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Abstract: Artificial intelligence (AI), a rousing advancement disrupting a wide spectrum of applica-
tions with remarkable betterment, has continued to gain momentum over the past decades. Within
breast imaging, AI, especially machine learning and deep learning, honed with unlimited cross-
data/case referencing, has found great utility encompassing four facets: screening and detection,
diagnosis, disease monitoring, and data management as a whole. Over the years, breast cancer has
been the apex of the cancer cumulative risk ranking for women across the six continents, existing
in variegated forms and offering a complicated context in medical decisions. Realizing the ever-
increasing demand for quality healthcare, contemporary AI has been envisioned to make great strides
in clinical data management and perception, with the capability to detect indeterminate significance,
predict prognostication, and correlate available data into a meaningful clinical endpoint. Here, the
authors captured the review works over the past decades, focusing on AI in breast imaging, and
systematized the included works into one usable document, which is termed an umbrella review.
The present study aims to provide a panoramic view of how AI is poised to enhance breast imaging
procedures. Evidence-based scientometric analysis was performed in accordance with the Preferred
Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline, resulting in 71 in-
cluded review works. This study aims to synthesize, collate, and correlate the included review works,
thereby identifying the patterns, trends, quality, and types of the included works, captured by the
structured search strategy. The present study is intended to serve as a “one-stop center” synthesis
and provide a holistic bird’s eye view to readers, ranging from newcomers to existing researchers
and relevant stakeholders, on the topic of interest.

Keywords: artificial intelligence; deep learning; machine learning; breast imaging; mammogram;
scientometric analysis; umbrella review

1. Introduction

Breast cancer, the first and oldest description of cancer found in history, was discovered
in Egypt in approximately 3000 BC, where the term “cancer” remains in use [1,2]. The
ancient Egyptian textbook on trauma surgery describes eight cases of ulcers or tumors
cauterized using a fire drill with the conclusion: there is no treatment [1,2]. To date,
breast cancer remains a global challenge, proclaimed as the leading mortality (cancer) with
684,996 deaths (15.5% of all cancer cases amongst women) reported across the world in
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2020 [3]. Breast cancer is the most frequently diagnosed cancer among women, regardless
of socioeconomic, geographic subgroups, race, and ethnicity [3,4] (Figure 1). Breast cancer
is a non-communicable disease that emerges in variegated forms, self-subsistent, and
interacts dynamically through an adaptive process with its microenvironment. Given this
complexity, breast imaging modalities have become a pivotal component for every stage
in cancer management, starting from the initial cancer detection, followed by accurate
demarcation of neoplastic lesions, treatment response assessment, and post-treatment
follow-up. The introduction of promising imaging modalities (e.g., mammograms) has
reshaped the landscape and horizon of cancer management. Early detection of breast cancer
using mammograms in conjunction with advanced treatment have been proven to decrease
mortality by 30.0% as of 1989 [5,6]. This finding is supported by recent incident-based
mortality and randomized trial studies finding women with mammogram screening have
a statistically significant reduction in mortality and probability of developing advanced
breast cancer by 41.0% and 25.0%, respectively [7].
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When a suspicious lesion is detected by an imaging modality, a series of cascading
clinical procedures of observation, testing, and/or empiric biopsy is initiated. According to
the standard clinical protocol, the suspicious lesions would be demarcated, distinguished
from the non-neoplastic lesion/mimicker, and classified into different cancer aggressiveness
levels. The optimal treatment is then proposed while a temporal monitor of the cancer
is performed from time to time. Although there are several exceptions (e.g., imaging
using nuclear medicine whereby quantitative measurement (i.e., metabolic activity) can be
obtained based on specific uptake value), the conventional breast imaging evaluation relies
mainly upon the qualitative features (e.g., shape, size, and density of cancer). These features
are collectively termed semantic features [8,9]. Thanks to the advancement in computational
mathematics, now, the semantic features can be modeled and quantified, collectively
forming the core tenets of radiomics [10–12]. Radiomics, also known as quantitative
imaging [13–16], is equipped with the high-throughput extraction of quantitative data,
which empowers the conversion of qualitative image features into mineable data [17–19].
As a voluminous amount of multi-dimensional data is made available via this advancement,
the efficiency and efficacy of data interpretation may pose a challenge to medical experts. To
fully utilize the extracted data as a meaningful clinical endpoint, AI could make substantial
strides in data management and data perception.

AI methodologies, particularly machine learning and deep learning, have demon-
strated remarkable improvements across multiple spectrums of application. Recently,
numerous studies have highlighted the superiority of deep learning (a subset of machine
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learning) against ground truth labels and, in some task-specific cases, surpassing the
conventional expert-oriented methods [20–25]. Despite the data-hungry nature of deep
learning, it offers comprehensive management and correlation of concentrated multivariate
data, which potentially have no limit in cross-data/case referencing. Owing to this, the
concentrated semantic data mineable from radiomics which essentially describes the radio-
graphic aspects of the breast would be an ideal scientific-rich resource for training a deep
learning model. Furthermore, deep learning allows better generalizability characteristics
across different imaging modalities, high robustness to noise, increases efficiency, reduces
the error rate, as well as enables and enriches data visualization.

At the dawn of this rousing technological advancement, this article aims to provide
a panoramic view of how AI is positioned to aid in breast imaging procedures. Over the
years, increasing interest in AI integration within breast imaging has captured the attention
of numerous researchers in surveying and reviewing such integration along different facets.
To avoid reinventing the wheel, the authors intended to connect these review works and
focus on collating and synthesizing new insights and drawing constructive conclusions
while highlighting the research gaps, challenges, and potential future direction. The idea of
investigating review work as the research object is unique. To systematize this purpose into
one usable document, an umbrella review [26,27] was adopted and aided with scientometric
analysis [28] for comprehensive qualitative and quantitative synthesis activities purposes.
This study aims to provide a brief yet broad overview alongside a holistic bird’s eye view
to the readers, ranging from newcomers to existing researchers and relevant stakeholders,
on the topic of interest.

1.1. Breast Imaging Modalities

Back in 1913, Albert Salomon, one of the pioneers of mammograms, a surgeon as well
as emeritus professor had reported his impactful monograph on the radiographic investi-
gation of mastectomy specimens. Albert Salomon’s work reveals that highly infiltrating
cancer was distinguishable from circumscribed cancer [29]. These remarkable efforts were
recommenced by Otto Kleinschmidt in 1927. Subsequently, in late 1960, a self-contained
mobile mammographic unit was first developed by Philip Strax [30]. This mammographic
unit was capable of providing mammography services to 70 women per day. To date,
mammograms remain the mainstay in breast imaging [9,31–33].

Over the years of ever-increasing demand for quality healthcare, researchers have
actively sought promising imaging modalities as adjunctive imaging modalities to comple-
ment screening outputs. The mammogram is reported with a sensitivity of 68.0%–90.0%
and approximately 62.0% for women at the age of 50 and 40–49, respectively [34]. The
sensitivity of mammography is found to decrease to 57.0% for women with dense breasts
but increased up to 93.0% for women with breasts in high adipose tissue [35]. In 2000, the
first digital mammogram, namely Senographe 2000 D was approved by the Food and Drug
Administration (FDA). Senographe 2000 D is equipped with an X-ray generator where the
image acquisition method is similar to the conventional film-screen mammogram [29]. In
later years, the digital mammogram has advanced to novel digital breast tomosynthesis
(DBT) and contrast-enhanced digital mammography (CEDM). Other promising propitious
imaging modalities (e.g., ultrasonography and magnetic resonance imaging (MRI)) are grad-
ually introduced to use as adjuncts to mammograms for breast cancer screening. Several
randomized trial studies have highlighted the applicability of these adjunctive modalities
in complementing the sensitivity of mammograms, especially in the detection of early-stage
and infiltrating cancers for asymptomatic women, regardless of breast density [36–38].
To date, within breast cancer, there are approximately 20 imaging modalities available
to improve screening sensitivity and support medical experts with assistive information.
Figure 2 summarizes the breast imaging modalities, clustered in accordance with different
sources of radiation.
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1.2. AI in Breast Imaging

The idea of critical thinking and mimicking intelligence behavior was first conceived
by Alan Turing back in 1950 [39]. The phrase “artificial intelligence” was later coined by
John McCarthy in 1956 to specifically denote the subject area of science and engineering
in machine intelligence [39–41]. Over the years, continuous exploration in AI has con-
cretely reshaped, evolved, and broadly encompassed applications in everyday life. Within
breast imaging, advancements in both computers and various imaging modalities have
synergically led to rapid progress in AI integration.

