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Abstract: The amount of data collected and managed in (bio)medicine is ever-increasing. Thus,

there is a need to rapidly and efficiently collect, analyze, and characterize all this information. Artificial

intelligence (AI), with an emphasis on deep learning, holds great promise in this area and is already

being successfully applied to basic research, diagnosis, drug discovery, and clinical trials. Rare diseases

(RDs), which are severely underrepresented in basic and clinical research, can particularly benefit

from AI technologies. Of the more than 7000 RDs described worldwide, only 5% have a treatment.

The ability of AI technologies to integrate and analyze data from different sources (e.g., multi-omics,

patient registries, and so on) can be used to overcome RDs’ challenges (e.g., low diagnostic rates,

reduced number of patients, geographical dispersion, and so on). Ultimately, RDs’ AI-mediated

knowledge could significantly boost therapy development. Presently, there are AI approaches being

used in RDs and this review aims to collect and summarize these advances. A section dedicated to

congenital disorders of glycosylation (CDG), a particular group of orphan RDs that can serve as a

potential study model for other common diseases and RDs, has also been included.

Keywords: artificial intelligence; big data; congenital disorders of glycosylation; diagnosis; drug

repurposing; machine learning; personalized medicine; rare diseases

1. Introduction

In Europe, a disease is considered rare when it affects less than 1 in 2000 people [1]. There are

more than 7000 rare diseases (RDs) worldwide [2]. About 80% of RDs have a genetic origin and

approximately 75% affect children [1,2]. Although individually rare, collectively, RDs are estimated to

affect 350 million people globally [3,4].

RDs’ underrepresentation in research and treatment development is related to the following

aspects: (a) underestimation of true disease frequency owing to the lack of RDs’ awareness, as well as

specific diagnostic criteria and official clinical guidelines [5,6]; (b) lack of funding, which hampers basic

and clinical research [6]; (c) small and geographically dispersed patient alongside with the scarcity of
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specific coding systems, which affect patient recruitment for clinical research leading to underpowered

trials [5,7]; (d) insufficient knowledge of the disease pathophysiology and natural history combined

with the insufficiency of validated outcomes and disease-specific biomarkers delays the establishment

of clinical trials [5]; (e) limited interest of pharmaceutical companies associated with the high cost of

drug research and development (R&D) and the small orphan drug market [7].

Despite all of these challenges, the development of new technologies, such as genomic analysis

by means of next generation sequencing (NGS) and other “omics technologies” has boosted RDs’

diagnosis and molecular understanding [8,9]. Information retrieved from these technologies represents

a substantial increase in data that need to be selected, analyzed, and integrated [9]. This “big data” age

constitutes a huge opportunity for the progress of therapy R&D in RDs, but also poses significant data

management and ethical challenges.

Artificial intelligence (AI), mainly through machine learning (ML, a subtype of AI), provides

algorithms capable of learning from data. According to the U.S. Food and Drug Administration, AI is

“the science and engineering of making intelligent machines”, while ML is “an AI tool that can be

used to design and train software algorithms to learn from and act on data” [10]. ML algorithms can

uncover complex data patterns and can be stowed in one of the following categories: (i) supervised

learning (ii), unsupervised learning, or (iii) reinforcement learning [11].

In supervised learning, the data are labeled, that is, the algorithm is given the input data along

with the corresponding target data. The algorithm’s task is then to uncover the relation between inputs

and corresponding targets. Tasks of classification (e.g., whether or not a chest X-ray corresponds to a

tuberculosis patient) [12] and regression (e.g., predicting breast cancer risk from a magnetic resonance

image using logistic regression) [13] are examples of supervised learning.

In unsupervised learning, there are input data, but no targets. The algorithm’s job is to unveil

some underlying structure in the data. The tasks of clustering, which is the automatic assignment

of object groups into clusters (groups) (e.g., study and treatment of Alzheimer’s disease) [14],

and density estimation (e.g., analyzing co-morbidities of migraine) [15] are medical examples of

unsupervised learning.

Finally, in reinforcement leaning, the algorithm’s aim is to find the most suitable action in order to

maximize a reward, which, in turn, depends on the action (e.g., dynamic treatment policies [16] and

epilepsy prevention [17]).

In the last decade, these and other deep learning algorithms proved to be effective in many areas,

leading frequently to state-of-the-art results.

The use of AI algorithms in diagnosis (e.g., analysis and classification of sequence pathogenic

variants) and drug discovery and preclinical research (e.g., new molecules designing, animal

testing reduction, drug interaction) are just some of the examples of the benefits AI has brought

to biomedicine [18]. Most of these tools are applicable to a wide spectrum of diseases, including RDs.

Taking into account all these advances, we aim to understand where we stand as for the use of AI

in RDs. We performed a literature revision, having collected and structured information regarding

the application of AI in several domains of RDs; namely, (a) diagnosis and prognosis, (b) disease

classification and characterization, (c) therapeutic approaches, and (d) patient registries and health

records. Moreover, we highlight AI applications in a specific group of RDs—congenital disorders of

glycosylation (CDG).

This review compiles AI-based tools for biomedical research and clinical practice, increasing the

knowledge and awareness on AI applications in RDs.

2. Materials and Methods

For this review, a double and triple combination of keywords related to RDs and CDG, AI (e.g., ML

and neuronal networks), and medicine/pharmaceutics was used to search the Medline database,

using PubMed as the search engine through its application programming interface (API) Entrez

Programming Utilities [19] (Figures S1 and S2). To use that API, we wrote a Python programming
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language script using libraries from the biopython project [20] (Supplementary Note and Figure S3).

The results for each of the keyword combinations were limited to the twenty most relevant papers.

Duplicate entries were eliminated and a refinement of the results was performed based on the title,

abstract, and MeSH terms of each publication. Three rounds of manuscript selection were performed:

(1) articles were selected based on title and abstract reading by four researchers; (2) the ones matching

the selection criteria were included for the second round of full-manuscript reading; (3) a final round

was performed by two independent researchers, who analyzed all the full-texts, to guarantee uniform

selection criteria of all included manuscripts.

Inclusion/exclusion criteria were as follows:

1. Only English-written manuscripts that included title, abstract, and MeSH terms were selected;

2. Manuscripts expressing the usage of concrete AI algorithms (or families of algorithms) to address

specific problems related to RDs were included;

3. Orphanet classification was adopted and only RDs with Orpha codes were included;

4. Reviews were excluded from the results, although we have included some for contextualization

purposes. References from the included reviews were screened to guarantee that no relevant

manuscripts were missed.

The list of available AI- and ML-based methods found in the included articles can be found in

Table 1.

A classification according to the learning type (unsupervised and supervised), as well as advantages

and disadvantages of the major AI-/ML-based methods described in this review can be found in the

Supplementary Materials (Table S1).

