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Artificial Intelligence Aided Automated Design for

Reliability of Power Electronic Systems
Tomislav Dragičević, Senior Member, IEEE, Patrick Wheeler, Senior Member, IEEE, and Frede

Blaabjerg, Fellow, IEEE

Abstract—This paper proposes a new methodology for auto-
mated design of power electronic systems realized through the
use of artificial intelligence. Existing approaches do not consider
the system’s reliability as a performance metric or are limited to
reliability evaluation for a certain fixed set of design parameters.
The method proposed in this paper establishes a functional
relationships between design parameters and reliability metrics,
and uses them as the basis for optimal design. The first step in
this new framework is to create a nonparametric surrogate model
of the power converter that can quickly map the variables char-
acterizing the operating conditions (e.g. ambient temperature,
irradiation) and design parameters (e.g. switching frequency, dc
link voltage) into variables characterizing the thermal stress of
a converter (e.g. mean temperature and temperature variation
of its devices). This step can be carried out by training a
dedicated artificial neural network (ANN) either on experimental
or simulation data. The resulting network is named as ANN1

and can be deployed as an accurate surrogate converter model.
This model can then be used to quickly map the yearly mission
profile into a thermal stress profile of any selected device for
a large set of design parameter values. The resulting data is
then used to train ANN2, which becomes an overall system
representation that explicitly maps the design parameters into a
yearly lifetime consumption. To verify the proposed methodology,
ANN2 is deployed in conjunction with the standard converter
design tools on an exemplary grid-connected PV converter case
study. This study showed how to find the optimal balance between
the reliability and output filter size in the system with respect to
several design constraints. This paper is also accompanied by a
comprehensive data set that was used for training the ANNs.

Index Terms—Automated design for reliability (ADfR), artifi-
cial intelligence, power electronic systems.

I. INTRODUCTION

THE use of power electronic converters has become om-

nipresent nowadays. They are the key enablers of tech-

nologies such as renewable energy systems, electrical vehicles

and their charging infrastructure, variable speed drives, as well

as uninterruptible power supply (UPS) systems and microgrids

[1], [2]. Much like any other system, power converters are

prone to failures. Such failures cause downtimes that often

require costly maintenance procedures, especially if the power

electronic system is located in the remote or offshore location.

Moreover, such failures may also have catastrophic conse-

quences in mission critical applications or significantly reduce

the energy yield of renewable energy systems [3], [4].
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Redundancy has historically been one of the most attractive

approaches to provide the failure-tolerant capability to power

electronic systems [5]. While being highly effective in this re-

gard, redundant design will normally significantly increase the

cost and size of the system, thus compromising its competitive-

ness in the market. Another scheme is to select the individual

components in the converter (e.g. switching devices, inductors,

capacitors) with sufficient thermal and electrical stress margin,

thus expecting their low failure rates and, consequently, high

reliability of the overall system. However, with this approach,

the quantitative reliability metrics of individual devices are not

taken into account, and for this reason it is also not possible

to automatically design the system for pre-specified lifetime.

To circumvent the drawbacks of aforementioned methods,

the research in reliability of power electronic systems has

recently experienced a paradigm shift towards the so called

design for reliability (DfR) approach [6], [7]. The key idea

here is take the reliability metrics explicitly into account

during the design process. Since the most vulnerable part of

power converters are semiconductor devices, the most attention

in this research area has been dedicated towards studying their

failure modes. To this end, it has been observed that the most

common failure modes are associated with packaging, i.e.

with die-attach solder fatigue and bond wire damage. Both

of these modes are caused by junction temperature cycles and

the mean junction temperature of the device during operation.

Manufacturers of semiconductor devices have also carried out

comprehensive temperature cycling tests and discovered func-

tional relationships between the amplitude and mean value of

the junction temperature, and the device lifetime consumption

(LC) [8].

