
ORIGINAL RESEARCH
published: 20 November 2018

doi: 10.3389/fnhum.2018.00439

Frontiers in Human Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 439

Edited by:

Noman Naseer,

Air University, Pakistan

Reviewed by:

Hendrik Santosa,

University of Pittsburgh, United States

Xiaolong Liu,

University of Electronic Science and

Technology of China, China

*Correspondence:

Nasir Rashid

n.rashid@ceme.edu.pk

Received: 12 September 2018

Accepted: 08 October 2018

Published: 20 November 2018

Citation:

Rashid N, Iqbal J, Mahmood F, Abid A,

Khan US and Tiwana MI (2018)

Artificial Immune System–Negative

Selection Classification Algorithm

(NSCA) for Four Class

Electroencephalogram (EEG) Signals.

Front. Hum. Neurosci. 12:439.

doi: 10.3389/fnhum.2018.00439

Artificial Immune System–Negative
Selection Classification Algorithm
(NSCA) for Four Class
Electroencephalogram (EEG) Signals

Nasir Rashid 1*, Javaid Iqbal 1, Fahad Mahmood 1, Anam Abid 2, Umar S. Khan 1 and

Mohsin I. Tiwana 1

1Department of Mechatronics Engineering, National University of Sciences & Technology, Islamabad, Pakistan, 2Department

of Mechatronics Engineering at the University of Engineering and Technology, Peshawar, Pakistan

Artificial immune systems (AIS) are intelligent algorithms derived from the principles

inspired by the human immune system. In this study, electroencephalography (EEG)

signals for four distinct motor movements of human limbs are detected and classified

using a negative selection classification algorithm (NSCA). For this study, a widely studied

open source EEG signal database (BCI IV–Graz dataset 2a, comprising nine subjects)

has been used. Mel frequency cepstral coefficients (MFCCs) are extracted as selected

features from recorded EEG signals. Dimensionality reduction of data is carried out by

applying two hidden layered stacked auto-encoder. Genetic algorithm (GA) optimized

detectors (artificial lymphocytes) are trained using negative selection algorithm (NSA) for

detection and classification of four motor movements. The trained detectors consist of

four sets of detectors, each set is trained for detection and classification of one of the

four movements from the other three movements. The optimized radius of detector is

small enough not to mis-detect the sample. Euclidean distance of each detector with

every training dataset sample is taken and compared with the optimized radius of the

detector as a nonself detector. Our proposed approach achieved a mean classification

accuracy of 86.39% for limb movements over nine subjects with a maximum individual

subject classification accuracy of 97.5% for subject number eight.

Keywords: brain computer interface (BCI), artificial immune system (AIS), staked auto-encoder, mel frequency

cepstral coefficients (MFCC), electroencephalogram, genetic algorithm

INTRODUCTION

A brain computer interface (BCI) provides a communication channel between the human brain
and external devices. This interface is generally composed of a signal processing device, a set
of non-invasive sensors and an external device. The electroencephalogram (EEG) based BCI
system is generally composed of three processes namely, signal preprocessing, feature extraction,
and classification. The signal preprocessing step is performed to enhance the acquired signal
by removing baseline noise and selecting a band frequency of interest. The feature extraction
step is mainly employed to extract meaningful information in the form of features from
raw EEG signals. The last step of classification is performed to encode the specific features
into meaningful information (determining the class) in order to control the external devices.
Since the BCI system is independent of muscles and peripheral nerves, it is mainly beneficial
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for patients who suffer from motor disorders with cognitive
disabilities (Wolpaw et al., 2002; Leuthardt et al., 2004; Kronegg
et al., 2007; Kachenoura et al., 2008).

Electroencephalogram based brain computer interface
systems generally consist of three phases. The initial phase is
composed of a training phase, which includes learning and
calibration of a classification system, using training data. In
the second phase, test data is presented to the calibrated and
trained system, which in turn classifies data in the respective
class. A third phase may also be added to the system, called
an operational phase in which the system performs an online
task to recognize brain signals, translating them into computer
commands (Lotte, 2014).

Pattern recognition is one of the most vital tasks of the BCI
system. In the past, several classification and feature extraction
approaches have been proposed, suitable for motor imagery
task recognition. Common spatial pattern (CSP) is one of the
most widely used feature extraction approaches (Müller-Gerking
et al., 1999; Ramoser et al., 2000). Other well-known approaches
include principal component analysis (Jolliffe and Cadima,
2016) for dimensionality reduction and independent component
analysis (Comon, 1994) for artifact removal. False discovery rate,
using a correlation and coherence model as features, have been
used for fNIRS data, employing the NIRS brain AnalyzIR toolbox
(Santosa et al., 2017, 2018). The time points feature extraction or
band power after spatial filtering approach is also employed as a
feature extraction technique to deal with non-stationarity in the
data for EEG classification in BCI systems (Arvaneh et al., 2013).

Many traditional approaches have been employed for
the classification of motor imagery, those include a linear
discriminant analysis (LDA) (Hong et al., 2015; Hong and
Santosa, 2016) and a quadratic discriminant analysis (QDA)
(Fukunaga, 2013), support vector machines (SVM) (Naseer and
Hong, 2013) and a Bayesian classifier (Nielsen and Jensen, 2009).
The deep belief network approach has also been used for motor
imagery EEG classification and achieved comparatively higher
accuracy than discriminant classifiers (An et al., 2014). The
adaptive LDA/QDA classification approach using band power as
a feature extraction technique for motor imagery EEG data has
been also employed successfully (Schlögl et al., 2009). An effective
application of the Riemannian geometry based SVM kernel
and the targeted band-pass covariance as a feature extraction
approach for motor imagery has been reported by Barachant
et al. (2013). In the context of motor imagery EEG classification,
Riemannian geometry is currently utilized for getting more
accurate and robust prediction models. Riemannian geometry is
logarithmic in naturemaking it inherently robust to noise signals.
In addition, P300 EEG classification using Riemannian geometry
and special covariance as a feature extraction approach has been
employed efficiently (Mayaud et al., 2016). Another approach for
motor imagery EEG classification, using a linear discriminant
analysis and a topographic map as feature extraction techniques,
has displayed comparative results (Phan and Cichocki, 2010).
Kang et al. (2009) employed the CSP and band power for
motor imagery classification, utilizing a linear support vector
machine. Using surface laplacian as a feature extraction method
and employing LDA and Bayesian models as a classifier for

motor imagery EEG signals has proved to be an effective
method (Jayaram et al., 2016). Lu et al. (2009) performed P300
EEG classification using time points as a feature extraction
approach and fisher LDA as a classification approach. Using band
power as a feature extraction approach while utilizing the deep
belief neural network for classification purposes has also been
proposed (Sturm et al., 2016). Tabar and Halici (2016) proposed
a combination of the convolutional neural network and the deep
belief neural network for motor imagery EEG classification and
explored band power as a feature extraction approach.