3. RDs’ Prediction: Diagnosis and Prognosis

3.1. Mutation Detection and/or Prediction

The identification of disease-related genes and mutations is essential for diagnosis and disease

prediction [21]. NGS, particularly whole-exome sequencing (WES) and whole genome sequencing

(WGS), is now firmly established in RDs’ diagnostic and research laboratories [22,23]. The advances

made in these technologies make them affordable and indispensable, but the interpretation of the effect

of the discovered new variants remains a challenge [22].

3.1.1. Single Nucleotide Variants

The detection and screening of pathogenic amino acid changes from background polymorphisms

is imperative for efficient use of NGS in personalized medicine [22,24]. Several tools have been created

and used to detect mutations and predict its effects.

Non-synonymous single nucleotide variants (SNVs) that alter protein sequence are strong

candidates for disease-causing variants. Carter et al. described the variant effect scoring tool (VEST),

a new method that uses random forest (RF) to prioritize missense variants that alter protein activity [21].

VEST was applied to Miller and Freeman Sheldon syndromes’ exomes, placing the causal genes among

the top two when only Mendelian genes were considered. The VEST tool is advantageous because

allele frequencies are not required and it performs even without controls [21].

CliniPred, an ensemble classifier for predicting disease relevance of missense SNVs, which uses a

combination of two different ML algorithms (RF and gradient boosting models—Table 1), was applied

to clinical data from 31 different RDs’ exomes, showing a high performance. Furthermore, predictor

performance increased with the addition of allele frequency [22]. SNV prediction methods are generally

sequence-based only or sequence and structure combined. Structure-based features (e.g., binding site)

may act as important determinants for deleteriousness of loci in RDs. However, there has not been an

extensive examination of structure-based features for mutation prediction [25]. Weka, a data-mining

software that contains multiple ML methods to analyze the combination of a RDs’ rare variant dataset
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(ClinVarRVRD) and protein structures from Protein Data Base, has shown that the combination

of structure- and sequence-based features improves rare variant analysis [25]. Synonymous SNVs

may contribute to RDs (e.g., by changing the splicing pattern, as well as protein fold). However,

most pipelines for the identification of disease-causing mutations filter out synonymous SNVs at the

early stages, concentrating on amino acid altering and regulatory variation [26]. Buske et al. have

developed the silent variant analyzer (SilVA), an RF-based prioritization method for synonymous

variants in the human genome. SilVA considers multiple features based on sequence conservation,

splice factor motifs, splice donor/acceptor sites, RNA folding energy, codon usage, and CpG content.

SilVA was used to analyze seven synonymous variants found in Meckel syndrome families and

12 synonymous variants discovered in a group of other RDs. Despite the small number of training

examples, SilVA is a useful method to prioritize synonymous SNVs [26]. A set of supervised learning

tools was used to compare and analyze the effect of variants upon the structure, function, and pathology

of the Mevalonate kinase protein (ORPHA:309025). Three groups (mild, intermediate, and severe)

were obtained, although the discrimination between groups was not sufficient to make meaningful

predictions about variants of unknown severity [27].

A support vector machine (SVM) algorithm was used to predict single nucleotide polymorphisms

(SNPs) significance in common variable immunodeficiency (CVID). Three hundred and sixty-three

CVID patients were genotyped with 610,000 SNPs, with 1000 being strongly predictive of CVID [28].

The analysis of non-and synonymous SNVs using different AI algorithms has proven to be

fundamental for the diagnosis of RDs.

3.1.2. Slicing and Multigenic Mutations

Noncoding regions account for 90% of causal disease loci in genome-wide association studies of

human complex diseases, suggesting that penetrant noncoding variants may be the cause of mutations

in RDs [29]. SpliceAI, a deep residual neural network (NN), predicts the presence and absence of splice

donors and acceptors in pre-mRNA transcripts. It was used to assess the splice-altering impact of a

pathogenic cryptic splice variant in the MYBPC3 intron associated with hypertrophic cardiomyopathy

(ORPHA:217569) [29]. The discovery and analysis of cryptic splice mutations represents a new

diagnostic and therapeutic avenue in RDs.

In RDs, the classic concept of one gene leading to a particular phenotype has been shown

to be an oversimplification. Oligogenic or multilocus genetic patterns have been discovered for

diseases initially considered to be monogenic. Hence, the variant combinations pathogenicity predictor

(VarCoPP), an ML approach to identify pathogenic variant combinations in gene pairs, was developed

by Papadimitriou et al. [30]. VarCoPP was trained using combinations involved in known oligogenic

diseases providing robust 95% and 99% confidence labels. Thus, VarCoPP is a clinically important

tool, making more informative and accurate prediction than those based solely on monogenic variant

pathogenicity scores [30].

3.1.3. Copy Number Variation Analysis

Human copy number variants (CNVs) can cause disease by gene dosage, disruption, g fusion,

or position effects; hence the analysis of CNVs has become routine in genetic diagnosis. Several online

databases and web search services for the analysis of CNVs have been created; however, there is

still the need to search and read the original literature for rare CNVs. Yang et al. employed a

state-of-the-art literature mining method—using DNorm, an ML powered tool that performs named

entities recognition (NER)—to generate CNVdigest, a web-based system containing 1582 CNVs

and 2425 diseases. CNVdigest performs and identifies CNVs-disease associations, and has shown

interesting results in DiGeorge Syndrome (ORPHA:567) [31].
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Table 1. List of available artificial intelligence (AI)- and machine learning (ML)-based methods used in rare diseases (RDs) organized by function.

General
Function

Specific Function Reference Software/Platform/Algorithm AI/ML Method Disease(s)

M
u

ta
ti

o
n

D
et

ec
ti

o
n

an
d

P
re

d
ic

ti
o

n

Predicts the
pathogenicity/disease

relevance of
genetic variants

Alirezaie et al.

CADD
https://cadd.gs.washington.edu/

SVM

Several RDs
ClinPred

https://sites.google.com/site/clinpred/
Ensemble classifier (RF and gradient

boosting models)

Yan et al.
CNVdigest

https://github.com/yangxi1016/CNVdigest)

DNorm (conditional random fields,
stochastic gradient descent,
pairwise learning to rank)

Digeorge syndrome

Alirezaie et al.

Fathmm-MKL
http:

//fathmm.biocompute.org.uk/fathmmMKL.htm

SVM based on multiple
kernel learning

Several RDs
GenoCanyon

http://genocanyon.med.yale.edu/
Unsupervised statistical learning

M-CAP
http://bejerano.stanford.edu/mcap/

Gradient boosting trees

MetaLR Ensemble classifier

Meta-SVM Meta-analytic SVM

Browne et al.