Therefore, the research focus in the DfR area has mostly

been on investigating the thermal loading of power devices

[9]–[11]. These investigations can be carried out either exper-

imentally or using detailed simulations models, which have

been shown to match excellently the experimental results [12],

[13]. The main principle is to expose the power converter to a

mission profile that represents its realistic operating condition

and extract the corresponding thermal profile of one or more

devices (i.e. the junction temperature data). The mission profile

is usually characterized by an ambient temperature and current

flowing through the power converter over a certain period

of time [14]. The rainflow counting algorithm can then be

deployed to count the number of junction temperature swings

and to extract their amplitudes as well as mean values from

the given thermal profile. Final step is to associate every cycle

with its cumulative damage (e.g. using [8] or other device LC



data from the relevant manufacturer), and calculate the overall

LC over a period of time using the Miner’s rule [9]. Assuming

that all other components in the system are significantly more

reliable, the LC of power devices is hence normally considered

as the representation of the whole system’s LC [15]–[18]. It

is also possible to combine LCs of several components in the

system to assess the system level LC [19].

Nevertheless, the LC estimation procedure in all the DfR

approaches mentioned in the existing literature are made on

power electronic systems whose design parameters are already

fixed. This means that every time a designer would like to

check how different design parameters affect the lifetime

of power electronic system, he would need to perform the

time consuming simulations or experiments all over again.

Moreover, with existing methods it is not possible to specify a

certain lifetime of the power electronic system as a design goal

and then explicitly obtain the design parameters that guarantee

the specified LC. In other words, there is no possibility to

reverse the design process.

The aim of this paper is to bridge this research gap by

building upon the principal DfR concepts and develop a fully

automated design for reliability (ADfR) tool. The key enabling

methodology for this development is artificial intelligence, and

more particularly the artificial neural networks (ANNs). It is

well known that ANNs are universal function approximators,

i.e. they can approximate any given input/output data relation-

ship with arbitrary precision [20]. Here, we take advantage of

this capability for two different purposes. First, we use it to

build a surrogate model of the power converter that is able

to estimate the thermal stress of any device in the converter

as a function of design parameters and the mission profile

several orders of magnitude faster compared to running the

detailed simulation model. Such a surrogate model, labeled as

ANN1, has similar functionality as a lookup table reported in

e.g. [18], but consumes significantly lower amount of memory,

thus allowing to embed any design parameter as an input

to the model. In addition, it has much better capability to

generalize nonlinear input/output data relationship, thereby

providing more precise estimates of the junction temperatures.

The second purpose of ANN is to establish the functional

relationship between design parameters and yearly LC in a

network labeled ANN2. Again, this process resembles the

ones presented in [16]–[18], but here the LC evaluation is

systematically repeated for a large number of design parameter

variations to generate the training data for ANN2 which,

after training, gives an explicit functional relationship between

design parameters and LC, thus providing a key basis for

ADfR. ANN2 can consequently be used either individually

or in conjunction with other design tools, e.g. if it is desirable

to balance the reliability of the system with other metrics such

as cost, weight/volume, or others.

The rest of the paper is organized as follows. Section II

describes the power electronic system under consideration,

i.e. the single-phase grid-connected H-bridge PV inverter,

although the proposed methodology is generic and thus ap-

plicable to any other converter topology. In Section III, the

conventional system design and reliability evaluation method-

ologies are briefly revised, while Section IV provides the
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Fig. 1. System configuration and control structure of a two-stage single
phase grid-connected PV system. Here, PI is proportional-integral, PR is
proportional-resonant, PLL is phase locked loop, PWM is pulse width
modulator.

background about the artificial neural networks. In Section

V, the proposed design procedure is described step by step.

The procedure is then verified in Section VI, where switching

frequency and dc-link voltage reference of the grid connected

PV inverter that provide the optimal balance between the

reliability and size of the system, are found via proposed

approach. Finally, the conclusion of the paper is given in

Section VII.

II. DESCRIPTION OF THE CASE STUDY

A. System Description

The design methodology proposed in this paper is verified

on a power electronic system case study that involves a two-

stage grid connected single-phase PV inverter with rated power

of 10 kW, as shown in Fig. 1. The system comprises a dc-

dc boost converter, which operates the maximum power point

tracking (MPPT) algorithm and a full-bridge dc-ac converter

that regulates the intermediate dc link voltage vdc and grid

side current using cascaded linear control loops. The correct

angle for the current controller is provided by a phase-locked

loop (PLL).

Table I indicates the design parameters of the system.

These parameters have a strong influence on its performance,

size/cost and reliability, and should therefore be carefully

selected. In a case study analyzed in this paper, some of

the listed parameters are considered to be fixed while others

are designable. For instance, the switching frequency of the

inverter fsw, reference dc link voltage v∗dc, and LCL filter

parameters (Lf , Cf , Lfg) are chosen as designable parameters.