This research presents a framework for the application of an
artificial immune system (AIS) for the detection and classification
of four class motor imagery EEG signals. The field of AIS has seen
the considerable research direction recently in network traffic
flow monitoring and bearing fault detection in motors, however,
it has not been utilized in applications involving classification of
EEG brain signals. The main contribution of this research is to
develop an AIS algorithm inspired by the human immune system
for a multiclass classification. For this purpose, we selected a
widely used open source EEG signal database (BCI IV–Graz
dataset 2a, comprising nine subjects). Mel-frequency cepstral
coefficients (MFCCs) have been selected for extracting features
from preprocessed EEG signals. Two hidden layers Stacked Auto-
Encoder (SAE) is used for dimensionality reduction of data to
reduce computational complexity, however, ensuring maximum
representation of data based on accuracy. Genetic algorithm
(GA) optimized detectors (artificial lymphocytes) are trained
using a negative selection approach (NSA) to dectect four motor
movements. Four sets of detectors are trained to detect and
classify each movement from the other three movements. In
the training process, detection and classification accuracies are
measured and based on maximum accuracy; the set of detectors
is selected and saved for each class training sample. Furthermore,
AIS trained detectors are then used to classify test data samples
containing all four movements. Our proposed algorithm has
shown significant improvements in classification accuracy as
compared with recent state of the art approaches.

MATERIALS AND METHODS

Section I–Immune System Theory
Each human being has a biological immune system (BIS) whose
characteristics and complexity vary according to the individual.
The most vital function of an immune system is to protect
organisms against the attack of foreign agents causing disease,
called pathogens. The BIS is an adaptive system that has evolved
to provide protection against pathogens. The BIS provides
this protection through sophisticated pattern recognition and
response mechanisms and depending on the type of invaders,
the damage it can cause and the way it enters the body. The BIS
uses various response mechanisms either to destroy the invader
or to neutralize its effect (Dasgupta, 2006). Proteins found on
the surface of pathogens are called antigens and are unique
to that pathogen. Like pathogens, our own body tissues also
contain antigens known as self-antigens and those found on the
surface of pathogens are called nonself antigens. The process
of discrimination between self-antigens and nonself antigens
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is known as self/nonself discrimination. The two BIS organs,
the thymus gland and bone marrow, are responsible for the
maturation and production of immune cells called lymphocytes.
Lymphocytes are white blood cells responsible for the recognition
of nonself antigens. Lymphocytes that are generated within the
thymus are known as T-cells, while lymphocytes generated within
the bone marrow are known as B-cells (Warner, 1974).

The BIS can be broadly classified into specific and nonspecific
immunity. Nonspecific immunity is accredited to generalized
defense without identifying specific types of pathogens. This
nonspecific immune system is known as the innate immune
system because the human body is naturally capable of the
general ability to attack and destroy specific types of microbes.
The specific immune system is developed for the defense of
targeted pathogens only. The backup immune system also
constitutes the overall immune system in which the immunity or
defense is artificially acquired under special cases (Janeway et al.,
2005).

The innate immune system is composed of defense layers
against foreign particles, viruses, parasites, and bacteria. This is
a generalized and nonspecific immune system providing generic
defense mechanisms to nullify the influence of intruders against
body cells. The innate immune system targets anything that is
identified as nonself.

The specific immune system is further classified as cell-
mediated immunity or antibody-mediated immunity. An
antibody is a blood protein produced in response to a specific
antigen. Antibodies combine with substances that the body
recognizes as nonself, such as bacteria, viruses, etc. This
system is composed of antibodies that attack and destroy
antigens and foreign body particles. Cell mediated immunity is
composed of lymphocytes, which play a vital role as mediators
of counteracting antigens. Lymphocytes are further classified as
B-cells and T-cells, produced in the bone marrow and thymus,
respectively. In addition, T and B cells have specific receptors
that are matched with only one type of antigen. Furthermore,
T-cells help the B-cells in producing special Y-shaped proteins
(antibodies). Each group of antibodies has the capability to
grab a specific type of invader. These antibodies stick with the
body of antigens by matching with the molecules on the surface
of antigens. These antibodies eventually destroy the foreign
antigen.

The backup immune system artificially influences the immune
response. This immune system differs from the naturally
acquired immunity (specific immune system or innate immune
system) in a way that it is artificially acquired through
vaccination. Sometimes there is a need for immunosuppression,
which is the reduction in efficacy or activation of other
parts of the immune system. Immunosuppression is performed
intentionally with the help of vaccines in case of an organ
transplant. This is done to avoid a false attack on nonself antigens.

Section II–Artificial Immune System (AIS)
Theory
Artificial immune system is a new and emerging soft computing
method. In past decades, researchers have found various

engineering and computational solutions through AIS. An
algorithm known as the artificial immune recognition system
(AIRS) was developed by Goodman et al. (2002) and tested
against Kohenon’s learning vector quantization (LVQ) algorithm
and the k-nearest neighbors (kNN) algorithm. In addition, AIRS
proved to be more efficient in terms of binary classification
accuracy. The algorithm was further developed for multiclass
classification through several stages to train a population of
data points (Watkins and Boggess, 2002). Furthermore, AIS
is described as an adaptive system that imitates immune
functions and models principles to solve difficult problems
(Castro et al., 2002). In this paper, a negative selection
principle is used for the detection and classification of motor
imagery.

Negative selection algorithm (NSA): It is imperative for the
BIS to distinguish between foreign cells and endemic cells to
function properly. Malfunctioning of the distinction between
self and nonself, can lead to an autoimmune disease. Cells
with receptors are able to recognize self-cells and are known

as auto-reactive cells. The elimination of any self-reactive
cell characterizes the negative selection concept (Nino and
Dasgupta, 2008). Negative selection provides control to T and
B lymphocytes eliminating potential autoreactive cells during

development. The thymus gland is responsible for thematuration
of T cells, and their negative selection occurs inside it; only those
T cells survive that do not recognize self-cells (Timmis et al.,

2004). The first optimization of the NSA was done in 2009, and
a population of antibodies was compressed for faster training
and classification (Elberfeld and Textor, 2009). The research was

further enhanced to show that the NSA can be simulated without
generating any set of antibodies, however, this simulation was
not implemented (Liśkiewicz and Textor, 2010). A method to
optimize the NSA using a division of the feature space with
“neighborhood” for both antibodies and samples was proposed
(Wang et al., 2011; Textor, 2012). They introduced a method
to improve matching operations between detectors and samples,
improving performance in high dimensions. The NSA has the
characteristics of pattern recognition and has been developed on
the basis of the negative selection of T cells in the thymus. The
NSA is executed in two phases, which can be defined as follows
(Forrest et al., 1994):

a. In the first phase, known as the censoring phase, two different
data sets are defined as P and C. Set P consists of a training
set, which contains self-patterns, and set C consists of arrays
of randomly generated numbers with the same number of
elements in one array as in set P. The affinity between each
array of set C is computed with each array of set P. If the
affinity between the arrays of set C and at least one array of
set P is greater than the threshold, it is rejected (negatively
selected). Alternatively, it will be stored in the set R. This
phase, is called the censoring phase, and a set of nonself
detectors R is achieved.

b. In the second phase, called the monitoring phase, set R is
used to detect a nonself pattern from test set P∗. The affinity
between each array of set R and each array of set P∗ is
computed, and nonself patterns from the test set are identified.
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FIGURE 1 | Flowchart of two phases of NSA. (A) Flowchart—phase-1 NSA. (B) Flowchart—phase-2 NSA.