Meta-SNP
http://snps.biofold.org/meta-snp/

RF

Mevalonic kinase deficiencynsSNP Analyzer
http://snpanalyzer.uthsc.edu/

RF

PhD-SNP
http://snps.biofold.org/phd-snp/phd-snp.html

SVM

https://cadd.gs.washington.edu/
https://sites.google.com/site/clinpred/
https://github.com/yangxi1016/CNVdigest
http://fathmm.biocompute.org.uk/fathmmMKL.htm
http://fathmm.biocompute.org.uk/fathmmMKL.htm
http://genocanyon.med.yale.edu/
http://bejerano.stanford.edu/mcap/
http://snps.biofold.org/meta-snp/
http://snpanalyzer.uthsc.edu/
http://snps.biofold.org/phd-snp/phd-snp.html
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Table 1. Cont.

General
Function

Specific Function Reference Software/Platform/Algorithm AI/ML Method Disease(s)

M
u

ta
ti

o
n

D
et

ec
ti

o
n

an
d

P
re

d
ic

ti
o

n

Predicts the
pathogenicity/disease

relevance of
genetic variants

Browne et al.
PredictSNP

http://loschmidt.chemi.muni.cz/predictsnp/

Consensus classifier using the Naïve
Bayes classifier, the multinomial

logistic regression model, NN, SVM,
K-nearest neighbor classifier, and RF

Mevalonic kinase deficiency

Alirezaie et al.
REVEL

https://sites.google.com/site/revelgenomics/
RF Several RDs

Buske et al.
SilVA

http://compbio.cs.toronto.edu/silva/
RF Meckel syndrome and other RDs

Browne et al.
SNAP

https://rostlab.org/services/snap2web/
Neural network Mevalonic kinase deficiency

Jaganathan et al.
SpliceAI

https://github.com/Illumina/SpliceAI
Deep residual NN

RDs with intellectual disability and
autism spectrum disorders

Alirezaie et al.
VAAST Variant Prioritizer (VVP)

http:
//www.yandell-lab.org/software/vaast.html

Probabilistic search ML tool using
the CLRT

Several RDs

Papadimitriou et al.
VarCoPP

https://varcopp.ibsquare.be/
RF

Several RDs (including MODY,
Kallman syndrome, familial

hemophagocytic lymphohistiocytosis,
and nontype I cystinuria)

Carter et al.
VEST

https://karchinlab.org/apps/appVest.html
RF Miller and Freeman Sheldon syndrome

http://loschmidt.chemi.muni.cz/predictsnp/
https://sites.google.com/site/revelgenomics/
http://compbio.cs.toronto.edu/silva/
https://rostlab.org/services/snap2web/
https://github.com/Illumina/SpliceAI
http://www.yandell-lab.org/software/vaast.html
http://www.yandell-lab.org/software/vaast.html
https://varcopp.ibsquare.be/
https://karchinlab.org/apps/appVest.html
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Table 1. Cont.

General
Function

Specific Function Reference Software/Platform/Algorithm AI/ML Method Disease(s)

M
u

ta
ti

o
n

D
et

ec
ti

o
n

an
d

P
re

d
ic

ti
o

n Predicts the impact of
SNVs on protein stability,
affinity and functionality

Alirezaie et al.
Eigen

http://eigen.tuxfamily.org/
Unsupervised spectral approach Several RDs

Browne et al.

I-Mutant
http:

//folding.biofold.org/i-mutant/i-mutant2.0.html
SVM

Mevalonic kinase deficiency
iStable

http://predictor.nchu.edu.tw/istable/
SVM

mCSM
http://biosig.unimelb.edu.au/mcsm/

Gaussian process regression model

MUpro
http://mupro.proteomics.ics.uci.edu/

SVM and neural NN

Carter et al.,
Alirezaie et al.,
Browne et al.

PolyPhen2
http://genetics.bwh.harvard.edu/pph2/

Naïve Bayes classifier
Several RDs’ Mevalonic

kinase deficiency

Browne et al.
PoPMuSiC-2.1/DEZYME

http://dezyme.com/
Simple NN Mevalonic kinase deficiency

Predicts gene/variant
pathogenicity and clinical

relevance while
integrating phenotypic

data

Boudellioua et al.
DeepPVP

https://github.com/bio-ontology-research-
group/phenomenet-vp

Deep NN Several RDs

Bosio et al.
eDiVA

http://www.ediva.crg.eu
RF CF, PKU, and other RDs

Li et al.
Exomiser

https://github.com/exomiser/Exomiser
RF Several RDs

Li et al.
Xrare

https://web.stanford.edu/~{}xm24/Xrare/
Gradient boosting decision tree Several RDs

http://eigen.tuxfamily.org/
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://predictor.nchu.edu.tw/istable/
http://biosig.unimelb.edu.au/mcsm/
http://mupro.proteomics.ics.uci.edu/
http://genetics.bwh.harvard.edu/pph2/
http://dezyme.com/
https://github.com/bio-ontology-research-group/phenomenet-vp
https://github.com/bio-ontology-research-group/phenomenet-vp
http://www.ediva.crg.eu
https://github.com/exomiser/Exomiser
https://web.stanford.edu/~{}xm24/Xrare/
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Table 1. Cont.

General
Function

Specific Function Reference Software/Platform/Algorithm AI/ML Method Disease(s)

D
ec

is
io

n
S

u
p

p
o

rt
S

y
st

em
s

DDSS based on phenotype

Ronickle et al.
AdaDX

https://ada.com/app/
Augmented QMR Bayesian network Several RDs

(Basel-Vanegaite et al.,
Liehr et al., Zarate et al.,

Marbach et al.,
Martinez-Monseny et al.,

Hsieh et al.

Face2Gene
https://www.face2gene.com

Deep NN

RDs including Cornelia de Lange
syndrome, Emanuel syndrome and

Pallister–Killan syndrome,
SATB2-associated syndrome

Rao et al.
HANRD

https://web.rniapps.net/gcas/gcas.tar.gz.
Graph convolution-based association

scoring
Several RDs

Jayed et al.
Phen–Gen

http://phen-gen.org/
Bayesian network Several RDs

Jia et al.
RDAD

http://119.3.41.228:8080/RDAD/faq_help.php

Logistic regression, K-nearest
neighbor, RF, extra

trees, Naïve Bayes, deep NN,
and Bayesian averaging algorithm

Several RDs

Garcelon et al.,
Garcelon et al.