By looking at the relationships between these parameters, it is

intuitively clear that higher fsw will yield a lower switching

ripple, thus permitting the usage of a smaller filter. However,

higher switching frequency will also result in higher switching



TABLE I
PARAMETERS OF THE TWO-STAGE SINGLE PHASE PV SYSTEM (FIG. 1)

Fixed parameters

PV inverter rated power 10 kW

Boost converter inductor Lb = 1.8 mH

PV-side capacitor Cpv = 1000 µF

Dc-link capacitor Cdc = 1100 µF

Grid nominal frequency ωg = 2π × 50rad/s

Grid nominal voltage (RMS) 230 V

Designable parameters

Inverter LCL filter Lf , Cf , Lfg

Inverter switching frequency fsw
Dc-link voltage reference v∗

dc

losses, thereby causing larger junction temperatures of the

power devices and shortening their lifetime.

While the aforementioned design trade-off between the

reliability and size of the system is well-known, the existing

research works fail to establish explicit relationships between

these two metrics and to embed them as a part of the design

process. More particularly, the works labeled under the Design

for Reliability alias (e.g. [17], [18]) assume predetermined

design and only provide lifetime prediction for a given design

and mission profile. Therefore, it would be more appropriate

to label the methods proposed in these works as reliability

evaluation methods. On the other hand, the works that consider

optimal design of power electronic systems (e.g. [21]–[24])

do not take into account the reliability of the system as a

performance metric. The aim in this paper is to fill this knowl-

edge gap by providing a holistic design methodology that

simultaneously takes into account the performance, reliability

and size/cost of the system.

B. Mission Profile

Besides the design parameters, the mission profile in which

the power converter is operated has a notable impact on

the junction temperatures of power devices. Mission profile

characterizes the operating conditions such as the ambient tem-

perature and the power processed by the converter. As shown

in [18], mission profiles can vary significantly according to

geographic location.

In this paper, a yearly mission profile recorded in Aalborg,

Denmark has been used for the considered case study, as

shown in Fig. 2. It can be seen from the figure that the

profile involves yearly irradiation and ambient temperature

data. Depending on the particular PV panel characteristics,

which can be found in the manufacturer data-sheet, such

data can easily be translated into the power processed by the

inverter Pin, assuming that the maximum possible power is

always extracted. Pin and Ta can then be used for obtaining

the junction temperatures from the detailed simulation model,

as detailed in Section III-B.

III. RELIABILITY OF THE POWER ELECTRONIC SYSTEM

In principle, the reliability of power electronic system can

be improved in the following three ways [6]: 1) by selecting
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Fig. 2. Yearly mission profile from the PV installation site in Aalborg,
Denmark with a sampling rate of 1 min/sample.

a suitable topology of the converter, i.e. the one that either

minimizes the number of components or that provides redun-

dancy in case of failures 2) by choosing high quality individual

components in the system that are less likely to fail, and 3)

by reducing the stress level of the components [6].

A. Design Trade-Off

In this paper, it is assumed that the circuit topology of the

converter is fixed and that the type of components most prone

to failures, i.e. the switching devices, are preselected. To this

end, the main design goal from a reliability point of view

is to minimize the stress level on the switching devices. As

mentioned before, lower fsw leads to lower switching loss,

which in turn induces lower temperature swings and hence

leads to longer lifetime for the devices. However, lower fsw
also results in higher harmonic distortion and in a slower

dynamic response of the converter, while it also requires

bulkier and more expensive passive filters. Similarly, higher

vdc increases the switching losses and causes higher switching

ripple [22], but the higher it is, the more control bandwidth

it provides [25]. In this respect, it is clear that fsw and

vdc are two key design parameters that affect the reliability,

performance and size (cost) of the system. Therefore, these

two parameters should be explicitly selected to yield the best

balance between these metrics.



TABLE II
PARAMETERS OF THE LIFETIME MODEL OF AN IGBT MODULE

A 3.4368× 1014

α −4.923

β0 1.942

β1 −9.012x10−3

C 1.434

γ −1.208

fd 0.6204

ar 0.28

Ea 0.06606 eV

kb 8.6173324× 10−5eV/K

In order to provide a framework for truly optimal design,

the well-known conventional design procedure (as in e.g. [21]

and [22]) is here combined with the LC of the system, which

can be considered as its reliability metric. The methodology

for evaluating the LC of power devices is described in the

following subsection.