In NSA, the detector set R is referred to as mature T cells
that can recognize pathogens (nonself). Figures 1A,B show the
flow chart of both phases of NSA. In addition, NSA works on
the similar principle of the biological negative selection process,
which occurs in the thymus. Furthermore, NSA is amathematical
formulation of the BIS, which detects external invaders and does
not react with self-cells.

Match or Affinity Measures
In Forrest et al. (1994), NSA was proposed for computer network
security tasks, however, in our application, patterns are real
valued numbers, which are voltage levels. For our research, we
used Euclidean distance, Equation (3), as the measurement of
affinity between the data set and detectors. The real valued vectors
C (detectors) and P (self-data) can be given as Equations (1,2)

Ck=
[

ck1 ck2 . . . . . . ckQ

]

(1)

where k = 1, 2, . . . . . .Nc

Pi=
[

pi1 pi2 . . . . . . piQ
]

(2)

where i = 1, 2, . . . . . .Np

dist(Ck,Pi) =

√

√

√

√

√

Q
∑

j =1

∣

∣

∣
ckj −pij

∣

∣

∣

2
(3)

Section III–Data Set Used for Study
The EEG data set employed for classification in this research
article is taken from the BCI IV–Graz dataset 2a, comprising
of nine subjects (Brunner et al., 2008). The BCI data comprises
of EEG signals of four imaginary movements of the left hand
(class 1), right hand (class 2), both feet (class 3), and tongue
(class 4). The subjects were trained to record the data before it
was actually recorded. During data acquisition, all subjects sat
comfortably on a chair, their eyes fixed on the computer screen,

waiting for the appearance of a fixation cross to occur at t =
0 s. After 2 s, a cue in the form of an arrow (up, down, left,
or right) appeared on the screen along with a fixation cross.
Subjects had to imagine motions of the tongue, feet, and left or
right hands, upon viewing the arrows (up, down, left, or right)
correspondingly. The arrow disappeared after 1.25 s, while the
fixation cross remained on the screen. All subjects were required
to imagine motor movement tasks according to the cue (arrow)
until the fixation cross disappeared from the screen at time t =
6 s. Each run consisted of 48 independent trials. Every session
consisted of six runs with short breaks accumulating to a total
of 288 trials per session. Figure 2A demonstrates the timing
diagram of the EEG data acquisition protocol.

Data recording was performed on head-sets with 25 Ag/AgCl
electrodes each, set 3.5 cm apart. Twenty two channels provided
EEG signals, and three EOG channels (monopolar) were logged
at a 250Hz sampling rate. Figure 2B demonstrates the diagram
of electrode montage for the EEG data acquisition. The sampling
frequency of acquired EEG was 250Hz, and further filtering
between 0.5 and 100Hz was carried out by a band-pass filter. The
signals were also amplified with an amplifier with a sensitivity of
100 µV . Noise suppression was finally performed with a notch
filter operating on a 50Hz frequency. In our research, we did not
use three EOG channels for classification.

The data used for this study proved challenging. All four
class patterns were intermingled and not easily separable. The
complexity of the data can be seen in Figure 3.

Section IV–Proposed Scheme
A noninvasive brain signal EEG can provide a pattern of the
thought process of a BCI user, which can be interpreted by
the use of intelligent algorithms comprising of classifiers. These
classifiers can predict the intentions of the user with considerable
accuracy, and these predictions can be used for communication
with external world. This paper presents an intelligent algorithm
that combines preprocessing of a brain signal (stage 1), reduction
of dimensionality while keeping themaximum information of the
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FIGURE 2 | (A) Timing pattern of the data acquisition protocol. (B) Left: electrode arrangement according to international 10–20 system. Right: electrode placement

of three monopolar EOG channels (Brunner et al., 2008).

FIGURE 3 | 2D plot of all four classes of subject 1.

signal (stage 2), and a negative selection classification algorithm
(NSCA) as a detection and classification technique (stage 3).
Figure 4 shows the layout of the proposed method.

Feature Extraction
Electroencephalogram signals are preprocessed by the equipment
used for data recording. Frequency ranging from 0.5 to 100Hz
is extracted using a built-in band-pass filter. Line noise has also
been removed using a notch filter of 50Hz. An EEG signal can
be represented in many ways. The two most common types
of features used to represent an EEG signal are time domain
statistical features and frequency domain band power features
(Guyon and Elisseeff, 2003). Time domain statistical features are
extracted after preprocessing, like band-pass or low-pass filtering

and down sampling. These features help classify event related
potentials (ERPs) (Blankertz et al., 2011). The frequency domain
band power features represent the power (energy) of EEG signals
for a given frequency band in a given channel. This energy
is averaged over a given time frame (selected for a particular
application; Brodu et al., 2011). Time point features are sequences
of EEG samples for all channels. These features are typically used
to classify ERPs, which lead to temporal variation in EEG signals.
These features are used mostly in P300 based BCIs (Breiman,
2001; Lotte, 2014). Band power features are considered the gold
standard feature for BCIs, based on motor and mental imagery
(Lotte et al., 2018). In our study, we extracted features from both
domains as discussed above and the selected feature is used for
classification. The time domain statistical features used for this
study are given in Table 1.

Frequency domain features used for this study are MFCCs.
In addition, MFCCs are extensively utilized in signal processing
owing to their robustness, nonlinear frequency scale, and de-
correlated nature (Dharanipragada et al., 2007). In this research
article, we have considered the similarity of sound signals to EEG
signals using MFCCs as features. Cepstrum can be seen as the
rate of change in different spectral bands. In order to use a power
spectrum as a feature for representing a signal, the spectrum is
first transformed using a mel scale to establish the mel frequency
cepstrum. The power cepstrum of a signal x[n] is calculated by
Equation (4).

Px[n]=
∣

∣F(log( |F (x [n])|2 )
∣

∣

2
, (4)

where F is the Fourier transform. A complex cepstrum of a
signal x[n] is defined by using its Z-transform and is given by
Equation (5)

Cx[n]=Z−1lo g (Z [x [n]]) (5)

The MFCCs are extracted first by framing and windowing the
signal followed by taking the Fourier transform. The resultant
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FIGURE 4 | Layout of proposed method.

spectrum magnitude is wrapped by the mel scale and discrete
cosine transform (DCT). The log of this spectrum increases the
computational efficiency (Kinnunen, 2003; Nasr et al., 2018). The
mel scale is defined as a perceptual scale of pitches, and the
following Equations (6,7) are used to convert the signal frequency
from hertz (Hz) to mel (m).

m = 2595log10

(

f

100
+1

)

(6)

m = 1127loge

(

f

100
+1

)

(7)

The MFCC vector is computed for each frame using short term
analysis. In this process, to reduce the blurring effects of the
signals, it is pre-emphasized. The pre-emphasis is achieved by
applying the first order finite impulse response (FIR) filter of the
form (Kinnunen, 2003) to reduce the blurring effect of the signal
and is given by Equation (8)

H (z)= 1− az−1, (8)

where 0.9 ≤ a≤ 0.99
The signal is divided into small sections, called frames, and

this process is derived from a quasi-stationary nature of signals.
However, if these signals are observed as discrete sections over
a short duration, then these demonstrate stable characteristics
and can be considered stationary (Kinnunen, 2003; Nasr et al.,
2018). Frame overlapping helps to avoid loss of information from
the signal. To increase the continuity between adjacent frames, a

TABLE 1 | Time domain features used in study.