Dr. Warehouse
http://www.drwarehouse.org/

Vector space model

Lowe syndrome, dystrophic
epidermolysis bullosa, activated PI3K

delta syndrome, Rett syndrome,
and Dowling Meara

General
Function

Specific Function Reference Software/Platform/Algorithm AI/ML Method Disease(s)

D
is

ea
se

C
la

ss
ifi

ca
ti

o
n

an
d

M
ec

h
an

is
m

s’
E

lu
ci

d
at

io
n

Data mining for discovery
of molecular patterns

Blasco et al., Lagrue et al.
Biosigner

https://bioconductor.org/packages/release/bioc/
html/biosigner.html

Partial least square discriminant
analysis (PLS-DA), RF, and SVM

ALS

N-, O-, and
C-glycosylation sites

prediction

Caragea et al.
EnsembleGly

https://omictools.com/ensemblegly-tool
Ensembles of SVM

Possible application in human
disorders of glycosylation

Hamby et al.
GPP

http://comp.chem.nottingham.ac.uk/glyco/
RF

Sub-Golgi proteins
identification

Rahman et al.
isGPT

http://77.68.43.135:8080/isGPT/
RF and SVM

Possible application in human
disorders of glycosylation

Data clustering Hoehndorf et al.
FLAME

https://github.com/zjroth/flame-clustering/
Fuzzy clustering

Several RDs, including LSDs and
Charcot–Marie–Tooth disease 4J

Disease pathways
prediction

Taroni et al.
MultiPLIER

https://hub.docker.com/r/jtaroni/multi-plier/ (tag
0.2.0).

Transfer learning

Systemic lupus erythematous,
microscopic polyangiitis, and
(eosinophilic) granulomatosis

with polyangiitis

https://ada.com/app/
https://www.face2gene.com
https://web.rniapps.net/gcas/gcas.tar.gz.
http://phen-gen.org/
http://119.3.41.228:8080/RDAD/faq_help.php
http://www.drwarehouse.org/
https://bioconductor.org/packages/release/bioc/html/biosigner.html
https://bioconductor.org/packages/release/bioc/html/biosigner.html
https://omictools.com/ensemblegly-tool
http://comp.chem.nottingham.ac.uk/glyco/
http://77.68.43.135:8080/isGPT/
https://github.com/zjroth/flame-clustering/
https://hub.docker.com/r/jtaroni/multi-plier/
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Table 1. Cont.

General
Function

Specific Function Reference Software/Platform/Algorithm AI/ML Method Disease(s)

D
is

ea
se

C
la

ss
ifi

ca
ti

o
n

an
d

M
ec

h
an

is
m

s’
E

lu
ci

d
at

io
n

Prediction models based
on gene expression data

and anatomical
relationships hierarchy

Lee et al.
URSAHD

http://ursahd.princeton.edu./jobs/create/
Bayesian network

Refractory anemia with excessive
blasts and sideroblastic anemia

Data mining, clustering,
and visualization tools

Dehiya et al.
Weka

https://www.cs.waikato.ac.nz/ml/weka/
Collection of ML algorithms

Several RDs (they exemplify for CF
and Rett syndrome)

Legend: AI—artificial intelligence; ALS—amyotrophic lateral sclerosis; CADD—combined annotation dependent depletion; CF—cystic fibrosis; CLRT—composite likelihood
ratio test; DDSS—diagnosis decision support system; DeepPVP—deep phenomeNET variant predictor; eDIVA—exome disease variant analysis; GPP—glycosylation predictor;
HANRD—heterogeneous association network for rare diseases; isGTP—identification of sub-Golgi protein types; LSD–lysosomal storage diseases; M-CAP—mendelian clinically applicable
pathogenicity; mCSM—mutation cutoff scanning matrix; ML—machine learning; NER—named entities recognition; NN—neural network; PKU—phenylketonuria; RD—rare diseases;
RDAD—rare disease auxiliary diagnosis; RF—random forest; SilVA—silent variant analyzer; SVM—support vector machine; URSAHD—unveiling RNA sample annotation for human
diseases; VarCoPP—variant combinations pathogenicity predictor; VEST—variant effect scoring tool; SNP—single nucleotide polymorphism; SNV—single nucleotide variants.

http://ursahd.princeton.edu./jobs/create/
https://www.cs.waikato.ac.nz/ml/weka/
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3.1.4. Genotype–Phenotype Integration

An RF model (Table 1) was used to develope eDiVA (exome disease variant analysis), a variant

pathogenicity prediction and annotation tool, which has an innovative pathogenicity classifier

(eDiVA-Score). eDiVA was applied to several RDs (e.g., cystic fibrosis and phenylketonuria,

among others) and identified known causal disease variants with high precision and recall. Interestingly,

prioritization of candidate variants can be enhanced by the addition of clinical information [23].

Both Xrare (using gradient boosting decision tree) and deep phenomeNET variant predictor

(DeepPVP, a deep NN-based tool) prioritize disease-causing variants based on a set of phenotypic and

genetic features. Xrare and DeepPVP outdid other analogous tools (e.g., CADD and Exomiser) and

clinical-expert pipelines at variant prediction [32], even at identifying genes previously unlinked to a

disease [33]. These results suggest that these AI methods may be particularly useful to study RDs and

rare variants [32,33].

In summary, AI and ML methods can efficiently predict disease-causing genes and mutation

types across variable sets of RDs and accounting for different auxiliary measures (e.g., phenotype),

thus accelerating and improving diagnosis accuracy.

3.2. Phenotype and Biochemical Fingerprinting-Driven Diagnosis

Although medicine has entered the genomic era with NGS, the molecular cause of many diseases

is often hard to determine. Hence, clinical phenotype is an invaluable resource for accurate and faster

diagnosis of RDs [4]. Electronic health records (EHR) and biomedical literature contain extensive

clinical information with huge potential in the development of decision support systems (DSS).

3.2.1. Phenotype-Driven Diagnosis

The heterogeneous association network for rare diseases (HANRD) is a phenotype-driven RD

gene prioritization system. It is a network of ontological and curated associations between phenotypes,

diseases, genes and pathways obtained using an information propagation algorithm—graph

convolution-based association scoring—which infers new binary associations between the terms

in the initial network. This tool is a significant advance in diagnosis DSS (DDSS), as it showed better

performance compared with other state-of-the-art tools (Orphamizer) [34]. Paul et al. combined rule

mining and the Dempster–Shafer theory to calculate probabilistic associations between sets of clinical

features and six skeletal dysplasia types recorded in the European Skeletal Dysplasia Network patient

registry. Despite data sparseness, the mixed algorithm outperformed specialist medical diagnosis and

five different ML methods [35]. For Mucopolysaccharidosis type II (MPS II, ORPHA:580) diagnosis

prediction, a naïve Bayes classifier was developed and trained with literature data. The application of

this classifier to an unstructured EHR with 505,526 patients classified 125 as possibly having MPS II

with 99% accuracy and 84% sensitivity [36]. Additionally, a DDSS based on phenotypic information

extraction using collaborative filtering in combination with natural language processing (NLP) was

created. Firstly, it was applied to an EHR database encompassing multiple RDs, afterwards being

improved by the addition of literature mining [37,38]. Ada XD is a promising DDSS prototype using

the augmented Quick Medical Reference (QMR) Bayesian network with an incorporated probabilistic

reasoning engine. Ada XD RD patients’ dataset derives from manually annotated and continuously

updated EHR and medical literature data. In contrast to the aforementioned DDSS, Ada XD does not

require a unique/specific nomenclature (e.g., HPO) [4].

