<kD >kDð Þ. Each inverted subband contributes a

nontrivial 2D ℤ2-invariant,
36 so that the quasi-2D thin film

becomes a QSH insulator if there is an odd number of inverted
subbands, and is a trivial insulator if this number is even. This
mechanism has been revealed in the topological phase oscillation
vs. L.11, 33

Now, under uniaxial strain, both kD and ~kz

� �

m
will change.

Consider the case when the mth-subband has the smallest gap

and has ~kz

� �

m
<kD. With compressive strain, ~kz

� �

m
increases,

whereas kD decreases. So there must exist a critical strain ~εc where
~kz

� �

m
and kD cross each other (see Fig. 4a). In the process, the

subband gap closes and re-opens with a switch of band ordering.
This changes the ℤ2 character of the whole system by 1, leading to
a TPT between a QSH insulator and a trivial insulator phases, as
illustrated in Fig. 4b. Since this TPT does not need kD to vanish as

Fig. 3 Astrophysical analogues in strained topological semimetal. a Schematic figure showing (up) a white-hole horizon and (bottom) a black-
hole horizon at z = zh, corresponding to the Schwarzschild radius of metric (5). The arrows indicate the quasiparticle propagation directions in
each region. b Effective refractive index n for quasiparticle propagation vs. strain. c,d Analogue of gravitational lensing effect. The white line
indicates a quasiparticle trajectory (geodesic) in the xy-plane. δϕ indicates the deflection angle. The colormap shows the strain profile. In b–d,
parameters of Na3Bi are used
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in the bulk case, the required strain can be much smaller (in the
example shown in Fig. 4, the critical strain is ~−1%).
The QSH state possesses topologically protected gapless edge

channels, in which the carriers can transport without back-
scattering.37, 38 This leads to the proposition of so-called
topological transistor based on QSH channel materials, which is
expected to have the advantages of fast operating speed, low
heat dissipation, and low power consumption.39 So far, QSH state
has been confirmed only in a few quantum well structures,37, 38

and how to reliably control the TPT (hence the switch between on
and off states) remains a challenge for designing topological
transistor.34 Our discovery here points to a promising novel device
—a piezo-topological transistor. As illustrated in Fig. 5, this device
has a DSM thin film as the channel. Suppose the thin film without
strain is in the trivial insulator phase, for which the transistor is at
the off state (Fig. 5a). By applying a small strain, the layer can be
driven to the QSH phase, with current conduction through
topological edge channels, corresponding to the on state (Fig. 5b).
Like previous proposals, this device enjoys advantages such as low
dissipation and robust operation; besides, the sensitivity to strain
makes it promising for electromechanical sensing applications.

DISCUSSION

The emergence of relativistic spectrum and Lorentz invariance at
low energy is a general feature dictated by the Fermi point
topology. Here we take the two specific materials as examples, but
the underlying physics is general and applies to other topological
semimetals as well. Similar relativistic spectrum was previously
discussed in the superfluid 3He-A phase, where analogues of black

holes were suggested by controlling vortices and background
superfluid flow.23, 40, 41 In a recent experiment, an artificial black
hole for acoustic waves was simulated in an accelerating atomic
Bose–Einstein condensate at sub-Kelvin temperature.42 In com-
parison, the solid-state system studied here can work at room
temperature and permits much easier control by static means like
strain or external fields, hence the predicted effects should be
more readily observable.
Many experimental techniques have been developed for

engineering strain, such as nanoindentation, micro-compression
testing, and by using profiled substrate or stretchable substrate for
thin film structures. Specifically, regarding the two examples with
inhomogeneous strain profiles discussed here, the first one may
be realized by using a setup similar to the micro-pillar compres-
sion test,43 and the strain variation along vertical direction could
be achieved either by engineering the geometric shape of the
pillar or by applying profiled lateral constriction to the side of the
pillar. For the second example, an xy-dependent strain profile may
be achieved by a setup similar to nanoindentation, e.g., by using a
hard tip with engineered shape to press onto the Dirac semimetal
slab. We notice that this kind of setup has recently been utilized to
study the pressure-induced superconductivity in Cd3As2.