Feature Mathematical model

Mean absolute deviation (MAD) MAD = 1
n

∑n
i= 1

∣

∣si − s
∣

∣

Mean value (µ) µ = 1
n

∑n
i=1 si

Standard deviation (σ ) σ =

√

∑n
i=1 (si−s)2

n−1

Variance (σ2) σ2 = 1
n−1

∑n
i=1 (si − s)2

Kurtosis (m4) m4 = 1
n−1

∑n
i=1 (si − s)4

Where si is the ith element in the vectors of length n and s is the mean value of s.

windowing function is applied for each frame. Themost common
windowing functions are the Hamming and Rectangular window
followed by the Blackman and Flattop window. While dealing
with time domain cases, the windowing operation can be
achieved by multiplying the frame and window function on a
point to point basis. The windowing operation corresponds to the
convolution between the short term spectrum and the windowing
function frequency response. The most commonly used function
is the HammingWindow, given in Equation (9), which is defined
by Kinnunen (2003); Nasr et al. (2018).

wH (n)= 0.54− 0.46 cos

(

2nπ

N− 1

)

, (9)

where n = 0, 1, . . . . . . . . . . . . ..,N − 1 and N is the number of
frames the signal has been divided into.
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Magnitude spectrum is obtained by computing the discrete
fourier transform (DFT) of a windowed frame of the signal.
Mathematically DFT is defined as Equation (10)

S (k)=

N−1
∑

n =0

s(n)e
−j2π
N kn, (10)

where s(n) is the time sample of a windowed frame.
Arithmetically, IDFT (inverse discrete fourier transform) is
given by Equation (11) (Kinnunen, 2003; Nasr et al., 2018).

S (n)=
1

N

N−1
∑

k=0

S(k)e
−j2π
N kn (11)

Magnitude spectrum is wrapped in the form of frequency in
order to transform the spectrum into a mel-frequency scale.
Wrapping of mel-frequency is achieved by the mel-filter bank,
which contains a band-pass filter as set with constant spacing
and bandwidths. The filter bank comprises of one filter for
each desired mel-frequency component. Moreover, each filter
has a triangular filter band-pass frequency response. The range
from zero to nyquist frequency is encompassed with the spread
of triangular filters. The recognition accuracy of the system is
effected by the number of filters that are to be set according to
mel frequency components. In addition, DCT is performed on
mel-spectrum logarithm (log) as the last stage, and the resulting
amplitudes are called the MFCCs. If the energy of the mth
mel-filter output is given as S̃(m), the MFCCs will be given by
Equation (12)

cj=

√

2

Nf

Nf
∑

m =1

log(S̃(m)) cos

[

jπ

Nf
(m− 0.5)

]

, (12)

where j = 0, 1, . . . . . . . . . . . . ., j − 1, with j being the number of
MFCCs, Nf is the number of mel-filters and cj are the MFCCs.
As maximum signal information is represented by the first few
MFCCs, the number of resulting coefficients is selected between
12 and 20 (El-Samie, 2011). We can castoff the zeroth coefficient
as it represents the mean log energy of the frame. For our study,
we have chosen 12 MFCCs referred to as static parameters of
the frame (Martin et al., 2008). The complete process of MFCC
includes windowing, computation of fast fourier transform,
computation of log amplitudes of spectrum into mel scale, and
computation of discrete cosine transform of mel log amplitudes.

Feature Selection
Feature extraction is followed by a feature selection step to select
a subset of extracted features with potential benefits (Guyon and
Elisseeff, 2003). The feature selection step has to be carried out
carefully, firstly, some of the extracted features may be redundant
or may not be related to the state targeted by BCI. Secondly,
the features may be positively correlated with parameters to be
optimized by the classifier. Thirdly, from the point of view of
knowledge extracted from the signal only a few of the features
should actually be related to the targeted states. Fourthly, a model
with fewer numbers of feature will give faster predictions for a
new sample and at the same time will be computationally efficient

and less expensive. Fifthly, storage of data will be reduced. The
filter, wrapper, and embedded approaches have been suggested in
Kohavi and John (1997).

In our study, we adopted the wrapper method for selection
of a subset of features (Kohavi and John, 1997). In the wrapper
method, the subset is selected and presented to a classifier as
an input sample for training, and the resulting performance is
observed. If the resulting performance does not meet the criteria,
a new subset is selected and the procedure is repeated until the
desired criteria is met or maximum performance is achieved.
Classifier performance is calculated offline for a pre-recorded
training data set, while evaluating the held out data set. However,
cross validation can also be used for performance evaluation. We
used SVM as a classifier for determining classification accuracy
using holdout validation method. The MFCCs are selected as
best features for our application. Owing to their regularization
property and immunity to curse of dimensionality, SVM are
considered most efficient classifiers for BCI applicaitons (Lotte
et al., 2007). The wrapper approach as suggested in Kohavi and
John’s (1997) is shown in Figure 5.

Dimensionality Reduction
Auto-encoders (AE) are used for learning more about the
structure of data without using any class or labels, that is, an
unsupervised learning technique. An AE is a single layer neural
network, which has one hidden layer and the network tries
to reconstruct the input. The common constraint of an AE is
called a bottleneck constrain in which the number of neurons
in the hidden layer is less than the input and output layer. This
constraint makes the network learn a compressed representation
of data, which leads to a dimensionality reduction (Rumelhart
et al., 1985). Our proposed dimensionality reduction technique
uses a two layer stacked auto-encoder. Stacked auto-encoder
based pertaining is one of the approaches that can reduce the
dimensionality of data and yields less over-fitting. Figure 6A
represents the architecture of stage-1 single hidden layer auto-
encoder, which carries out the first reduction in data dimension.
Figure 6B represents the second phase of reduction of data in
which trained hidden layer of stage-1 is used as input to stage-
2. Figure 6C shows the reduction of input data (22 channels)
in two stages through stacked AE consisting of trained hidden
layers of stage-1 and stage-2. The output of two stage stacked AE
is reduced to nine channels.