Phen–Gen is a method that uses a systematic Bayesian framework to combine patients’ sequencing

data and symptoms from distinct sources. It has been applied to RDs with highly promising results in

both coding and non-coding variants. It also outranked the accuracy of genotype-only approaches at

variant prediction by 52% [39].

Clinical data warehouses (CDWs) are built on top of EHRs and enable the collection and secondary

use of healthcare data. Dr. Warehouse is an open-source CDW based on a vector space model,
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which explores NLP using the Unified Medical Language System Metathesaurus® (UMLS®) [40].

By leveraging phenotype similarities identified in the EHR, Dr. Warehouse can accelerate RDs’

diagnosis and clinical research recruitment [41].

In summary, the integration of patient information has proven fundamental to accelerating diagnosis.

3.2.2. Imaging-Based DDSS

Many RD patients present characteristic dysmorphology [42]. Images are one of the types of data

that AI, namely deep learning, is more fruitful at analyzing; hence, imaging is crucial in phenotyping,

diagnosis, and even the identification of new RDs [43].

DeepGestalt is a deep learning facial analysis framework for genetic syndromes’ classification

that powers a phenotyping platform named Face2Gene [44]. A crucial feature of deep learning is to

discover abstract representations of the data (in this case, facial images) that highlight attributes that

enable effective learning [45]. The authors use transfer learning to translate the general face recognition

learning trained on a large scale dataset to the rare genetic syndromes’ domain. They conclude

that DeepGestalt can be used to suggest a diagnostic direction in clinical practice. Several studies

have employed DeepGestalt to diagnose rare syndromes with a moderate [46] to high degree of

success, namely, Cornelia de Lange syndrome (ORPHA: 199) [47], Emanuel syndrome (ORPHA:96170),

and Pallister–Killian syndrome (ORPHA: 884) [48]. Besides diagnosis, DeepGestalt can also be applied

to discover new RDs [49].

Other algorithms applied to facial images and neuroimaging have been used to diagnose RDs.

For instance, SVMs have been used with facial images for acromegaly (ORPHA:963) [50] and with

neuroimaging for the prediction of Pick disease (ORPHA:282) and amyotrophic lateral sclerosis

(ALS, ORPHA: 803) presenting with primary progressive aphasia [51].

Hsieh et al. have integrated phenotypic information—generated from AI-based literature and

EHR text-mining and/or from facial imaging analysis—to assist in genetic variant interpretation.

This ingenious approach (called prioritization of exome data by image analysis—PEDIA) was carried

out in a large cohort of patients with monogenetic RDs. The authors show that the addition of

phenotypic data significantly improved correct disease-causing gene prediction, particularly when

deep learning face recognition (with Face2Gene) was encompassed [52].

3.2.3. Biochemical Fingerprinting

Despite the increase of genetic diagnosis in RDs, for several diseases such as hereditary hemorrhagic

telangiectasia (HHT, ORPHA:774), genetic testing is a costly and inefficient option. Lux et al. describe

the use of infrared (IR) spectroscopy allied to artificial NN for HHT diagnosis. Two independent

studies showed the existence of an HHT-specific IR fingerprint. Hence, IR spectroscopy combined

with artificial NN can be considered a serious alternative diagnostic method [53].

In summary, AI can integrate one or several stages of DDSS development: from image recognition

and mining and annotation of phenotypic terms, to disease ranking and prediction and positively

impacting biochemical-driven diagnosis, ascertaining itself as a multifaceted diagnosis enhancer.

3.3. Prognostic Markers

A survival prediction deep learning algorithm (including loss of follow-up cases) was applied in

synovial sarcoma (SS, ORPHA:3273) patients. This novel algorithm achieved better performance than a

conventional NN based on an alive or dead binary classification, as well as that of the Cox proportional

hazard model, the gold standard method for survival prediction in cancers [54]. A complex framework

of AI algorithms, including t-distributed stochastic neighbor embedding clustering, deep NNs

(using principal components analysis (PCA)), RF, k-nearest neighbor, and regulatory networks,

was used in soft tissue sarcomas to identify novel diagnostic and prognostic markers, as well as

potential therapeutic targets. Furthermore, the application of different ML methods has improved
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the understanding of rare cancers [55]. These tools can not only predict disease diagnosis/prognosis,

but also simulate therapeutic options, thus guiding better individualized treatment.

4. Disease Classification and Characterization

4.1. Disease Mechanisms

The unraveling of underlying affected genetic and molecular players and pathways is

crucial for disease comprehension and therapeutic target selection. However, gene expression

anomaly detection and its correlation with molecular mechanisms and clinical phenotypes is a

long-standing ML challenge. The characterizing systematic anomalies in expression (CSAX) data,

which operate with feature regression and classification, were applied to a set of trisomy 18

(ORPHA:3380) samples. CSAX data identified 10 top genes to be related to tooth development,

immune processes, and glucocorticoid metabolism, which is in accordance with the described

clinical phenotype [56]. Small datasets derived from basic research in RDs are challenging for ML.

To overcome this, Taroni et al. resorted to a publicly available gene expression database (recount2)

and trained a pathway-level information extractor matrix factorization framework with multiple

diseases (MuliPLIER). When applied to RDs datasets (specifically systemic lupus erythematosus

(ORPHA:536), granulomatosis with polyangiitis (ORPHA:900), microscopic polyangiitis (ORPHA:727),

and eosinophilic granulomatosis with polyangiitis (ORPHA:183)), MultiPLIER could describe biological

pathways and processes more effectively than the models trained with specific disease datasets [57].

Microarray technology has led to great leaps in molecular disease characterization; nonetheless,

it concomitantly created several analysis and clinical interpretation challenges caused by, for instance,

genomic noise. Biomedical robots are sets of algorithms or classifiers that can analyze data, create new

knowledge, and even act as medical DSS. DeAndrés-Galiana et al. built an AI biomedical robot

(supervised filter feature selection methods and dimensional reduction algorithms) with the goal of

improving microarray analysis sensitivity and knowledge inference. They used this tool in ALS and

inclusion body myositis (IBM, ORPHA:183) patients. In the former, three small-signature genes were

identified with 96.5% accuracy, whereas in the latter, 12 genes (enriched in HLA-x family genes) were

singled out with an accuracy of 97.5%. Additionally, the biomedical robot could distinguish IBM

and polymyositis (ORPHA:732) with 100% accuracy. On the basis of these small-signature genes,

various signaling pathways were suggested to be involved in the pathophysiology of these RDs [58].

In another attempt to tackle noise in microarray reading, authors used microarray synthetic modeling to

compare different gene ranking methods (fold change, Fisher’s ratio, percentile distance, and entropy)

and significance analysis of microarrays. They used the aforementioned ALS and IBM datasets and

concluded that the Fisher ratio was the most precise method with the highest discriminatory power [59].