AI finds great value in cancer management, comprising four facets: screening and
detection, diagnosis, monitoring, and data management as a whole (Figure 3). Screening
is a clinical procedure to reveal radiography images of the breast using breast imaging
modalities while detection refers to the localization of objects of interest (e.g., signs of
cancer) in these images. Both screening and detection can be characterized under the
umbrella term of computer-aided detection (CADe). AI-assisted screening methodologies
have been found to improve radiography image quality and facilitate subsequent detection
and diagnosis procedures in suspicious lesions [42,43]. Although AI-based detection tools
are no more accurate than radiologists in cancer detection [44,45], CADe offers consistent
sensitivity in the detection of subtle changes, especially in indeterminate significance [46].
To date, pattern recognition algorithms and deep learning models are employed as auxiliary
aids to locate microcalcification lesions as well as support the detection of possible missing
abnormalities, which generally improve the sensitivity of suspicious lesion detection.

Diagnosis is a systematic procedure comprising the evaluation of disease etiology,
patient medical history, physical examination, diagnostic imaging, and laboratory results.
With the integration of AI, computer-aided diagnosis (CADx) offers repeatable and repro-
ducible outputs, such as staging (based on tumor, node, metastasis (TNM) classification [47])
and grading (based on Nottingham Histopathology Grading (NHG) system [48]) of breast
cancer, via systematic processing of quantitative lesion information. CADx could also be
extended to estimate prognostication in accordance with the detected ailment and predict
the possible outcomes based on the given clinical treatments. Similar to radiomics, AI has a
paramount role in interpreting imaging genomics which provides meaningful multivariate
biological information (e.g., gene expression, chromosome copy number, somatic mutation,
and relevant molecular significances). Correlating information from both of these emerging
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fields with the help of AI has great potential in complementing diagnosis output and
synergistically leads to precision medicine.
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Figure 3. Utility of AI in breast imaging: screening and detection, diagnosis, monitoring, and
data management.

Temporal monitoring of cancer has a paramount role in cancer management, especially
in the assessment of treatment response and post-treatment follow-up. The present clinical
routine in cancer monitoring using predefined metrics (e.g., tumor longest diameter) listed
by the World Health Organization (WHO) and Response Evaluation Criteria in Solid
Tumors (RECIST) provides limited information and is found insufficient to fully define
the cancer status [49,50]. AI-based monitoring, however, can provide a better correlation
of meaningful clinical data regardless of the complexity with improved capability in
capturing subtle changes over time. Although a mature AI-based monitoring system is
not yet available, the great utility and increasing roles of AI in cancer temporal monitoring
are remarkable.

In every stage of cancer management, healthcare systems are generating
multi-dimensional data creating and establishing themselves as big-data repositories. Big
data are defined as a large amount of information that grows in three aspects: volume,
velocity, and variety (known as 3 Vs), and that is unmanageable using conventional meth-
ods, such as software and/or internet-based platforms [51,52]. Big data are highly relevant
in healthcare, especially in answering clinical questions about rarity and heterogeneity
incidence, treatment patterns, and cancer prognostication. In recent years, the National
Institutes of Health (NIH) has taken initiative toward establishing electronic health records
by launching a program, namely “All of us” (https://allofus.nih.gov/) aiming to collect one
million or more patient data over the next few years. Considering the roles of managing and
analyzing big data retrospectively and predicting the potential outputs, AI is well suited to
resolve these challenges and is invaluable with great utility in meeting the requirements.

2. Systematic Literature Search Methodology
2.1. Research Question

The primary research question of this umbrella review is: “What are the patterns,
trends, quality, and types of reviews that documented AI applications in breast imaging
over the years?” The research question is intentionally formulated in a broad manner to

https://allofus.nih.gov/
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maximize the inclusion of review works describing AI applications in different breast
imaging modalities.

2.2. Search Strategy

The umbrella review is intended to include review articles over the past decades.
Thus, no date or year restriction was included in the search strategy. The systematic search
was conducted in accordance with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [53]. To identify the relevant review works, a
structured search query was first formalized using the union of keywords in two primary
facets: AI and breast imaging alongside a set of synonym terms (Table 1), aided with “AND”
and “OR” operators. AI and breast imaging were used as the primary keywords to assure
the inclusion of all umbrella terms corresponding to each keyword. For example, machine
learning, deep learning, computer vision, data science, and automation are umbrella terms
for AI. For example, all 20 breast imaging modalities are encompassed within the keyword:
breast imaging. The comprehensive search was performed in databases, such as PubMed,
Scopus, Web of Science, and Google Scholar. Once a relevant review work was identified,
the references of the corresponding review work were screened to identify new relevant
review works that had not been retrieved throughout the initial search. This process was
iterated until no new relevant review works were found.

Table 1. Search string.

Operator Dimensions Keywords, Synonyms, and Alternative Terms

AND AI artificial intelligence OR AI OR machine learning OR deep learning OR expert system
Breast imaging breast imaging OR breast imaging modality

2.3. Study Selection

To assure the quality and acceptability of the included works, only peer-reviewed
journal review articles were considered eligible. In Phase 1, books, book chapters, full-
length research articles, short communication, application notes, tutorials, masters and
doctoral theses, proceeding papers, gray literature (e.g., pre-print), non-English material,
and duplicated material were excluded. The last search performed using the structured
search query was on 16 March 2022. In Phase 2, abstract screening was first performed,
and subsequently, the remaining review works were subjected to full-text screening. The
primary inclusion criteria are: (1) the review works must describe the integration of AI
and/or any subset of AI and (2) the review works must concentrate focus on any modalities
(either one or more) within breast imaging. Review works that do not comply with the
inclusion criteria were considered irrelevant and excluded. For example, review works
reporting solely on applications of AI (or any subset of AI) in healthcare or documenting
solely the application of imaging modalities within breast cancer is not the interest of this
umbrella review. Figure 4 summarizes the PRISMA guideline alongside the exclusion
criteria of this umbrella review. Overall, 2073 review works were retrieved from the initial
search using the structured search query. In Phase 1, 181 review works were excluded,
leaving 1892 articles. Abstract screening in Phase 2 eliminated 1753 review works, leaving
139 articles. After the full-text screening, 71 review works remained and these articles were
included in the subsequent qualitative and quantitative synthesis activities.
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2.4. Assessment of Reporting and Study Quality

Quality assessment in review works is crucial and reflects capability in preparing
comprehensible and subjective reporting. Depending on the type of review, the quality
of reporting in the included review works was assessed using appraisal tools, such as A
Measurement Tool to Assess Systematic Reviews (AMSTAR) [54] and Scale for the Assess-
ment of Narrative Review Articles (SANRA) [55]. These appraisal tools provide a checklist
for the assessment and validation of reporting quality determining if the review works
are comprehensive, equipped with added values to the reader, proper referencing, and
assessing the likelihood of publication bias. AMSTAR is used to assess the methodological
quality of systematic reviews, consisting of 11 components for content validity. Whereas,
SANRA is used to assess the methodological quality of non-systematic reviews, which
consists of six components. Depending on the type of review, each component within AM-
STAR or SANRA was analyzed for each included work by two authors independently and
answered with “Yes”, “No”, “Can’t answer”, and “Not applicable” (for AMSTAR) or given
a score ranging from 0 (general low) to 2 (general high) (for SANRA). A third author is
involved, if and only if discordances are raised in the assessment of reporting quality. As a
result, the AMSTAR and SANRA results will be primarily used here to provide a summary
of the reporting quality of the included works. For this umbrella review, similarly, the
content validity, risk of bias, and applicability were assessed by two authors independently
using the AMSTAR appraisal tool.

2.5. Data Extraction

To answer the research question, qualitative and quantitative data from the included
review works were meticulously distilled in order to create a meaningful and functional
summary endpoint. Qualitative data, such as the type of imaging modalities, AI techniques,
and highlights of the included review work, were extracted, organized, compiled, and
tabulated to offer a “one-stop center” synthesis. Quantitative data, such as bibliometric
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information and co-occurrence analysis, were collated and synthesized to offer a “bird’s
eye” view of the topic of interest. The mineable data were systematized using graphics,
charts, and tables. For each included review work, information such as author name and
affiliation were manually disambiguated, e.g., “Lamb, Leslie R.”, “Lamb”, and “Leslie
R. Lamb” refer to the same author; “Harvard Medical School” and “HMS” refer to the
same affiliation. Still, subsequent quantitative synthesis activity using software such as
VOSViewer will interpret them as independent authors or affiliations if a disambiguation
step is not performed.