The input x ∈[0, 1]nx is encoded to a hidden layer as
h ∈[0, 1]nh , which represents the vectors of the hidden layer.
Now, the hidden layer will be decoded to an output x′∈[0, 1]nx .
x′ represents the reconstruction of input by training the hidden
layer through minimizing the difference between the two.
The model learns to map a feature representation h that can
reconstruct the input. Equations (13,14) represent the encoding
and decoding.

hj= sigm(bj+

nx
∑

i =1

wijxi) (13)

x′i= sigm(ai+

nh
∑

j =1

w
′

ijhj) (14)
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FIGURE 5 | The wrapper approach to feature subset selection. The induction algorithm is used as a “black box” by the subset selection algorithm (Kohavi and John,

1997).

Here, dimensionality of input and hidden layer is given by
nx and nh while sigm (x) = 1

1+e−x is the logistic sigmoid function

element wise. W =
[

wij

]

and W
′
=

[

w
′

ij

]

are weight matrices

and a = [ai] and b = [bj] are bias vectors.
The weights of auto-encoder are learned and updated using

the Lavenberg-Marquardt back propagation algorithm (Yu and
Wilamowski, 2011). Given a training set of N input data
vectors, each training set x(n) can be mapped through a
hidden representation h(n) by reconstructing x′(n). The model
parameters 2 =

{

W, a, b
}

are tuned to minimize the loss
function, which is the mean squared reconstruction error over
the training set. The mean squared error can be represented by
Equation (15)

J (θ)=
1

N

N
∑

n=1

∥

∥

∥
x(n)−x

′(n)
∥

∥

∥

2
(15)

There is a chance of calculated weights to increase unboundedly,
which may cause over-fitting and computational complexity. To
improve generalization on unseen data, a regularization term
is added to the encoder. This term is also called weight decay
term, and it shrinks the weights in layer 2, which have very
small values. The regularizer can also be employed in layer 1,
and it can reduce the redundant weight to zero. This gives rise
to selective activation of hidden units, which are more useful for
the discriminative tasks (Coates et al., 2011). Commonly sparsity
cost is calculated, based on cross entropy between the sparsity

(average activation) of each unit, ρ̂j =
1
N

∑n
n =1 h

(n)
j , and a user

defined sparsity ρ. The term ρ is sparsity parameter and typically
set very close to zero. The entire objective function can be given

by Equation (16)

J (θ) =
1

N

N
∑

n =1

∥

∥

∥
x(n)−x

′(n)
∥

∥

∥

2
+λ ‖W‖2

+β

nh
∑

j =1

ρ log
ρ

ρ̂j
+ (1− ρ) log

(1− ρ)

1−ρ̂j
(16)

Here, λ and β are hyper parameters to tune the effects of weight
decay and sparsity cost, respectively. Gradient decent based
approach is used to reduce the objective function.

GA Based Optimized Negative Selection

Classification Algorithm (NSCA)
Proposed selection of features and an optimal reduction in
dimensionality of data provides us the most suitable combination
for classification of four class motor imagery using the negative
selection classification algorithm (NSCA). The reduced feature
data is normalized, and the detectors are generated in the reduced
low dimensional self-sample space. Otherwise, high dimensional
data space can lead to an exponential increase in computational
load. Since we have EEG signals pertaining to four classes of
human limb movement, we have to generate, optimize, and train
four sets of detectors corresponding to each movement class. The
detectors are trained using the self-sample (training sample), and
the best optimized detector set for the particular class is saved.
The selection of the best set of detectors is based on accuracy.
As the best sets of detectors for each class are obtained through
training (self) samples, our algorithm computes the classification
accuracy for the test samples (unknown data) for all classes. For
training of detectors, knowledge of only self-sample is given to
NCSA, and after the detectors are optimized, the best selected set
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FIGURE 6 | Stacked auto-encoder with two pre-trained hidden layers and final reduction of data.

is used for the classification of the test sample. Classification of
motor imagery based four human limb movements using NCSA
is a four stage process: (1) Selection of combination of neurons
in hidden layers; (2) Detector generation and optimization;
(3) Selection of best set of the optimized detectors; and (4)
Classification of the test data set.

Selection of combination of neuron in hidden layers
In the first stage of dimensionality reduction of selected feature
set, a combination of number of neurons is selected according
to Huang (2003). In addition, EEG signals are subject specific
and possess a large intra-subject diversity of data (Wang et al.,
2017), so the selection of reduction of dimensions for each
patient is carried out by calculating the detection accuracy
of self-samples against nonself samples. A range for number
of neurons in first hidden layer (15–19) and second hidden
layer (6–10) has been selected. All possible combinations have
been evaluated for dimensionality reduction of training sample

set and tested on test data set for detection accuracy of
self samples. The best combination of number of neurons is
selected for dimensionality reduction and subsequently training
all the detector sets. Number of detectors has also been varied
from 25 to 70 for all combinations of hidden layer neurons.
Experimental results have shown greater accuracies in the range
of 30 to 40 number of detectors, therefore, the results are
shown only for this range of number of detectors and all
combinations of hidden layer neurons. The range of 30–40
number of detectors yield optimum result because when we
reduce the number of detectors, the total search is not completely
covered by detectors; if the number is increased, overlapping of
detectors with self data occurs resulting in decreased detection
accuracy due to false negatives. Table 2 shows the detection
accuracies for each combination of hidden layers only for
subject 1, bold values show maximum detection accuracy for all
combinations of hidden layers. H1 are the number of neurons
in first hidden layer and H2 in second hidden layer. The

Frontiers in Human Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 439

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rashid et al. AIS-Negative Selection Classification Algorithm

TABLE 2 | Detection accuracy for subject 1.

H1/H2 Max detection accuracy Number of detectors

15/6 0.4375 40

15/7 0.4861 30

15/8 0.5069 30

15/9 0.5694 40

15/10 0.6806 30

16/6 0.5694 30

16/7 0.7708 30

16/8 0.8194 40

16/9 0.4931 40

16/10 0.5903 30

17/6 0.4931 30

17/7 0.6181 40

17/8 0.5625 40

17/9 0.4375 40

17/10 0.4861 40

18/6 0.5833 40

18/7 0.5278 30

18/8 0.75 40

18/9 0.5347 30

18/10 0.50 30

19/6 0.5625 30

19/7 0.7986 30

19/8 0.6528 30

19/9 0.5278 40

19/10 0.7083 40

combination of 16/8 is selected with the maximum detection
accuracy.

Table 3 shows the combination of number of hidden layer
neurons and number of detectors for maximum detection
accuracy for all nine subjects.

Detector generation and optimization
As described earlier in the previous sections, the algorithm
is inspired by the mechanism found in BIS. Each detector is
generated in the space having the same number of dimensions
as the data set. As mentioned in the above section that data
is reduced to eight dimensions after using the best detection
accuracy auto-encoder, the detector generated will also have the
same number of dimensions. Before the detector training is
started, the data is normalized to the range [0, 1].

This is done to simplify the code, which allows the radius
of each detector to be defined once instead for each dimension.
As suggested in Qin et al. (2008), the generation of detectors is
focused on minimum number of detector yet covering all nonself
space to identify and detect nonself classes. The mechanism
used for detector generation takes into account the optimal
detector center with maximum detector radius to influence
the region having a constraint of not to detect self-matching
samples. Moreover, it is also imperative that the detectors should
have minimum overlap and maximum diversity factor. The
maximum diversity factor will ensure coverage of the whole

TABLE 3 | Maximum detection accuracy for all nine subjects.