44

Furthermore, we point out that the lattice strain would generally
be inhomogeneous in real strained samples, and more compli-
cated strain profiles could be naturally realized. Given that the
current technology can map out strain distribution with nan-
ometer spatial resolution and with a precision ~0.1%,45 as long as
the strain is slowly varying, one can compute the effective metric
and study the quasiparticle propagation under artificial gravity
using the idea presented here.

Fig. 5 Piezo-topological transistor.Schematic of a piezo-topological transistor using DSM thin film as the channel material. a The thin film is
initially in the trivial insulating phase, so the transistor is in off state. b By applying strain to the channel region, the thin film is driven to the
QSH phase with topological edge channels for conducting current. Hence the transistor is turned on. The topological channels are robust and
have low heat dissipation

Fig. 4 Topological phase transition in thin film. a The quantum well effective wave-vector ~kz

� �

2
(for the second quantum well subband) and

kD vs. strain. Their crossing-point at critical strain ~εc marks a topological phase transition between a trivial insulating and a QSH insulating
phases. The corresponding subband gap closes at ~εc , as shown in b. Here we take a Na3Bi thin film with 16-layer thickness (≈78 Å)
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We have mentioned that the spatial and/or temporal variation
of the Weyl/Dirac point location will give rise to effective gauge
fields. Here, kD in Eq. (3) acts as the z-component of a vector
potential, its spatial variation generally leads to a pseudo-
magnetic field in the xy-plane. For example, for a strain varying
along the x-direction, the induced pseudomagnetic field is along
the y-direction, with a magnitude given by B ¼ 1

e
dkD
dε

dε
dx. For a strain

variation of 3% over 10 nm, the field strength can be up to 16.5 T
for Na3Bi. It should be noted that the field direction is reversed for
the other Dirac point, as required by the time reversal symmetry.
Similar pseudo-magnetic field has been studied particularly in
strained graphene,46 and recently also discussed in topological
semimetals.47, 48

Our treatment of the artificial gravity here is within a quasi-
classical approach, which leaves out possible analogues of
interesting quantum mechanical effects in curved spacetime. For
example, Hawking radiation,49 the radiation of particles from the
black-hole horizon stimulated by quantum vacuum fluctuation,
may find analogue effects here. Assuming the presence of a black-
hole horizon in a topological semimetal setting (as in Fig. 3a), the
quantum tunneling process as illustrated in Fig. 6 can be
interpreted as the creation of a pair of fermions due to quantum
fluctuation: a quasiparticle outside the horizon and a quasihole
inside the horizon. The quasiparticle escapes from the horizon,
resembling the Hawking radiation. With the metric in Eq. (5) and
by direct analogy,23, 49 one can find the associated Hawking
temperature TH ¼ �h

2πkB
d
dz vz � wð Þ








zh
for the radiation. Neverthe-

less, an accurate study of these quantum effects and the methods
to probe them is beyond the scope of this work and deserves a
future investigation.
Finally, we note that a similar semimetal-to-insulator TPT was

predicted in bulk Na3Bi1−xSbx and Cd3[As1−xPx]2 alloys by tuning
the substitute concentrations.50 In comparison, the strain
approach here has the obvious advantage of allowing a reversible
and continuous TPT to be achieved. For application purpose, the
TPT in the thin film seems more appealing because of the
dissipationless and spin-filtered transport associated with the QSH
edge channels. By controlling the spatial strain profile, one can
imagine to make a thin film with patterned QSH regions and trivial
insulating regions, forming a topological circuit with designed 1D
helical spin channels. It will provide an ideal platform for
integrating various topological devices and functionalities to
achieve unprecedented performance.
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