2.6. Data Reporting

The key findings of the umbrella review, including data analysis, qualitative, and quan-
titative synthesis were presented narratively using a descriptive approach. The analysis
was supported with graphics, charts, and tables, aiming to highlight the key features and
facilitate comprehension. Microsoft Excel 2019 was used for data compilation. VOSViewer
1.6.18 software for windows was used to perform bibliometric analysis [56]. The typology
of the included review works was illustrated using a pie chart. The most contributing
journals and publishers were illustrated using bar charts. Temporal scientometric data
were illustrated using a line chart. Geographical scientometric data were illustrated using
a world map chart. Subject area profiling was illustrated using a tree map chart. The
quality assessment was illustrated using stacked bar charts, and co-occurrence analysis
and keywords mapping were illustrated using bibliometric networks. A table was used to
systematize the qualitatively mineable data (e.g., type of imaging modalities, AI techniques,
and highlights of the included review work) from each included review work.

2.7. Threats to Study Validity

To minimize potential bias and assure study validity, in this review, a structured
methodology was adopted: (1) Study selection bias: the search activity shall comply with
the structured search query formalized in Section 2.2 and study selection criteria as in
Section 2.3. (2) Data selection bias: two authors independently performed the search
activity using the structured search query, followed by abstract and full-text screenings.
Meetings and discussions were organized to resolve disparities raised at any phase. If
necessary, a third author was engaged to draw the conclusion. (3) Functionality assessment:
a self-assessment was conducted using the adapted appraisal tool, AMSTAR, to guide and
assure the functionality of this umbrella review.

3. Results

To answer the primary research question of this umbrella review, qualitative and
quantitative data are extracted from the 71 included review works and systematized into
nine sub-sections, revealing the patterns (see Sections 3.5–3.8), trends (see Sections 3.2–3.4),
quality (see Section 3.9), and types of reviews (see Section 3.1) which documented AI
applications in breast imaging.

3.1. Typology of the Included Review Works

Figure 5 shows the typology of the included review works. The typology was assessed
in accordance with the criteria stated in [26], and classified into the traditional review,
purpose-specific review, systematic review, mixed-method review, and qualitative review.
In brief, a traditional review aims to include extensive literature with efforts made to
evaluate the quality of each included study, and to perform a high degree of analytic
description alongside critical conceptual synthesis. A purpose-specific review focuses on
identifying specific viewpoints, ideas, and/or concepts and targets to define attributes of the
viewpoints. A systematic review employs a structured search strategy, encompassing a well-
defined methodology or guideline and focusing in qualitative and quantitative synthesis
activities. A mixed-method review offers a combination of various review methodologies
but usually inclusive a systematic literature review (e.g., a combination of qualitative
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and quantitative review methodologies). A qualitative review, alternatively termed as
experiential review, encompasses qualitative data synthesis popularized within a specific
scope. According to Figure 5, the included review works constitute 66.2% (47 reviews),
16.9% (12 reviews), 8.5% (six reviews), 7.0% (five reviews), and 1.4% (one review) for
traditional review, purpose-specific review, systematic review, mixed-method review, and
qualitative review, respectively. The traditional review is found to be the most prevalent
typology here, followed by purpose-specific review and systematic review. Mixed-method
review and qualitative review are relatively scarce, corresponding to the body of the
included works. The distribution of typology is speculated to be highly correlated to
the popularity of review type amongst researchers in AI-dominant subject areas, such
as computer science and engineering, where a remarkable rise in systematic reviews
has been observed over the past five years (i.e., 2018: one review; 2021: five reviews).
Traditional review and purpose-specific reviews both show a noticeable lack of well-defined
methodology, which signals the need for structure guidelines as one of the research avenues.
Notably, the qualitative data, e.g., imaging modalities, AI techniques, and highlights of
each included review work, are systematized in Appendix A (Table A1) in accordance with
the respective typology.
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3.2. Distribution of the Most Contributing Journals

Figure 6 shows the most contributing journals publishing review articles pertaining to
AI in breast imaging. Considering the ubiquitous characteristic of the keyword: AI. In order
to avoid ambiguity, only journals with at least two review article publications are included.
According to Figure 6, journals with two review articles publication, each contributing 2.8%
towards the whole, are Ultrasonography, Journal of Magnetic Resonance Imaging, Insights
into Imaging, IEEE Access, Clinical Radiology, Clinical Imaging, and British Journal of
Radiology. Whereas journals with three review article publications, each contributing
4.2% towards the whole, are Frontiers in Oncology, American Journal of Roentgenology,
Radiology, and European Journal of Radiology. All the journals aforementioned, apart from
IEEE Access which is a multi-disciplinary engineering journal, share highly similar aims and
scope. These journals are dedicated to education and frontier strategies, typically in state-
of-the-art reviews, opinions, and research articles in oncology, radiology, nuclear medicine,
and imaging. Interestingly, over the years, amongst the most contributing journals, none
were from AI-oriented journals, such as IEEE Transactions on Pattern Analysis and Machine
Intelligence. It is reasonable to conclude that the review works in AI in breast imaging are
heavily skewed towards the keyword: breast imaging, where AI technology is viewed as a
rousing advancement that offers betterment in various aspects in the field of interest.
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3.3. Distribution of the Most Contributing Publishers

To assure an unbiased data selection, the structured search query was performed on
general databases, such as PubMed, Scopus, Web of Science, and Google Scholar, in lieu
of search engines provided by specific publishers, such as ScienceDirect, SpringerLink,
and Multidisciplinary Digital Publishing Institute (MDPI). Figure 7 shows the most con-
tributing (top five) publishers of review works pertaining to AI in breast imaging. Overall,
21 publishers were retrieved. Elsevier appeared to be the most contributing publisher on
the topic of interest, contributing 26.8% (19 review articles), followed by Springer (19.7%,
14 review articles), MDPI (8.5%, six review articles), and Wiley (5.6%, four review articles).
Frontiers, ARRS, Taylor & Francis, RSNA, and IEEE each contributed 4.2%, equivalent to
three review articles. Overall, the publishers demonstrate an oligopoly relationship on the
topic of interest, with predominance held by Elsevier and Springer. This finding is aligned
with a previous study that focused on scientometric analysis publications sampled across
multivariate topics from 1973 to 2013 [57]. The oligopoly relationship, typically between
Elsevier and Springer in the global publishing industry, is speculated to remain similar
across different topics. Evidence of this is found in a recent report analyzing bibliograph-
ical information of publishers [58] as well as in a recent systematic review in precision
agriculture [59]. In recent years, pressure from various stakeholders has led to research
transformation from closed access to open access. Open access journals are observed
with an increase in normalized impact factor and average relative citations [60], which
together are the elemental factors (statistically significant) influencing publication tendency
amongst researchers [61]. Publishers, such as Elsevier, Springer, and MDPI, are making
swift progress in transforming journals to open access. For example, in 2017, Elsevier indi-
cated their intention to make the journal transition and work towards the principles behind
the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3) as
well as to construct alternative access models tailored according to different geographical
needs. For example, Springer is committed to accelerating the adoption of open access by
complying with the institutional open access agreement. For example, MDPI was one of
the pioneers in open-access scholarly publications as of 1996.
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3.4. Temporal Scientometric Analysis

Figure 8 shows the temporal scientometric analysis of the included review works.
As mentioned in Section 2.2, no date or year restriction was included in the structured
search query. According to Figure 8, review articles complying with the structured search
query could be traced back as early as 2007 (one review article), which was published in La
Radiologia Medica, Springer. Despite significant progress in understanding the theoretical
underpinnings of AI having begun in 1956, to incorporate in the medical domain, e.g.,
breast imaging, a number of validations and hurdles must be first overcome. Notable
research interest in the publication of review articles is observed only after a decade (i.e.,
2018) from the first review article in 2007. This observation could be attributed to the
increased reliability and utility of AI across multiple non-medical spectrums, indirectly
gaining trust and level of acceptance of AI reliability amongst medical experts. In the
ever-increasing demand for quality healthcare, the “one-size-fits-all” approach is no longer
valid. Progress in medical domains, such as breast imaging, is moving towards precision
medicine. In recent years, researchers have actively sought rigorous clinical proof of AI
utility in breast imaging and progressively made concerted attempts to push AI technology
from pilot tests to validation in clinical trials, aiming to apply it as a fundamental segment in
the standard clinical protocol. The blue dotted line in Figure 8 shows the overall publication
trendline. Overall, a linear increment is observed across 15 years (i.e., 2007 to 2022).
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3.5. Geographical Scientometric Analysis