Subject H1/H2 Max detection accuracy Number of detectors

1 16/8 0.8194 40

2 18/10 0.7847 40

3 19/7 0.7917 30

4 15/10 0.7222 30

5 17/10 0.7361 30

6 16/7 0.7639 30

7 17/10 0.7361 40

8 18/8 0.7167 35

9 16/9 0.6528 30

FIGURE 7 | Search space with self-samples and non-self detectors.

search space with reduced number of detectors to reduce burden
of computation. Figure 7 shows the distribution of detectors in a
search space.

As discussed earlier, the proposed mechanism determines the
optimal detector center in a way so that the detector radius and
diversity can be maximized while keeping in view the constraint
of self matching detector prevention. Genetic algorithm is used
to achieve the maximization and optimization of detectors under
the limitation of constraint. The process is initialized with a
random population of detectors in the search space, called
candidate detectors. Once the population has been initialized, the
training algorithm proceeds to set the radius rj of the candidate
detector. The set of candidate detectors is checked against the
whole training set. After one complete iteration of GA, we obtain
one mature optimal detector, which is stored in the optimized
detector set. The implementation process of GA is repeated to
obtain and store the required optimum number of the detector
set (Abid et al., 2017). The pseudo code for GA is given inTable 4.

The output of training algorithm is the set of detectors
(antibodies) that is used by the classification algorithm.
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TABLE 4 | Pseudo code–GA for optimization of detectors.

i = 0 set generation number to zero

begin

init_population P(0) initialize random population of individuals

(detectors)

evaluate P(0) evaluate fitness of all initial individuals

(detectors) of population while (not done) do

test for termination criterion(time, fitness etc)

while (not terminated condition) Do

select P(i) from P(n-1) select a sub-population for offspring

reproduction

crossover P(i) recombine the gene of selected parents

mutate P(i) perturb the mated population

evaluate P(i) evaluate its new fitness

i = i + 1 increase generation number

end

The flow chart of GA is shown in Figure 8.
Abid et al. (2017) suggested the optimization of detectors

using Equations 17–19. Let the set of training sample data vectors
be �k

(

k = 1, 2, . . . . . . . . .K
)

with self radius Rk = Rself , the
location of the optimal set of detectors is given by dj(j =

1, 2, . . . . . . . . . Nd). Following criteria are used to maximize
the detector radius rj. Maximization of detector radius with
minimum overlapping.

max
dj

rj = max
dj

∣

∣�k − dj
∣

∣ − Rk (17)

Maximization of diversity factor

f ∗j =
δf j

sj
where sj =

D
∑

i=1

ξij (18)

Bi-objective optimization

max
dj

fj
∗ = max

dj

δfj

sj
= max

dj

δ(
∣

∣�k−dj
∣

∣ − Rk)

sj
, (19)

where fj and f
∗

j are the initial fitness value and updated fitness

value, respectively, sj is the diversity factor and ξij is defined
as distance based similarity between candidate and selected
detectors, and δ is the scaling factor. The proposed multi-
parameter GA configuration uses Roulette wheel selection, multi-
point crossover, and bit-wise mutation operator.

Selection of best set of optimized detectors
The selection of the best set of optimized detector set is based
upon the initial and final fitness values for candidate detectors.
The number of detectors to be generated is also given as an
input to GA, this enables our algorithm to best fit the number of
detectors according to their fitness value for complete coverage
of the space. As shown in Table 2, for subject 1, the maximum
accuracy is achieved with a network having combination of 16/8
and number of detectors equal to 40. The detection accuracy of
self against nonself samples is calculated for a range (25–70) of
number of detectors with a gap of five between the two numbers.

FIGURE 8 | Flow diagram of GA.

Classification of test data set
The optimized detector sets are generated, one set for each class
of movement for each subject. In this way, there will be four sets
of optimized mature detectors for classification of four classes.
The negative selection classification algorithm (NSCA) is used
for classification of four human limb movements with the help
of EEG signals. The decision of class is done on the basis of the
Euclidean distance of all the detectors in a set with the input test
sample. The comparison rule is given in Equation (20).

d (u, v)=

√

√

√

√

n
∑

i=1

(ui−vi)
2, (20)

where u and v are two vectors and d is the Euclidean distance
between the vectors. Each vector of the detector set is compared
for the affinitymeasure (Euclidean distance) with the input vector
(test sample), if a match is found (d < threshold) between the
test sample and any of the vector of detector set, the sample is
labeled as the nonself class. In other words, a particular set of
detectors trained for detection of a certain class will predict the
particular class on the basis of the affinity measure rule.

The summary of our proposed methodology for the
classification can be given as follows: stage 1) multi-domain
feature extraction; stage 2) selection of best feature on the basis
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of wrapper method; stage 3) data dimensionality reduction using
auto-encoder on the basis of detection accuracy; stage 4) detector
generation and optimization using GA for each class; and stage
5) multi-class classification of four human limbmovements using
NSCA.

RESULTS AND DISCUSSION

In this study, motor imagery EEG data pertaining to all
four classes of human limb movements has been used for
classification. This is an open source data set (BCI IV–Graz
dataset 2a, comprising 9 subjects) widely used by researchers.
Multi-domain feature extraction followed by selection of feature
on the basis of wrapper method is carried out as discussed
in section II–Feature Selection. In addition, MFCCs have been
selected as features for further processing and classification.
Bio-inspired AIS has been used for the classification of limb
movements. We have used hold out validation for training
of classifier with 70% training and 30% validation data. Our
proposed NSCA has been applied on test data of all the subjects
for the calculation of classification accuracy. Confusion matrix is
used as a measure of calculation of classification accuracy of the
test sample by a trained classifier. Classification accuracy has been
calculated using Equation (21)

Classification Accuracy =
Number of correct predictions

Total number of predictons
(21)

Confusion matrix of subject 1 with classification accuracy
(85.0%) is shown in Table 5. True positives (correctly
classified/predicted test samples) are the diagonal of confusion
matrix, and elements other than the diagonal are incorrectly
classified/predicted samples.

Classification accuracies using NSCA for all nine subjects are
shown in Figure 9A.

In our previous research, we have used the same data for
calculating the classification accuracy. We used the same feature
as in this research (MFCC) as feature extraction technique, and
three variants of the multi-class support vector machine (mSVM)
were used for determining the classification accuracy. The three
variants of mSVM were linear-mSVM (L-mSVM), quadratic-
mSVM (Q-mSVM), and cubic-mSVM (C-mSVM). The results of
the three variants in comparison with this research are shown in
Figure 9B.

Figure 9B shows that NSCA performance for determining
classification accuracy has improved as compared with our

TABLE 5 | Confusion matrix of classification accuracy–subject 1.