Gaucher disease (ORPHA:355) is caused by lysosomal enzyme glucocerebrosidase-1 deficiency.

Aggregating molecular dynamics and deep learning (convolutional variational autoencoder), a model

of interaction between this protein and its chaperone-saposin C was designed. This model also

predicted how disease-causing mutations destabilize this interaction, uncovering a relevant disease

mechanism [60]. Exploring the potential of unsupervised deep ML (DeepNEU) to create a cellular

disease model, Danter et al. successfully developed in silico induced neuronal pluripotent stem cells for

Rett syndrome (ORPHA:778) [61]. This in silico approach is cost-effective and may have tremendous

implications in disease pathways and therapeutic target clarification. Different AI and ML methods

allow for the study and prediction of disease mechanisms at distinct levels: from gene to protein

and cells.

4.2. Disease Categorization and Characterization

The lack of data, complexity and heterogeneity within and among RDs, and overlapping and

infrequent clinical manifestations challenge correct disease classification. Often, disease classification

consists of numerous, sequential, and expensive clinical and laboratorial tests. AI and ML represent
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solutions to detect and learn low frequency patterns, delivering automated class attribution,

which facilitates correct treatment recommendation.

The characteristic feature mining algorithm (CFML) has uncovered the key features of 15 bone

dysplasia disorders resorting to the European skeletal dysplasia network. Although this algorithm

showed relatively low average precision (26.73%) and recall (24.68%), it still outdid a standard

algorithm for class association rule mining. Furthermore, the CFML selected hallmark features were

discriminative in 12 of the 15 disorders [53]. More recently, a stochastic gradient boosting narcolepsy

type 1 (ORPHA:2073) versus type 2 (ORPHA:83465) classifier was set up using the European narcolepsy

network data. It identified 15 influential predictors (99% accuracy, sensitivity, and specificity), with some

of them not included in the current narcolepsy classification criteria. Importantly, revisiting the only

misclassified case uncovered a previously incorrect clinician-made diagnosis.

An RF model was used to classify acute liver failure (ORPHA: 90062), determine its etiology,

and improve diagnosis in the clinic, achieving an 80% accuracy score in the etiology assignment.

Bayesian comorbidity networks and subsequent random walk clustering have been used to discriminate

and cluster pediatric pulmonary hypertension (PH, ORPHA:182090) subtypes. Furthermore,

Bayesian comorbidity networks were capable of distinguishing rare subtypes and comorbidity

associations, even suggesting the existence of a previously unidentified subtype with neurological

involvement. In patients with juvenile idiopathic arthritis (ORPHA:92), an identical framework

stratified patients according to clinical and laboratorial pattern recognition. Probabilistic PCA and

Gaussian mixture model clustering using Bayesian information criterion were applied to categorize

the meaningful clinical and biological patterns and to cluster patients, respectively. The originated

five subpopulation clusters were clinically relevant and strongly predictive of disease evolution.

A semantic text-mining approach using PhenomeNET to compute and predict phenotype-disease

relations of 6000 diseases was created. Following this, disease–disease similarity cluster networks

based on phenotypic features were built employing the parameter-free clustering algorithm FLAME.

Interestingly, phenotypic relationships joined several lysosomal storage diseases (LSD) and, in their

vicinity, identified two forms of spinal muscular atrophy, a phenotype not commonly associated with

LSD. However, a patient with Charcot–Marie–Tooth disease type 4J (ORPHA: 139515) presenting LSD

symptomatology was described [62]. Thus, besides improving disease classification, this AI-based

methodology may help diagnose rarer disease (sub)types.

A distinct approach towards phenotype elucidation for better disease comprehension entails the

use of deep learning methods to clarify the relationship between disease and disability. Deep NNs

were applied to a corpus of scientific abstracts manually annotated for disability-related terms in RDs.

This methodology not only detected disability-related terms with an 81% F-measure, but also—via

unsupervised learning—established a relationship between disabilities and diseases with 75% accuracy.

5. Therapeutic Approaches

Currently, only approximately 5% of the RDs have a treatment [8]. AI presents as a potential

game-changer in this field, backed up by the encouraging results obtained in treatment discovery in

common disorders.

5.1. Drug Repositioning

Drug repositioning—a strategy to identify new therapeutic uses for approved or investigational

drugs—has been gaining momentum as a quicker, safer, and cheaper approach, particularly in RDs.

AI has emerged as a highly attractive tool to boost drug repurposing for RDs. Lee et al. utilized an ML

unified computational framework, URSAHD (unveiling RNA sample annotation for human diseases),

which integrates genetic and molecular information about thousands of complex disorders, to test drug

repurposing. On the basis of hallmark processes and mechanistic similarities among common/treatable

and rare/untreatable diseases, URSAHD was able to predict cisplatin as a therapeutic agent to refractory

anemia with excess blasts (ORPHA: 86839) and resveratrol as a potential candidate for sideroblastic
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anemia (ORPHA:1047) treatment [63]. The prediction made by algorithms in both studies must be

experimentally validated and, even though there is still much room for improvement, AI can act as a

drug discovery enhancer.

5.2. Clinical Trials

Clinical trials (CTs) are pivotal for therapy development. Nonetheless, only a small fringe

of RDs have CTs owing to (i) difficulty in patient identification and recruitment; (ii) challenges

associated with data obtention and analysis in small populations; and (iii) lack of reliable biomarkers,

among others [64–66]. AI may provide solutions for these obstacles of CTs in RDs.

5.2.1. Patient Recruitment and Identification

The application of four data mining computable phenotype algorithms to EHR identified 413 new

pediatric patients with PH. Other major advantages of this methodology are that (i) it allows for

continuous patient recruitment and (ii) once validated, it is transferable to other settings [67].

5.2.2. Biomarkers

Reliable biomarkers help in the identification of normal versus pathogenic processes and/or in

the assessment of the response to therapeutics or other interventions, being essential for therapy

development [68,69]. In an olesoxime trial for ALS, the application of the Biosigner algorithm

(using partial least square discriminant analysis, RF, and SVM) to a pharmacometabolic approach

discerned differences in the metabolic profiles between the control and treatment arms. It also

recognized sphingomyelins as the most relevant disease progression marker [70]. Moreover, in West

syndrome (ORPHA:3451) patients, the employment of this algorithm identified serine and an unknown

metabolite (X363) as potential disease biomarkers [71]. Hence, the prediction of disease progression

from early metabolomic profiles allied to pharmacometabolomics represent a promising avenue for

biomarker detection.

Carlier et al. designed an innovative in silico clinical trial to test bone morphogenetic protein

treatment in congenital pseudarthrosis of the tibia associated with neurofibromatosis type 1

(ORPHA:636). Ward hierarchical clustering was employed to stratify the virtual subject population

in adverse responders, non-responders, responders, and asymptomatic. Additionally, an RF-based

algorithm predicted potential biomarkers for therapy effectiveness, namely rate of cartilage formation

(Pmc) and Y3cb [72]. All in all, AI-based methods can resolve many challenges associated with clinical

trials in RDs, particularly in combination with other expanding fields like systems biology.