Figure 9 shows the geographical scientometric analysis of the included review works.
For each review article, only the geographical information of the corresponding author
is retrieved. For articles with more than one corresponding author, each geographical
information is allowed to contribute once to the scientometric analysis. According to
Figure 9, the United States appeared to be the most contributing country summarizing
research works pertaining to AI in breast imaging as of 2014, corresponding to 33.8%
(24 review articles) of the entire body of literature. This is followed by China (contributing
9.9%, seven review articles); India, Italy, and the United Kingdom (each contributing 5.6%,
four review articles); Australia (contributing 4.2%, three review articles); and Austria, Japan,
Korea, Malaysia, and Pakistan (each contributing 2.8%, two review articles).
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To gain a holistic overview of the captured geographical information, a top-down
co-authorship bibliographic analysis is performed, analyzing three aspects on a cascading
level: country (Figure 10), affiliation (Figure 11), and author (Figure 12). Co-authorship is a
commonly used operational proxy in studying research collaboration (researcher oriented)
as of 1980 [62]. Briefly, in Figures 10–12, each item is represented using a label and a
node. The size of the label and node reflects the weight of the specific item, such that the
higher the weightage, the larger the label and node. The color of the node reflects a local
cluster, connected using lines that are termed links. The shorter the links, the stronger the
relatedness of both items.

According to Figure 10, the United States has the strongest link strength across 42 coun-
tries, attaining a value of 21, followed by the United Kingdom (total link strength of 17),
Malaysia, Netherlands, and New Zealand (each with a total link strength of six). There are
15 local clusters found in the country’s co-authorship network. Interestingly, nine small
local clusters were found isolated from one another, forming a local network with fewer
than two countries. The six connected clusters are highlighted in Figure 10. The United
States has a strong relationship with countries, such as the Netherlands, Canada, and the
United Kingdom. This could be attributed to efforts by government agencies, such as the
National Institute of Health (NIH), in promoting medical research and supporting scientific
studies in the medical division.
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According to Figure 11, the Harvard Medical School appeared as the affiliation with
the strongest total link strength of 15, a predominance across 162 affiliations. A total of
52 local clusters are found in the affiliation co-authorship network, such that 49 local clusters
are isolated from one another. The remaining three connected clusters are highlighted
in Figure 11. Amongst the connected clusters, Harvard Medical School has the highest
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connectivity weightage with a close relatedness to MIT Lincoln Laboratory, forming a small
local cluster with only two affiliations.

According to Figure 12, the author, namely Li J. has the strongest total link strength
with a value of 23, followed by Giger M.L., Gillies R.J., and Schabath M.B., each with a total
link strength of 19. A total of 327 authors are found in the author co-authorship network,
forming 54 clusters. Amongst the clusters, only three clusters are inter-connected and are
highlighted in Figure 12.

It is undeniable that research collaboration greatly improves scientific findings and
jointly concerted efforts in resolving complex engineering problems. International collabo-
ration for AI integration in breast imaging is below expectations, however. Based on the
network analysis, in a broad view, a high number of isolated local clusters reflects a low
rate of international collaboration on the three cascaded levels, which indicates the need
for efforts in nurturing multinational collaboration, establishing global resources, as well
as knowledge sharing for the mutual good in resolving world health issues.

3.6. Bibliographic Coupling Network Analysis: Country

Bibliographic coupling, like co-authorship, however publication oriented, inherits the
benefits of recommending relevant works. When a common work is cited as a reference
in two documents, they are thus bibliographically coupled [63]. Here, a strong total link
strength reflects a high number of common works cited as references in the respective
review article. Figure 13 shows the bibliographic coupling network, analyzed at the country
level. According to Figure 13, the United States has the strongest total link strength, with a
value of 646, followed by the United Kingdom (total link strength: 630), China (total link
strength: 357), Australia (total link strength: 329), and South Korea (total link strength: 328).
A total of 21 clusters are found across 42 items, such that 13 local clusters are isolated from
one another. The eight connected clusters are highlighted in Figure 13. Notably, the top
five countries with the strongest total link strength are within the eight connected clusters,
alongside other remarkable items (e.g., Singapore, Malaysia, Italy, and France), creating
local networks and subsequently local clusters.
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3.7. Subject Area Profiling

Figure 14 shows a tree map profiling the subject areas of the included review works,
distilled across 56 journals in accordance with the Scopus database. Importantly, journals
can be indexed in one or more subject areas, positioned in accordance with the aims and
scope of the journal. For example, CA: A Cancer Journal for Clinicians is a single subject
area, and a medical research-oriented journal focuses only on medicine. For example,
Sensors is a multi-disciplinary journal indexed across five distinct subject areas: Physics and
Astronomy, Engineering, Computer Science, Chemistry, as well as Biochemistry, Genetics,
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and Molecular Biology. According to Figure 14, most of the journals are within the subject
areas of Medicine (76.8%, 43 journals), followed by Computer Science (21.4%, 12 journals),
Engineering (17.9%, 10 journals), Biochemistry, Genetics, and Molecular Biology (17.9%,
10 journals), and Physics and Astronomy (10.7%, six journals). The subject areas collated
are plausible and aligned with the finding in Figure 6, such that the most contributing
journals pertaining to AI in breast imaging are within the medical division and are biased
towards the keyword: breast imaging.
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3.8. Keywords Co-Occurrence Network

Figure 15 shows the keywords co-occurrence network distilled from the included
review articles, which impart the trend and focus of the scientific interest within AI in
breast imaging over the past decades. The network constitutes 150 items, creating 18 local
clusters, and is dominated by AI and its umbrella terms. AI, deep learning, and machine
learning exhibit the strongest total link strength with values of 143, 112, and 91, respectively,
followed by breast cancer (total link strength: 76) and mammogram (total link strength:
38). According to Figure 15, although various adjunctive breast imaging modalities (e.g.,
ultrasound, MRI, thermography, PET, and CT) have been studied every so often, mammo-
gram, however, remains the focal point for AI integration. From a broader perspective,
Figures 6 and 15 together reveal the researchers’ proclivity towards the publication of their
review works, such that the options of journals and keywords are respectively breast
imaging and AI-oriented.
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3.9. Quality Assessment of the Included Review Works

Figures 16 and 17 depict the stacked bar charts for quality assessment of the included
review works, constituting six systematic reviews and 65 non-systematic reviews using
AMSTAR and SANRA appraisal tools, respectively. According to Figure 16, on AMSTAR
adherence, a majority of the included systematic reviews scored “yes” ratings on eight
out of 11 AMSTAR components. Only two included systematic reviews were rated “yes”
for Item 1 [64,65] and one systematic review [64] was rated “yes” for both Items 4 and 10.
Overall, the included systematic review works demonstrate promising relevance, capable
to extract and synthesize data from the available evidence, with a guided methodological
reporting procedure to formalize findings. Nonetheless, a low number of reviews found
reporting data in Items 1 (“priori” design assessment), 4 (inclusion criteria assessment), and
10 (publication bias assessment) flagged the need for extra priority in reporting these items
as part of the future research avenue. According to Figure 17, on SANRA adherence, most
of the included non-systematic reviews attained “score 2” ratings on four out of six SANRA
components. For Item 2 (aims and formulation of questions assessment), 28 reviews were
rated as “score 2”, alongside 34 and three reviews were rated as “score 1” and “score 0”,
respectively. For Item 3 (literature search assessment), only 11 reviews were rated “score
2”, followed by four, and 50 reviews were rated as “score 1” and “score 0”, respectively.
As aforementioned, the non-systematic reviews have a noticeable lack of well-defined
methodology. Here, the quality assessment outcomes further support this statement,
reflected by a low number of data reports in Items 2 and 3, which specifically assess the
structure of review methodology, from the research question formalizing and data sourcing
perspectives. The full quality assessment scoring tables for each included review work
using AMSTAR and SANRA are available in Appendix A (Tables A2 and A3, respectively).
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4. Self-Assessment, Limitations, Challenges, and Future Direction
4.1. Self-Assessment

The present study focuses on the scientometric analysis of an umbrella review on
the topic pertaining to AI in breast imaging over the past decades. Structured review
methodological procedures were adopted to collate and formulate findings revealing
patterns, trends, quality, and types of the included review works in the topic of interest.
The search strategy, publication threat, and methodologies, such as PRISMA guidelines,
were adopted and detailed in Section 2. AMSTAR appraisal tool was used to study self-
assessment in view of the face and content validity (Table 2). According to Table 2, the
present study scored “yes” for all 11 AMSTAR components. To support the self-assessed
AMSTAR rating, justifications were given for each AMSTAR component, as recommended
by [66]. Here, within review works, the authors advocate the inclusion of study self-
assessment as a fragment of the structured review methodological procedures. Quality
assessment is a crucial instrument to assure the relevancy of the review work toward the
topic of interest while avoiding possible bias and examining the face and content validity.