Class Predicted class by NSCA

Left hand Right hand Both feet Tongue

True class Left hand 19 – 1 –

Right hand – 17 2 1

Both feet 2 – 15 3

Tongue 2 2 – 16

previous research. The increased performance can be seen in all
nine subjects. This gives rise to the fact that NCSA as amulti-class
classifier has outperformed the earlier three variants of mSVM.

A number of researchers have used the same data set as
Brunner et al. (2008) for determining classification accuracy by
using different feature extraction and classification techniques.
In 2008, Grosse-Wentrup and Buss (Grosse-Wentrup and Buss,
2008) used SVM as a classifier in combination with the multiclass
common spatial pattern (mCSP) as the feature extraction
method. In 2013, Zhang et al. (2013) used a combination of
complex CSP as the feature extraction technique and SVM as the
classifier. In 2018, Meisheri et al. (2018) used the classification
approach with mCSP and adaptive learning classifier, given a
name as self-regulated interval type-2 neuro-fuzzy inference
system (SRIT2NFIS). Results of all the studies mentioned
above, along with our previous and current research are shown
in Table 6. Bold values show maximum mean classification
accuracy and minimum standard deviation for our research
methodologies as compared with state of the art techniques.

Our approach exhibits comparatively best results with state
of the art techniques and our previous technique as well
(which has also surpassed the state of the art techniques).
Our recent technique presented in this paper has been able to
differentiate among four classes of data with greater accuracy.
The advantage of using GA optimized AIS NSCA is that it only
needs information about one class during training of detectors.
Detectors are trained for all the four classes, and these detector
sets do not need to have the information of all four classes rather
require only one. The optimization of the region of influence
of detectors (detector radius) has resulted in coverage of space
with minimum number of detectors, yet producing best results
in comparison. The feature reduction technique has resulted
in reduced computational expense during training and also
performs better during testing.

The selection of features using the wrapper method during
training has enabled our classifier to know the best feature
depending upon the classification accuracy, and this has resulted
in improved classification accuracy during the testing phase. As
the set of detectors are optimized and saved during training,
it takes less time as compared with k-fold cross validation
accuracy determining methods. Moreover, owing to the fact that
we are considering the short duration power spectrum of a
signal using mel frequency cepstrum (MFC), performance of the
EEG classification approach depends on the number of MFC
coefficients. Our results are based on 12 MFC coefficients. In an
EEG signal, the movements of limbs and organs produce certain
frequencies patterns at the motor cortex. Our feature extraction
technique alongwith NSCA has been able to differentiate the
patterns of all the four classes effectively and resulted in increased
classification accuracy.

It is significant to mention that the classical and powerful
classification algorithm need to have the information about all
the data labeled for training, however, our framework can detect
the class in a binary fashion first and then can be converted
into a multiclass classifier by training set of detectors on other
classes as well. As mentioned and shown in our research, the data
under consideration for classification is very complex and classes
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FIGURE 9 | (A) Percentage classification accuracy using NSCA and (B) comparison with variants of SVM for nine subjects.

TABLE 6 | Classification accuracy of proposed approach as compared with other approaches.

BCI competition data set-2008 Graz data set A

Classification accuracy in %

Subjects Grosse-Wentrup

and Buss (2008)

Zhang et al.

(2013)

Meisheri et al.

(2018)

Meisheri et al.

(2018)

Our previous

research

Proposed

methodology

mCSP with

SVM

ComplexCSP

with SVM

mCSP with

SVM

mCSP with

SRIT2NFIS

MFCC with

Q-mSVM

MFCC with

NSCA

1 48.1 61.5 68.75 74.65 83.91 85.00

2 27.3 32.1 41.67 45.48 66.99 85.00

3 70.6 68.6 66.31 74.31 75.27 90.00

4 21.4 27.1 37.98 39.58 70.74 75.00

5 22.7 34.3 25 32.99 79.49 81.25

6 32.4 35.3 36.62 37.9 76.80 82.50

7 52.3 48 52.97 54.17 83.66 88.75

8 65.8 65.6 65.55 66.32 80.69 97.50

9 34.2 41.8 64.58 66.31 88.19 92.50

Mean 41.64 46.01 51.04 54.63 78.48 86.39

S.D 18.34 15.65 16.15 16.27 6.72 6.67
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overlap as seen in the 2D plot. However, having the information
of one class at a time, NSCA has been successfully able to classify
the human limb movements with higher accuracies as compared
with other recent research methodologies.

CONCLUSION AND FUTURE WORK

This paper presents a novel classification approach for the
classification of complex EEG brain signals. Brain signals are
called complex as these signals not only vary from subject to
subject for the same limb movement but also vary within a
subject at different time points of data recordings. These signal
patterns change if the subject is tired or exhausted or even
he/she is having mood swings. Owing to diversity, the correct
classification becomes difficult but at the same time challenging
as well. Our GA based optimized AIS NSCA has been able
to successfully overcome the challenge as compared with the
latest techniques used by researchers. The proposed framework
consists of stage 1) multi-domain feature extraction; stage 2)
selection of the best feature on the basis of the wrapper method;

stage 3) data dimensionality reduction using auto-encoder on
the basis of detection accuracy; stage 4) detector generation
and optimization using GA for each class; and stage 5) multi-
class classification of four human limb movements using NSCA.
Results show a significant improvement in the classification
accuracy as compared with the latest research. In addition, NSCA
has shown an average classification accuracy of 86.39% and
maximum classification accuracy of 97.50% for subject number
eight.

Toward the future work, the research should dive more into
the human immune system and replicate the response of the
system in the field of artificial intelligence. For example, clonal
selection occurs when a B-lymphocyte encounters an antigen.
Antigen selects the few B-lymphocytes, out of manymillions, that
have cell surface antibody that best “fits” the antigen.
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Liśkiewicz, M., and Textor, J. (2010). “Negative selection algorithms without

generating detectors,” in Proceedings of the 12th Annual Conference on Genetic

and Evolutionary Computation, ACM, 1047–1054.

Lotte, F. (2014). “A tutorial on EEG signal-processing techniques for mental-state

recognition in brain–computer interfaces,” in Guide to Brain-Computer Music

Interfacing (London: Springer), 133–161.

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy,

A., et al. (2018). A review of classification algorithms for EEG-based

brain–computer interfaces: a 10 year update. J. Neural Eng. 15:031005.

doi: 10.1088/1741-2552/aab2f2

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review

of classification algorithms for EEG-based brain–computer interfaces. J. Neural

Eng. 4:R1. doi: 10.1088/1741-2560/4/2/R01

Lu, S., Guan, C., and Zhang, H. (2009). Unsupervised brain computer interface

based on intersubject information and online adaptation. IEEE Trans. Neural

Syst. Rehabil. Eng. 17, 135–145. doi: 10.1109/TNSRE.2009.2015197

Martin, R., Heute, U., and Antweiler, C. (2008). Advances in Digital Speech

Transmission. John Wiley & Sons.