6. Patient Health Registries and Medical Records

With the exponential growth of patient data in health records and patient registries, more and

better NER methods are indispensable. NER is the process of identifying various semantic classes of

terms (e.g., genes, proteins, and diseases) in raw text. It is the first step in the process of knowledge

discovery and data mining. Nevertheless, for RDs, challenges arise owing to the rarity of the conditions,

complex nomenclatures, and coding or tagging inconsistency between documents or databases.

Additionally, author-specific medical terms, abbreviations, and grammatical errors in EHR further

hinder biomedical NER. Recurrent NNs proved to be advantageous for automated clinical coding

improving representation of RDs in hierarchically-structured medical knowledge [73]. For disease

NER, Bhasuran et al. implemented a stacked ensemble approach combined with fuzzy matching using

both forward and reverse disease labeling. Additionally, they developed an in-house disease dictionary

combining several databases and increasing RD representation. By including the reverse model,

they identified RDs with intricate names unidentified by other NER methods [74]. More recently,

Xu et al. developed Dic-Att-BiLSTM-CRF (DABLC), a deep attention NN method. By incorporating

dictionary-based (using disease ontology) and document-based attention mechanisms, this new method

outperformed existing ones at identifying rare and complex disease names [75].
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This enhancement of RD coding and tagging, as well as their representation in databases,

potentially benefits data/platform interoperability. Indeed, the lack of compatibility between registries

hampers the use of patient data for clinical research. With the goal of contributing to the future

interconnection between registries, cluster analysis and RF were used to analyze patient registries.

Three types of registries with different profiles and informative needs were recognized, namely,

public health, clinical and genetic research, and treatment focused [76].

While important advances are occurring in disease NER using AI, models addressing longer

sentences are needed to improve complex RDs’ recognition. Nevertheless, this progress is not only

optimizing RD annotation and recognition, but also paving the way to platform interoperability.

7. AI for CDG

CDG (ORPHA:137) represents a large heterogeneous group of mostly autosomal recessive disorders

with impaired synthesis and attachment of glycans to proteins and lipids [77], and defects in the synthesis

of glycosylphosphatidylinositol anchors [77–79]. Presently, CDG counts over 130 genetic disorders [80],

with PMM2-CDG (ORPHA:79318) being the most common N-glycosylation disease [81]. Owing to the

fundamental role of glycosylation in a variety of cellular, developmental, and immunological processes,

CDG patients often show multiorgan involvement and elevated phenotypic variability [80,82–85].

As for other RDs, AI has been used to improve research, diagnostics, and therapeutic options search

in CDG.

7.1. AI for CDG Disease Mechanisms Elucidation

7.1.1. Prediction of Glycosylation Sites

The nature of the chemical linkage between specific acceptor residues in the protein and sugar

determines the type of glycosylation; hence, there is a variety of possibilities for the location of

glycosylation sites within a protein [82]. The need for more accurate glycosylation sites’ prediction

has been pushed by the growing data obtained from genomics and other “omics”. The reliability

of this prediction is essential to guide experimental investigations [82]. However, the experimental

determination of glycosylation sites in proteins is an expensive and laborious process [82,83]. Hence,

a glycosylation prediction program (GPP), using an RF algorithm and pairwise patterns, was created [83].

Putative glycosylation sites in glycoprotein sequences were automatically identified using ensembles

of SVM classifiers (Table 1) [82]. Data incorporation from high throughput glycomics and proteomics

projects will foster the development of models that can predict the spatial and temporal dynamics

of protein glycosylation. This can have a significant impact in basic and clinical research, ultimately

improving CDG patients’ quality of life [82,83].

7.1.2. Identification of Golgi Proteins

The Golgi apparatus (GA) is a central hub for membrane trafficking and a fundamental

player in post-translation modifications, particularly in glycosylation. Glycosylation is dependent on

membrane trafficking for proper localization of its machinery and to bring the substrates for further

processing [86,87]. Membrane trafficking at the GA is regulated by several protein complexes, with the

conserved oligomeric Golgi (COG) complex being the most important [88]. Defects and/or malfunction

of the COG complex are responsible for COG-CDG [88]. Hence, the exact classification of GA proteins

may advance diagnosis and basic research, and contribute to targeted drug development in CDG.

The identification of the sub-Golgi protein types (isGPT) model using RF and SVM has been developed

to accurately identify sub-Golgi protein types, namely trans- and cis-Golgi proteins [89].

7.2. AI for CDG Diagnosis, Classification, and Characterization

One of the major pitfalls in CDG is accurate and timely diagnosis [90]. Face2Gene was used to

analyze facial photos of a cohort of 31 PMM2-CDG patients. The trained algorithm correctly identified



Genes 2019, 10, 978 16 of 24

the 31 facial photographs of PMM2-CDG patients and 41 photographs of new patients with a confirmed

PMM2-CDG diagnosis. In all cases, PMM2-CDG appeared in the top 10 syndrome matches offered by

the tool. A recognizable facial pattern in PMM2-CDG patients was identified and three different age

groups (0–5, 6–11, and 12–18) of PMM2-CDG patients were also differentially discriminated [90].

The phenotype-based rare disease auxiliary diagnosis (RDAD) system was used to assist

clinicians in the diagnosis of 27 RDs, including PMM2-CDG. RDAD combines four diagnostic

models, which successfully ranked the most likely candidate RDs in the top 10 [91]. Thus, these tools

could be of added value to PMM2-CDG diagnosis and natural history definition.

Consensus clinical classification is essential for disease characterization and diagnosis. Regarding

EXT1-CDG and EXT2-CDG (multiple osteochodromas; ORPHA:321), no taxonomical system was

consistent or easy to apply [92]. Using a pioneering ML model (switching NN), 150 variables from

189 patients were analyzed. The resulting classification system followed up disease progression and

defined homogenous cohorts of patients, providing insights into disease pathogenesis and helping

diagnosis [92]. Strokes and stroke-like episodes (SLEs) are typical manifestations of CDG [93,94].

SLEs are commonly triggered by infections and have been described in about 20–55% of PMM2-CDG

patients. The underlying pathomechanisms of SLEs are poorly understood and clinical guidelines are

missing [94]. EHRs of 552,898 patients were divided into two age groups (young and old) and analyzed

using data augmentation with active-learning selection to predict young stroke [95]. This model was

not used in RDs or CDG, but it could be easily transferrable to CDG patients, contributing to better

disease management and quality of life.