Diagnostics 2022, 12, 3111 18 of 35

Table 2. Study assessment on this umbrella review using AMSTAR appraisal tool.

Item Description Rating Justification

1 Was an ‘a priori’ design provided? + Yes, the research questions and inclusion criteria
are provided in Sections 2.1 and 2.3, respectively

2 Was there duplicate study selection and data extraction? + Yes, excluded as detailed in Figure 4
3 Was a comprehensive literature search performed? + Yes, as detailed in Section 2.2

4 Was the status of publication (i.e., grey literature) used as an
inclusion criterion? − No, inclusion criterion is provided in Section 2.3

5 Was a list of studies (included and excluded) provided? + Yes, provided in Appendix A
6 Were the characteristics of the included studies provided? + Yes, provided in Appendix A

7 Was the scientific quality of the included studies assessed
and documented? + Yes, as detailed in Section 3.9

8 Was the scientific quality of the included studies used appropriately
in formulating conclusions? +

Yes, the scientific quality of the included review
works from different perspectives were
considered (Section 3). Recommendations and
future direction are provided in Section 4.3

9 Were the methods used to combine the findings of
studies appropriate? + Yes, as detailed in Section 2.6

10 Was the likelihood of publication bias assessed? + Yes, as detailed in Sections 2.7 and 4.2
11 Was the conflict of interest stated? + Yes, as detailed in the Conflicts of Interest Section

+: Yes; −: No.

4.2. Limitation

The findings of this umbrella review are subjected to several limitations. First, only
review works made available in full text using the English language were included for the
subsequent synthesis activities. This could possibly introduce bias to the analysis outputs,
describing the patterns, trends, quality, and types of review work within the dedicated
scope. Second, as detailed in Section 2.3, review articles solely describing AI application (or
any subset of AI) in healthcare or solely reporting the application of various breast imaging
modalities were not within the interest of this umbrella review. As a result, review articles
that offer emerging AI with potentially useful insights and utility in breast imaging may
be excluded. Third, review works that were not populated by databases such as PubMed,
Scopus, Web of Science, and Google Scholar were not included in the synthesis activities.

Moving toward precision medicine, AI finds great utility in assisting medical experts in
every stage involving clinical decisions. As technology continues to develop in concert with
advances in engineering, mathematics, and computer science, AI has emerged as one of the
primary research areas at rapid rates. Although patterns, trends, and progress pertaining to
AI in breast imaging are expected to evolve in the near future, the scientometric findings of
this umbrella review continue to be viable and reflect the current state of research globally
over the past decades. The umbrella review complies with a comprehensive search strategy
using structured methodology such as PRISMA (Section 2.2), delineates study inclusion
criteria (Section 2.3), and scrutinizes the threats to study validity (Section 2.7), alongside a
self-assessment using AMSTAR.

4.3. Challenges and Future Direction

Over the years, AI has been advocated in breast imaging as a potential game-changer
to meet the long-standing, constantly rising demand for high-quality healthcare, typically
in precision medicine. Despite all of the reported successes, a number of obstacles and
bottlenecks must be surmounted prior to the widespread clinical adoption. Breast imaging
procedure generates medical images for diagnosis purposes and is rarely curated with
labels, demarcation, and delineation of cancerous, non-cancerous, and microcalcification
regions. Data curation is exorbitant in terms of both time and cost, requiring meticulous
effort from experienced medical experts. This remains the core challenge in automating
standard clinical procedures, exacerbating the adoption of data-hungry AI in cross-case
referencing. Although methods, such as semi-supervised [67] and unsupervised [68]
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algorithms, could potentially alleviate this challenge, other barrages, such as data imbalance,
are inevitable. Considering the plethora of breast imaging modalities, standardization in
the ground truth and benchmarking is crucial for generalizability purposes in AI, typically
across different ground truth providers. To date, within breast imaging, the volume of
scientific-rich resources made available for training purposes is encouraging [69]. However,
the accessibility and amount of curated data are in a stagnant paradigm [70]. Concerted
efforts from various parties, including government, clinical institutions, and universities,
should be encouraged to foster the integration of AI in breast imaging.

From a regulatory standpoint, the FDA has regulated AI-assisted automated systems
since the 1990s [71]. The accuracy, robustness, and generalizability of AI systems are
enduring concerns. The AI systems are expected to cogently demonstrate consistent
and persistent applicability before obtaining clearance from the respective regulatory
bodies. As aforementioned, healthcare systems are now establishing themselves as big-data
repositories. Running AI architectures, such as neural networks, across big data would
profoundly offer comprehensive cross-data/case referencing. This, however, flagged
data privacy and security concerns. Compliance with the data privacy and security acts
necessitates solutions, such as cryptonets [72], where homophobic encryption allows the
neural networks to perform data training over encrypted data. AI has challenged the
patent system in light of patent law, which presumes that inventors are human [73]. If
the intellectual property (IP) resultant from AI, which could be life-saving and beneficial
within the medical imaging context, is not patentable, investors may lose interest or be less
incentivized to fund projects with AI-oriented inventors leading to nationwide depletion
of AI research.

Miseducated AI algorithms could violate ethical standards, corrupt morality, signal
ethical dangers, and cause severe harm, in addition to aggravating societal medical pres-
sure [74,75]. For example, when using cost as a proxy for healthcare requirements, AI
falsely recognized that black patients were healthier than white patients who equally suf-
fered from the same sickness, as fewer medical costs were spent on black patients [76]. For
example, white patients were measurably given better care than black patients who were in
comparable situations [77]. The AI algorithm could be unethical by design, mirrors uncon-
scious racism, thoughts, and biases within the developers, and is further complicated and
exacerbated by the tension between opting for optimal healthcare or medical profit [77,78].
Moreover, the AI algorithm is inherently objective in nature, with characteristics acquired
from historic training data representing specific patient cohorts. Thus, under-represented
cohorts may be afflicted by inaccurate diagnoses. The fairness of AI must be given priority.
Adding more data and careful parameter fine-tuning may not be plausible as vulnerable
groups, especially the under-resourced cohorts would be unrepresented.

To date, AI systems are likely to exhibit a “black box” characteristic, which lacks
interpretability, explainability, and transparency, which, in totality, hinders trust in AI
systems [9,79]. Trust in AI systems is crucial, reflecting the user’s level of acceptance of the
clinical outcome provided by the AI systems [80]. The AI systems in breast imaging should
be equipped with scientific reasons behind a clinical outcome and help the user decipher
the underpinning factors. To keep healthcare affordable, AI should not be meant to prevent
medical experts from making occasional mistakes, but to fully automate certain procedures
that are currently performed by medical experts. Ultimately, AI in breast imaging should
increase clinical productivity while avoiding unnecessary increases in healthcare costs.

Although AI can detect ailments and auxiliary findings that may be clinically benefi-
cial, these findings may also be clinically irrelevant. During the clinical transition stage,
the findings from AI shall be carefully distilled and interrogated by medical experts, evalu-
ating relevance to avoid unnecessary increases in patients’ tension, healthcare costs, and
unwanted side effects while improving AI robustness and applicability. Over time, as AI
systems attain maturity, the findings from AI could be incorporated as part of the standard
reporting procedure for diagnostic and prognostic purposes. Medical experts can now
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perform continuous temporal assessment and quality assurance on the AI systems, such as
AI quality improvement (AI-QI), as suggested in [81].