Mayaud, L., Cabanilles, S., Van Langhenhove, A., Congedo, M., Barachant, A.,

Pouplin, S., et al. (2016). Brain-computer interface for the communication

of acute patients: a feasibility study and a randomized controlled trial

comparing performance with healthy participants and a traditional assistive

device. Brain Comput. Interfaces 3, 197–215. doi: 10.1080/2326263X.2016.

1254403

Meisheri, H., Ramrao, N., andMitra, S. (2018). Multiclass Common Spatial Pattern

for EEG based Brain Computer Interface with Adaptive Learning Classifier.

arXiv [preprint]:1802.09046.

Müller-Gerking, J., Pfurtscheller, G., and Flyvbjerg, H. (1999). Designing

optimal spatial filters for single-trial EEG classification in a movement

task. Clin. Neurophysiol. 110, 787–798. doi: 10.1016/S1388-2457(98)

00038-8

Naseer, N., and Hong, K. S. (2013). Classification of functional near-infrared

spectroscopy signals corresponding to the right-and left-wrist motor imagery

for development of a brain–computer interface. Neurosci. Lett. 553, 84–89.

doi: 10.1016/j.neulet.2013.08.021

Nasr, M. A., Abd-Elnaby, M., El-Fishawy, A. S., El-Rabaie, S., and El-

Samie, F. E. A. (2018). Speaker identification based on normalized pitch

frequency and mel frequency cepstral coefficients. Int. J. Speech Technol. 1–11.

doi: 10.1007/s10772-018-9524-7

Nielsen, T. D., and Jensen, F. V. (2009). Bayesian Networks and Decision Graphs.

Springer Science & Business Media.

Nino, F., and Dasgupta, D. (2008). Immunological Computation: Theory and

Applications. Auerbach Publications.

Phan, A. H., and Cichocki, A. (2010). Tensor decompositions for feature extraction

and classification of high dimensional datasets. Nonlinear Theory Appl. 1,

37–68. doi: 10.1587/nolta.1.37

Qin, R., Li, T., and Zhang, Y. (2008). “An immunity based computer virus detection

method with GA-RVNS,” in Intelligent Information Technology Application,

2008. IITA’08. Second International Symposium on, Vol. 2, IEEE, 864–868.

Ramoser, H., Müller-Gerking, J., and Pfurtscheller, G. (2000). Optimal spatial

filtering of single trial EEG during imagined hand movement. IEEE Trans.

Rehabil. Eng. 8, 441–446. doi: 10.1109/86.895946

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning Internal

Representations by Error Propagation. No. ICS-8506. California Univ San Diego

La Jolla Inst for Cognitive Science.

Santosa, H., Aarabi, A., Perlman, S. B., and Huppert, T. (2017). Characterization

and correction of the false-discovery rates in resting state connectivity

using functional near-infrared spectroscopy. J. Biomed. Optics 22:055002.

doi: 10.1117/1.JBO.22.5.055002

Santosa, H., Zhai, X., Fishburn, F., and Huppert, T. (2018). The NIRS Brain

AnalyzIR toolbox. Algorithms 11:73. doi: 10.3390/a11050073

Schlögl, A., Vidaurre, C., and Müller, K.-R. (2009). “Adaptive methods in

BCI research-an introductory tutorial,” in Brain-Computer Interfaces (Berlin;

Heidelberg: Springer), 331–355.

Sturm, I., Lapuschkin, S., Samek, W., and Müller, K.-R. (2016). Interpretable deep

neural networks for single-trial EEG classification. J. Neurosci. Methods 274,

141–145. doi: 10.1016/j.jneumeth.2016.10.008

Tabar, Y. R., and Halici, U. (2016). A novel deep learning approach for

classification of EEG motor imagery signals. J. Neural Eng. 14:016003.

doi: 10.1088/1741-2560/14/1/016003

Textor, J. (2012). “Efficient negative selection algorithms by sampling and

approximate counting,” in International Conference on Parallel Problem Solving

from Nature (Berlin; Heidelberg: Springer), 32–41.

Timmis, J., Knight, T., de Castro, L. N., and Hart, E. (2004). “An overview

of artificial immune systems,” in Computation in Cells and Tissues (Berlin;

Heidelberg: Springer), 51–91.

Wang, D., Xue, Y., and Yingfei, D. (2011). Anomaly detection using

neighborhood negative selection. Intell. Automat. Soft Comput. 17, 595–605.

doi: 10.1080/10798587.2011.10643173

Wang, J., Feng, Z., and Lu, N. (2017). “Feature extraction by common spatial

pattern in frequency domain for motor imagery tasks classification,” in Control

And Decision Conference (CCDC), 2017 29th Chinese, IEEE, 5883–5888.

Warner, N. L. (1974). “Membrane immunoglobulins and antigen receptors on B

and T lymphocytes,” in Advances in Immunology, Vol. 19 (Academic Press),

67–216.

Watkins, A., and Boggess, L. (2002). “A new classifier based on resource

limited artificial immune systems,” in IEEEWorld Congress on Computational

Intelligence, 1546–1551.

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,

T. M. (2002). Brain–computer interfaces for communication and control. Clin.

Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Yu, H., and Wilamowski, B. M. (2011). LevenbergMarquardt Training Industrial

Electronics Handbook, Vol. 5 Intelligent Systems, 2nd Edn. CRC Press, Chapter

12, 12-1 to 12-15.

Zhang, H., Yang, H., and Guan, C. (2013). Bayesian learning for spatial filtering in

an EEG-based brain–computer interface. IEEE Trans. Neural Netw. Learn. Syst.

24, 1049–1060. doi: 10.1109/TNNLS.2013.2249087

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Rashid, Iqbal, Mahmood, Abid, Khan and Tiwana. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 15 November 2018 | Volume 12 | Article 439

https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1109/TNSRE.2007.891389
https://doi.org/10.1088/1741-2560/1/2/001
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1109/TNSRE.2009.2015197
https://doi.org/10.1080/2326263X.2016.1254403
https://doi.org/10.1016/S1388-2457(98)00038-8
https://doi.org/10.1016/j.neulet.2013.08.021
https://doi.org/10.1007/s10772-018-9524-7
https://doi.org/10.1587/nolta.1.37
https://doi.org/10.1109/86.895946
https://doi.org/10.1117/1.JBO.22.5.055002
https://doi.org/10.3390/a11050073
https://doi.org/10.1016/j.jneumeth.2016.10.008
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1080/10798587.2011.10643173
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1109/TNNLS.2013.2249087
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Artificial Immune System–Negative Selection Classification Algorithm (NSCA) for Four Class Electroencephalogram (EEG) Signals
	Introduction
	Materials and Methods
	Section I–Immune System Theory
	Section II–Artificial Immune System (AIS) Theory
	Match or Affinity Measures
	Section III–Data Set Used for Study
	Section IV–Proposed Scheme
	Feature Extraction
	Feature Selection
	Dimensionality Reduction
	GA Based Optimized Negative Selection Classification Algorithm (NSCA)
	Selection of combination of neuron in hidden layers
	Detector generation and optimization
	Selection of best set of optimized detectors
	Classification of test data set



	Results and Discussion
	Conclusion and Future Work
	Author Contributions
	References