7.3. AI for Therapy Discovery in CDG

Monogenic RDs can be viewed as dosage problems caused by loss- or gain-of-function of

a gene, usually altering protein activity. mRNA modeling is a potential strategy to repurpose

drugs for these disorders. Connectivity map (https://www.broadinstitute.org/cmap/) and causal

reasoning engine were used to search and analyze mRNA “responsiveness” to drugs in 76 RDs,

among which were SLC38A9-CDG (ORPHA: 468699), MAN2B1-CDG, and PMM2-CDG [96].

Among the 75 genes × 310 drugs analyzed, 119 different putative drug–gene interactions were

identified. Idarubicin showed modest induction of MAN2B1 mRNA expression in fibroblasts [96].

Despite the need for validation of the identified in silico leads in pathophysiologic relevant tissues,

these exciting developments have great potential for revolutionizing the CDG therapeutic landscape.

8. Discussion and Conclusions

In the “big data” era, there is a growing need to automate tasks that currently require human

intervention. In biomedicine, AI technologies have been developed to analyze a diverse array of data,

from individual clinical phenotypes in EHR to large and multiparametric patient cohort analysis,

attenuating outstanding difficulties in RDs [97].

Medical DSS are computer-based systems that can structure, store, and apply medical knowledge

to guide diagnosis and treatment selection. Their application to diagnosis in clinical practice serves

three main purposes: (1) to expedite diagnosis; (2) to correct misdiagnosis; and (3) to diagnose

previously undiagnosed patients [98,99]. Although various DDSS exist, few use AI in their functioning

or methodology. Fewer still focus on RDs, as they pose a bigger challenge owing to phenotypic

heterogeneity and information scarcity. Proof of the existence of such gap is the low exome sequencing

diagnostic yield in RDs (~25–30%) [29]. AI algorithms performing mutation detection, prediction,

and classification can take RDs’ diagnosis to the next level, increasing these figures and uncovering new

disease mechanisms and therapeutic targets. Also, As genomic data alone are frequently insufficient

to diagnose and characterize RD patients, AI-based multi-omics integrative approaches are being

adopted [21–23,25,26,28]. Despite these advances, there is room for improvement in AI-mediated

diagnosis. For instance, existing splice classifiers normally have insufficient specificity because

they focus on local motifs and largely do not account for long-range specificity determinants [29].

https://www.broadinstitute.org/cmap/
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Additionally, as multi-omics data are highly heterogeneous, AI strategies performing network-based

approaches are required to further promote combinatory analysis of big data [97].

DFs can be distinctive characteristics of RDs, including CDG. Their analysis through image-based

DDSS represents a useful and reliable tool [44,51,90]. However, designing and training these models in

RDs faces various confounding and detrimental factors, such as small patient cohorts and differences

in patient ethnicity. Because a high number of relatively homogeneous images are needed to optimize

the model, these limitations may lead to erroneous calculations and/or recommendations [97].

The colossal, dispersed, unstructured, and poorly annotated clinical information presented across

medical literature, EHRs, and patient registries worldwide constitutes a greatly untapped resource.

Recently developed ML tools to analyze heterogeneous, sparse, and noisy clinical data have shed

light on this neglected topic [73–76,97]. Nevertheless, most advances have occurred in unconcerted

actions or in disease niches. Efforts for unified ontologies are needed to implement compatible and

interconnected health registries. AI, through NER and NLP exploration, may play a relevant role in

this field.

We have listed several examples of how AI has boosted therapeutic development in RDs.

These entail the identification of disease biomarkers [70–72], the increase of patient recruitment for

CTs [67], and the discovery of drugs for repurposing [63]. However, much is still to be done to overturn

the low rate of R&D for RDs. AI progress in therapy development has been modest in comparison with

that in other areas (e.g., diagnosis). However, we believe that the stimulating results obtained so far

associated with the ever-evolving AI frameworks will soon change this scenario. Healthcare, research,

and clinical development should be patient-centered [65]. Efforts to increase patient involvement in

various fields of healthcare show a growing need to proactively engage with patients [100], and patient

organizations have a central role to play [101]. AI technologies can help assess patients’ experience

through the analysis of patient reported outcomes and increase patient recruitment and engagement

through social media [100,102]. Furthermore, it can be used to monitor patient adherence in CTs [17].

Despite how much AI predictions pitch in to solve RD medical challenges, all results must be

experimentally validated to confirm their (bio)medical relevance [17]. Additionally, we would like to

emphasize that, for the application of AI in biomedicine, there is no “one size fits all” solution. Biomedical

data/issues are complex; AI-based algorithms and methods are numerous and ever-improving. Also,

technical and technological limitations must be carefully considered when designing an AI approach

in the biomedical context. Our study has some limitations. Firstly, we only searched a Medline

database—Pubmed. Although it is the most complete biomedical literature database, insightful data

present in other databases may have been lost. Secondly, some of the included manuscripts were not

detected in our initial keyword search. This was because of the absence of the keywords related to AI

and ML in both the MeSH terms and in the author-defined keywords of the manuscripts.

Healthcare, research, and patient involvement in health decisions are suffering undeniable change.

We believe it is important to cease this momentum and further explore AI potentialities to improve RDs

patients’ lives. Having said this, many considerations, including ethical and legal issues (e.g., regarding

data management, protection, and access equity), need to be carefully investigated to ensure we will

build a brighter future.
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Abbreviations

AI Artificial intelligence

ALS Amyotrophic lateral sclerosis

API Application programming interface

CDG Congenital disorders of glycosylation

CDWs Clinical data warehouses

CFML Characteristic feature mining algorithm

CNVs Copy number variants

COG Conserved oligomeric Golgi

CSAX characterizing systematic anomalies in expression data

CTs Clinical trials

CVID Common variable immunodeficiency

DABLC Dic-Att-BiLSTM-CRF

DeepPVP Deep phenomeNET variant predictor

(D)DSS (Diagnosis) decision support systems

eDIVA Exome disease variant analysis

HER Electronic health records

GA Golgi apparatus

GPP Glycosylation prediction program

HANRD Heterogeneous association network for rare diseases

HHT Hereditary hemorrhagic telangiectasia

IBM Inclusion body myositis

IR Infrared

isGPT identification of sub-Golgi protein types

LSDs Lysossomal storage diseases

ML Machine learning

MPS II Mucopolysaccharidosis type II

NER Named entities recognition

NGS Next generation sequencing

NLP Natural language processing

NN Neural network

PCA Principal component analysis

PH Pulmonary hypertension

QMR Quick Medical Reference

RDAD Rare disease auxiliary diagnosis system

RDs Rare diseases

R&D Research and development

RF Random forest

SilVA Silent variant analyzer

SLE Stroke-like episodes

SNPs Single nucleotide polymorphisms

SNVs Single nucleotide variants

SS Synovial sarcoma

SVM Support vector machine

URSAHD Unveiling RNA sample annotation for human diseases

VarCoPP Variant combinations pathogenicity predictor

VEST Variant effect scoring tool
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WES Whole-exome sequencing

WGS Whole genome sequencing
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