AI in breast imaging is a complex problem, complicated and embodies cross-disciplinary
collaboration and cross-topic knowledge. To ensure the long-term success of AI integration
within breast imaging, it is imperative that experts from diverse scientific backgrounds
work together. Recently, convergence science has emerged as one of the research models
for tackling such complex challenges [82,83]. Convergence science is an active area, and
its definition is evolving over time. Nonetheless, a general consensus has been reached
such that convergence science is not simply a set of experts meeting one another, but over
time, the experts absorb knowledge from one another, breakthrough the respective silos of
knowledge, reshape research mindsets, complement respective research experiences, and
ultimately foster the development of new solutions [82].

From a broader perspective, breast imaging should not be an isolated measure of can-
cer. Core and incidental reporting on measures, such as molecular signatures, biomarkers,
the nature of cancers, environmental factors, socioeconomic status, and social network
settings, shall be considered. AI in breast imaging should be seen as one of the fundamental
measures, alongside other computer-aided systems (e.g., wearable sensors and medical
expert systems), to be integrated for the improvement of outcome predictions in both breast
cancer diagnostic and prognostic stages.

Widespread AI adoption in breast imaging is complicated by multiple factors, and this
issue contemplates the acquisition of funding, leadership, sustainable mechanisms, and
awareness among medical practitioners. Adequate funding is not always available; and
even if such funding exists, the funding utilization is likely suboptimal with ineffective
practices across multiple sectors. The right leadership is required to advocate for, manage,
and oversee the implementation of AI in breast imaging. To promote the widespread
adoption of AI in breast imaging regardless of geography or socioeconomic status, poli-
cies, procedures, and guidelines must be developed and nationwide infrastructure (e.g.,
computer systems and internet access) must be evaluated.

5. Summary

While algorithms across a broad spectrum of breast imaging applications have demon-
strated potential, AI has emerged as the dominant research paradigm, with compelling
utility converging towards precision medicine and automatic triage. Integration of AI in
breast imaging is flourishing and is anticipated to continue. In this formal scientomet-
ric umbrella review, the authors examined the patterns, trends, quality, and types of the
included review work from the past decades in an effort to provide a concise but compre-
hensive overview of the topic of interest. This scientometric umbrella review functions as a
scientific, scholarly communication, evaluates the level of consensus, identifies research
gaps, highlights challenges, and provides commentary on the future direction of the field.
For newcomers to the field, the scientometric umbrella review provides a holistic and
timely overview, offers valuable insight into the intellectual landscape, understanding
the development of literature, and highlights the road ahead. For existing experienced
researchers, the scientometric umbrella review serves as an instrument for keeping their
knowledge updated, especially in identifying research areas that are potentially relevant
but beyond their immediate research topic. For relevant stakeholders, the scientometric
umbrella review can be used to prioritize research and project funding to benefit areas that
require impactful and immediate solutions through AI integration within breast imaging.
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Appendix A

Table A1 shows the qualitative data distilled from each included review work.
Tables A2 and A3 show the AMSTAR and SANRA rating for each included review
work, respectively.

Table A1. Qualitative data distilled from each included review on imaging modalities, AI techniques,
and the corresponding review highlights.

No. References Imaging
Modalities AI Techniques Cited By * Highlights

Traditional Review

1 [84] Thermography CNN 21

• Summarize the recent progress in
breast cancer detection based on
optical imaging (i.e.,
thermography) CNNs

• Application of deep neural networks
for breast thermogram classification

• Future works in development of
datasets, feeding the segmented
image, assigning good kernel, and
construction of a lightweight CNN
model to enhance the
CNN performance

2 [85] Thermography

ANN: RBFN, KNN, PNN,
SVM, ResNet50,
SeResNet50,
V Net, Bayes Net, CNN,
C-DCNN, VGG-16,
Hybrid (ResNet-50 and
V-Net), ResNet101,
DenseNet,
and InceptionV3

11

• Comprehensive review on related
progress with AI in optical imaging
(i.e., thermography)

• Highlight the contributions and
limitations of each study

• Identify research gap
• Identify bottlenecks of ANN in

breast thermography

3 [86] X-ray, CT, ultrasound, MRI,
nuclear, and microscopy Deep learning 38

• Summarize different medical
imaging technologies

• Highlight the need of efficient
medical data
management techniques

• Summarize the advent algorithms
for disease classification and
organ/tissue segmentation using
AI methods

4 [87] Mammogram, ultrasound,
and MRI

Machine learning and
deep learning 1

• Summarize the AI application in
mammogram, ultrasound, and MRI

• Discuss the challenges and road
ahead of AI in medical imaging

5 [88] Mammogram, ultrasound,
MRI, FDG PET/CT

Augmented intelligence
and machine learning 16

• Comprehensive overview on
augmented intelligence in different
breast imaging modalities
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Table A1. Cont.

No. References Imaging
Modalities AI Techniques Cited By * Highlights

6 [89] Mammogram,
ultrasound, MRI,

Machine learning, CADe,
ANN, CNN, and NLP 36

• Discuss the potential of AI in
breast imaging

• Identify the limitations and
bottlenecks of AI application

7 [90] Mammogram and ultrasound Machine learning 1

• Summarize the essential elements in
data engineering, typically
preparation of data for machine
learning application

• Comprehensive review on
databases, perspective, data
integrity, and characteristic of a
good data in the context of machine
learning application

8 [91] Thermography and electrical
impedance tomography

Machine learning
and CADe 15

• Summarize the background,
technical characteristics of machine
learning techniques and CADe in
thermography and electrical
impedance tomography

• Identify the methods to enhance
global performance

• Highlight recommendations for 3D
breast simulation, pre-processing
techniques, as well as relevant
biomedical modality that has the
potential in tumor localization and
tumor size prediction

9 [92]
Transillumination imaging,
diffuse optical imaging, and
near-infrared spectroscopy

Machine learning 13

• Comprehensive review on
applicability (i.e., diagnostic ability
and practical deployment) of the
new spectroscopy techniques in
discrimination of normal and
cancerous tissue

10 [93]

Mammogram, Tomosynthesis,
ultrasound, DBCT, MRI, DWI,
CT, NIR fluorescence,
and SPECT

SVM, ANN, and robotics 6
• Overview on past and present AI

methods in different breast cancer
diagnostic imaging modalities

11 [94] PET and MRI Fuzzy logic and
neural network 26

• Summarize recent progress, key
strengths, and weakness of
PET/MRI in cancer imaging

12 [9] Mammogram, tomosynthesis,
DCE-MRI, and ultrasound CADe and CADx systems 449

• Comprehensive state-of-the-art
review on AI approaches in medical
imaging for four tumor types: lung,
brain, breast, and prostate

• Identify the common clinical
problem in medical imaging

13 [95] MRI

Analytical
radiomic-based
(human-engineered)
and deep
learning-based CADe

44

• Discuss the goal of AI in the context
of breast cancer imaging, typically
in MRI

• Review on current progress,
potential application, and
limitations of AI in breast MRI
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Table A1. Cont.

No. References Imaging
Modalities AI Techniques Cited By * Highlights

14 [96] MRI Machine learning and
deep learning 4

• Discuss the current progress and
future perspective of AI in
breast MRI

• Highlight the importance of
developing quantitative imaging
biomarkers for precision medicine

• Discuss potential of machine
learning and deep learning in
breast MRI

• Discuss the future challenge of deep
learning in the context of breast MRI
and recommend AI-augmented
clinical decision techniques

15 [97] MRI
3D printing, augmented
reality. Radiomics, and
machine learning

12
• Discuss the role of breast MRI in

detection of DCIS with the aid of
AI approaches

16 [98] Mammogram, ultrasound,
and MRI

ANN, CNN, CADe,
and GANs 0

• Comprehensive review on insight,
impact, and role of AI in
breast imaging

17 [99] Mammogram

Machine learning
(supervised,
unsupervised,
reinforcement, and
deep learning)

6
• Highlight and discuss key

terminology, concepts, and common
AI models in breast imaging

18 [100] Mammogram and DBT Deep learning 89

• Comprehensive review on current
progress and head ahead of the
AI-based clinical application in
mammogram, DBT, and radiomics

19 [101] Ultrasonography CNN 9
• Current progress and potential

application of AI models in
breast ultrasonography

20 [102] Mammogram, ultrasound,
and MRI Deep learning and CADe 32

• Comprehensive review on
state-of-the-art deep learning
methods in mammogram,
ultrasound, and MRI

• Discuss the challenges and
bottlenecks which may impinge the
advancement and integration of AI
in clinical imaging workflow

21 [103] Mammogram Machine learning
and radiomics 19

• Discuss the CEM technique,
screening, and diagnostic uses, and
future applications with AI
and radiomics

22 [104]
Mammogram, sonography,
MRI, and
image-guided biopsy

Deep learning
and radiomics 2

• Recent progress and potential value
of digital analysis in breast imaging

23 [105] Mammogram, ultrasound,
PET, and MRI

ANN, SVM,
and radiomics 1

• Discuss key concept, state-of-the-art
studies, and potential clinical use
cases in breast imaging
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Table A1. Cont.

No. References Imaging
Modalities AI Techniques Cited By * Highlights

24 [106] Ultrasound Deep learning 5

• Discuss recent progress of deep
learning in ultrasound imaging

• Discuss the workflow enhancement,
typically on view recognition, image
quality assessment, scanning guide,
and quantification

• Recommend future perspective of
deep learning in imaging workflow

25 [107] Mammogram and ultrasound Eye tracking tool
and CADe 10

• Highlight the importance of visual
search in breast imaging

• Identify the underlying reasons for
diagnostic error in breast imaging

26 [108] Mammogram
CADe, CADx, machine
learning, deep learning,
and CNN

48

• Review of recent progress of AI
approaches in breast imaging

• Commentary on AI in medical
diagnostic imaging

27 [109] Mammogram and
tomosynthesis Deep learning 0

• Synthesis recent progress of AI in
mammography analyzing the risk in
breast cancer

• Highlight the key priority,
challenges, and future prospective of
AI application in clinical workflow

28 [110] Nuclear medicine Deep learning
and radiomics 1

• Introduce the basic design of
neural network

• Review of influential works,
strengths, and limitations of deep
learning approaches as compared to
the conventional approaches

29 [111]
MRI, CT, PET, SPECT,
ultrasound, tomosynthesis,
and radiology

Neural network, deep
learning, and
machine learning

227

• Discuss the basic terms of AI (e.g.,
machine and deep learning) and
analyze the integration of AI
in radiology

30 [112] Mammogram, ultrasound,
MRI, and tomosynthesis

ANN, CADe, CADx,
CNN, deep learning, and
machine learning

8

• Overview on current application of
deep learning approaches in
breast radiology

• Identify and highlight the challenges
and research gap of AI application
in breast radiology

31 [113] Mammogram, ultrasound,
and MRI Deep learning 5

• Review of current knowledge and
future prospective of AI-enhanced
breast imaging modalities in
clinical workflow

32 [114] Mammogram,
ultrasound, MRI

SNN, SDAE, DBN,
and CNN 2

• Review on state-of-the-art AI
approaches in the last decade to
detect breast cancer using different
breast imaging modalities

33 [115] Mammogram, ultrasound,
MRI, and tomosynthesis

Deep learning and
AI-CADe 79

• Review the current limitations and
future prospective of AI-CADe in
breast imaging
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Table A1. Cont.

No. References Imaging
Modalities AI Techniques Cited By * Highlights

34 [116] Tomosynthesis, CT, and FDG
PET/CT ANN, DNN, SVM 84

• Review the recent progress and
strength of AI applications in cancer
diagnostic and prognostic

• Identify how AI technology can
improve cancer diagnostic and
prognostic from the
clinical perspective

35 [117] Ultrasound Machine learning and
deep learning 8

• General overview on the context of
AI, machine learning, and deep
learning technologies

• Review of current progress in deep
learning technologies and highlight
future perspective, challenges, and
research gap of biomedical AI
systems in ultrasound

36 [118] Mammogram, tomosynthesis,
ultrasonography, and MRI

CADe, radiomics, IoT,
and machine
learning tools

17

• Critical review on advent methods
for screening, diagnostic, staging,
grading, molecular, and
genetic biomarkers

• Highlight the interdisciplinary key
terms of such methods for scientists
and physicians

37 [119] Mammogram and CT Deep learning, CADe 6

• Highlight major areas in oncology
imaging with great potential of
AI application

• Identify potential bottlenecks of
AI application in oncology imaging

38 [120] Mammogram, ultrasound,
PET, CT, and MRI CADe, ANN 127

• Outline the progress of AI and
CADe in general clinical imaging

39 [121] Ultrasound CADx 20

• Highlight recent progress in CADx
in breast ultrasound

• Recommend future direction of
CADx in breast ultrasound

40 [122] Mammogram, ultrasound,
MRI, and thermography

Machine learning, deep
learning, and CADx 42

• Highlight new application of deep
learning and machine learning
approaches in detection and
classification of breast cancer and
outline the overview of
such progress

• Review different breast imaging
modalities and correlate these
modalities with AI

41 [123] Mammogram Radiomics 0

• Highlight the potential role of
radiomics in mammography

• Identify the bottlenecks and research
gap of such application

42 [124] MRI and DCE-MRI Radiogenomics 0

• Review multidimensional mining
algorithms in the context of MRI
radiogenomics for CADe and CADx
of breast tumors
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Table A1. Cont.

No. References Imaging
Modalities AI Techniques Cited By * Highlights

43 [125] Tomosynthesis, MRI,
ultrasound, MBI

Machine learning
and CADx 3

• Review the current progress in
imaging of high-density breast for
diagnostic of breast lesions

44 [126] Thermography SVM, ANN, and CADx 42

• Review of recent advances,
recommendation, and road ahead
for detection of breast cancer using
infrared thermography

45 [127] Mammogram AI-CADe 62

• Review of past, present, and future
role of AI in medical imaging

• Highlight the challenges of AI
application in imaging

• Highlight the role of AI-CADe
with PACS

46 [128] Mammogram and MRI CNN 1
• Highlight the fundamental in AI and

its application in medical
imaging analysis

47 [70] General breast imaging Machine learning, ANN,
deep learning 11

• Explore the evaluation and use of AI
in breast imaging

• Explore the application of AI in
breast imaging from the ethical,
technical, and legal perspective

Purpose Specific Review

48 [129]
Mammogram, ultrasound,
SWE, SWV, and
sonoelastography

CADx, SVM, CNN,
LASSO, and
ridge regression

4

• Highlight the functions of
ultrasomics and its capability in
disease diagnostic (precision
medicine) in different organs

• Highlight the limitations, challenges,
and opportunities in
ultrasomics application

49 [130] Mammogram, ultrasound,
and MRI

Deep learning
and radiogenomics 13

• Highlight the functions and
integration process of radiogenomics

• Remark the strategies and relevant
algorithms in such application

50 [131] Mammogram, ultrasound,
and tomosynthesis

Machine learning and
deep learning 54

• Highlight the functions and role of
AI in early detection of breast cancer

• Highlight the readiness of AI in
breast cancer imaging

51 [132] EIT
PSO, ANN, GA, and
other machine learning
algorithms

44
• Highlight the functions and roles of

EIT and its application with AI

52 [133] DOT Deep learning 3
• Highlight the roles, background,

and relevant tools of AI in DOT

53 [134] Ultrasound Deep learning 2

• Highlight the roles of AI in cancer,
dermatology, cardiology, respiratory
problems, neurodegenerative
disorders, and gastroenterology

54 [135] PET/CT and PET/MRI Radiomics 16
• Highlight the solutions and

challenges of radiomics application
in hybrid PET/CT and PET/MRI
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No. References Imaging
Modalities AI Techniques Cited By * Highlights

55 [136] Mammogram CADe and CADx 28
• Highlight the roles of CADe and

CADx in mammography

56 [137] Mammogram, ultrasound,
DBT, and MRI

Deep learning, CADe,
and CADx 3

• Highlight the functions of AI
applications in medical tasks and
reasons for AI to be classified as a
medical device

• Review the functions of CADe and
its sub-elements

• Outline the FDA process in
approving the CADe software

57 [138] Ultrasound CADe and CNN 0
• Highlight the variation of

ultrasound for dense breast imaging
amongst average risk women

58 [139] Thermography SVM, ANN, BN, CADe,
CNN, and GA 0

• Highlight the roles of AI in
thermography for early detection in
breast cancer

59 [140] Thermography ANN 13

• Highlight the roles of infrared
thermography in breast imaging
associated with clinical evidence
that favor and unfavored
such application

• Outline the historical timeline of
infrared thermography

Systematic Review

60 [141]
Mammogram, ultrasound,
MRI, DBPET, DWI, PWI, CT,
PET/CT, and PET/MRI

Radiomics, machine
learning, and
deep learning

5

• Analyze and compare the
conventional and advent breast
imaging techniques

• Highlight the roles and future
perspectives of advent breast
imaging techniques in prediction of
the response to NAC

61 [142] Thermography SVM, ANN, DNN, and
RNN 81

• Analyze and compare the studies in
breast cancer detection using CADe
and deep learning models

62 [143] Mammogram, CT, and MRI Machine learning, deep
learning, and ANN, 1

• Analyze the potential of AI in
medical imaging

• Discuss the methodology,
application, limitations, challenges,
and future perspective in radiology

63 [144] Mammogram, ultrasound,
CT, and MRI Deep CNN 2

• Systematic review of current
progress and state-of-the-art
methods in intrafractional target
motion management in breast cancer
radiation therapy

64 [65] Mammogram, DCE-MRI Machine learning and
deep learning 3

• Systematic survey on 185 papers in
cancer prediction and diagnostic
using AI

65 [64] Mammogram, ultrasound
CNN, ANN, DNN, MLP,
SVM, DT, GA, KNN, NB,
LR, LA, and GMM

12
• Structured review on image

processing, machine learning, and
deep learning in breast imaging
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Mixed Method Review

66 [145] Ultrasound and
tomosynthesis

DNN, RCNN, faster
RCNN, deep CNN,
and ReLU

4

• Commentary on current progress of
DNN in computational radiology in
the context of breast imaging
and diagnostic

67 [146]
Mammogram, tomosynthesis,
ultrasound, tomography,
and MRI

Multilayered DNN 12
• Review of novel approaches in

breast imaging aided with AI

68 [147] Mammogram and MRI Radiomics 22

• Review of various medical imaging
modalities in the context of
early detection

• Highlight the applications of various
medical imaging modalities, the
respective benefits, and the
application of radiomics in
such modalities

69 [148] MRI Machine learning and
transfer learning 0

• Systematic survey on application of
machine learning in assessment of
ALNM using MRI

70 [149] Mammogram, ultrasound,
and MRI

ANN, SNN, CNN,
and CADe 41

• Systematic survey of breast cancer
classification in different breast
imaging modalities aided by
DNN approaches

Qualitative Review

71 [150] Mammogram, CT, and MRI Machine learning 51
• Qualitative survey of the impact of

AI on radiology

* Data retrieved from the Scopus database as of 17 June 2022. AI: artificial intelligence; CNN: Convolutional
Neural Networks; ANN: Artificial Neural Network; RBFN: Radial Basis Function Network; KNN: K-Nearest
Neighbors; PNN: Probability Neural Network; SVM: Support Vector Machine; C-DCNN: DeConvolutional
Neural Networks; CT: Computer tomography; MRI: magnetic resonance imaging; FDG: fluorodeoxyglucose;
PET: Positron Emission Tomography; CADe: computer-aided detection; NLP: natural language processing; 3D:
three dimensional; DBCT: Dedicated breast computed tomography; DWI: diffusion-weighted imaging, NIR: Near-
Infrared; SPECT: Single-photon emission computed tomography; CADx: computer-aided diagnosis; DCE-MRI:
dynamic contrast-enhanced magnetic resonance imaging; DCIS: ductal carcinoma in situ; GANs: generative
adversarial networks; DBT: digital breast tomosynthesis; CEDM: Contrast-enhanced digital mammography; SNN:
Shallow Neural Network; SDAE: Stacked Denoising Autoencoder; DBN: Deep Belief Network; DNN: deep neural
networks; IoT: Internet of things; MBI: molecular breast imaging; PACS: picture archiving and communications
system; SWE: shear wave elastography; SWV: shear wave viscosity; LASSO: least absolute shrinkage and selection
operator; MRE: Magnetic resonance elastography; EIT: Electrical impedance tomography; PSO: particle swarm
optimization; GA: genetic algorithm; DOT: Diffuse optical tomography; BN: Bayesian network; CE-MRI: contrast-
enhanced magnetic resonance imaging; NAC: Neoadjuvant chemotherapy; DBPET: Dedicated breast positron
emission tomography; PWI: perfusion weighted imaging; RNN: recurrent neural network; MLP: Multi-layer
Perceptron; DT: decision tree; NB: naïve bayes; LR: Logistic Regression; LA: Linear discriminant analysis; GMM:
Gaussian Mixture Modelling; RCNN: Region-Based Convolutional Neural Network; ReLU: rectified linear unit;
ALNM: axillary lymph node metastasis.

Table A2. AMSTAR rating for each included review work (systematic review).

No. References
Items

1 2 3 4 5 6 7 8 9 10 11

Systematic Review

1 [141] − − − − − − − + ∅ − +
2 [142] − − − − − − − + ∅ − +
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Table A2. Cont.

No. References
Items

1 2 3 4 5 6 7 8 9 10 11

3 [143] − + + − + + + + + − +
4 [144] − + + − + + − + − − +
5 [65] + + + − + + + + + − +
6 [64] + + + + + − + + + + +

Analysis

+ 2 4 4 1 4 3 3 6 3 1 6
− 4 2 2 5 2 3 3 0 1 5 0
⊗ 0 0 0 0 0 0 0 0 0 0 0
∅ 0 0 0 0 0 0 0 0 2 0 0

Total 6

+: Yes; −: No; ⊗: Can’t answer; ∅: Not applicable.

Table A3. SANRA rating for each included review work (non-systematic review).

No. References
Items

1 2 3 4 5 6

Traditional Review

1 [84] 2 2 0 2 2 1
2 [85] 2 2 0 2 2 1
3 [86] 1 1 0 2 1 1
4 [87] 2 1 0 2 2 1
5 [88] 1 2 0 2 1 2
6 [89] 1 1 2 1 1 1
7 [90] 2 2 0 2 1 1
8 [91] 2 1 0 2 2 2
9 [92] 2 2 0 2 2 2
10 [93] 2 1 1 2 2 2
11 [94] 2 2 0 2 1 0
12 [9] 2 1 0 2 2 2
13 [95] 1 1 0 1 2 2
14 [96] 1 2 2 2 2 2
15 [97] 1 0 0 2 2 0
16 [98] 1 1 2 1 0 0
17 [99] 1 2 0 1 1 1
18 [100] 1 1 0 2 2 1
19 [101] 1 1 0 1 1 0
20 [102] 2 1 2 2 2 2
21 [103] 2 2 0 1 2 2
22 [104] 2 1 0 2 1 0
23 [105] 1 1 0 2 1 0
24 [106] 2 1 1 2 2 2
25 [70] 2 2 0 2 2 1
26 [107] 2 2 0 2 1 0
27 [108] 1 0 0 1 1 0
28 [109] 2 2 1 1 2 2
29 [110] 2 1 2 2 2 1
30 [111] 1 1 2 2 2 0
31 [112] 1 1 0 2 2 2
32 [113] 2 2 0 2 2 0
33 [114] 2 2 0 2 2 2
34 [115] 2 1 0 2 2 0
35 [116] 2 1 2 2 2 2
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Table A3. Cont.

No. References
Items

1 2 3 4 5 6

36 [117] 1 1 0 2 2 0
37 [118] 2 2 0 2 2 2
38 [119] 2 2 0 2 2 0
39 [120] 1 2 0 2 2 2
40 [121] 2 0 0 1 1 0
41 [122] 1 1 1 2 2 2
42 [123] 2 1 2 2 2 2
43 [124] 2 2 0 2 2 2
44 [125] 2 2 0 1 1 0
45 [126] 2 2 0 2 2 1
46 [127] 1 1 0 1 1 0
47 [128] 1 1 0 1 1 0

Purpose Specific Review

48 [129] 1 1 0 1 1 1
49 [130] 2 1 0 2 2 1
50 [131] 2 2 2 1 2 2
51 [132] 1 1 0 2 2 1
52 [133] 1 2 0 2 2 1
53 [134] 1 1 0 2 1 1
54 [135] 2 2 0 2 2 2
55 [136] 2 1 0 2 2 2
56 [137] 2 2 0 1 1 0
57 [138] 1 2 0 2 2 2
58 [139] 2 1 0 2 1 2
59 [140] 1 2 0 1 2 2

Mixed Method Review

60 [145] 2 1 0 1 1 0
61 [146] 1 1 0 2 2 2
62 [147] 1 1 0 2 2 1
63 [148] 2 2 2 1 2 2
64 [149] 2 2 2 2 2 2

Qualitative Review

65 [150] 2 1 0 0 2 2

Analysis

Score 0 0 3 50 1 1 19
Score 1 27 34 4 18 20 17
Score 2 38 28 11 46 44 29

Total 65
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