B. Lifetime Evaluation Procedure

It is well known that the power devices are the most vulner-

able components of power electronic converters. Depending

on the mission profile (Ta and Pin) and design parameters

(vdc, fsw, heat sink parameters and others), these devices will

experience junction temperature swings that cause their wear-

out. The temperature swings occur due to changing switching

and conduction losses caused both by the varying loading

(mission profile) and the sinusoidal shape of the inverter

current. For a given operating condition, the thermal stress

on the device can be characterized by the mean temperature

value Tjm, the amplitude of oscillation ∆Tj and the period of

oscillation ton.

The concrete values of Tjm, ∆Tj and ton can be extracted

from the detailed simulation model of the converter and its

associated thermal network. However, it is unfeasible to run

the detailed simulation for the whole yearly mission profile

period. For this reason, an approximate model of the converter

that can quickly translate the mission profile and design pa-

rameters into junction temperatures, is commonly developed.

The development of such model using artificial intelligence

methodology is described in the following section.

For numerous types of devices, empirical models that quan-

tify the effect of each cycle on the lifetime of the device have

been constructed based on experimental data. An example of

one such model is given in [8]:

Nf =A× (∆Tj)
α
× (ar)β1∆Tj+β0 ×

[

C + (ton)
γ

C + 1

]

× exp

(

Ea

kb × Tjm

)

× fd,

(1)

where Nf is the number of cycles that a device can tolerate

before failure if stressed with a certain ∆Tj , Tjm and ton.

The other parameters required to evaluate (1) can be obtained

experimentally. An exemplary set of parameters is taken from

[8] and it is shown in Table II.

The inverse of Nf indicates the level of damage that a

device sustains under certain stress conditions. In line with

this, the total LC over a certain period can then be estimated

using the Miner’s rule as follows:

LC =
∑ ni

Nfi

(2)

where ni is the number of cycles that result in incremental

damage 1/Nfi. Therefore, in order to find out the total LC

that occurs over a certain time period, it is necessary to count

the total number of temperature cycles and associate each cycle

with a corresponding Nfi.

For a grid-connected PV system, two basic types of junction

temperature cycles can be identified. The first type of cycles is

caused by the mission profile and they are normally extracted

from the yearly junction temperature data using the rain-flow

counting algorithm. Such an algorithm extracts all the cycles

and associates each one of them with a specific ∆Tj , Tjm

and ton, thus enabling the usage of (1). The second type is a

repercussion of injecting the sinusoidal current at fundamental

frequency into the grid. Therefore, this type has a fixed period

ton, while given ∆Tj and Tjm can be extracted from the

converter model and the rain-flow counting data, respectively.

Therefore, the total LC can be calculated by adding the two

contributions. It should also be noted that the parameters in

(1) are usually not deterministic and can vary within certain

ranges. If these effects are taken into account, the overall

LC is normally evaluated using the Monte-Carlo analysis

and represented as the probability distribution function [26].

However, the consideration of the parameter variations in (1)

is out of the scope of this paper, and will be considered in the

future work.

IV. ANN BASED MODELING

A. Motivation for Using the ANNs

As explained in the previous section, it is essential to

establish a simple model of the converter that would be able to

translate the yearly mission profile data into a yearly junction

temperature variation. The state of the art approaches deal with

this task by simulating the detailed model of the converter with

associated thermal network for several selected combinations

of Pin and Ta and extracting the corresponding ∆Tj and Tjm.

These data are then fed to the look-up table (LUT) that serves

as a surrogate model of the converter.

However, there are several fundamental limitations associ-

ated with this approach. First, LUTs are not suitable for high-

dimensional data mapping since they suffer from the inefficient

use of memory space. This is particularly restricting if one

would seek to construct a more complicated surrogate model

of the power electronic system where it would be required to

map both the mission profile and design parameters to the

junction temperatures. Secondly, LUTs are unable to learn

general nonlinear relationships between the input data and

output data since they are based on linear interpolation. While

the second issue could be improved by using more data points,

this would not be feasible in high-dimensional spaces due

to limited memory. For these reasons, LUTs have been only

used to map mission profile data (i.e. Pin and Ta) to junction



temperatures, assuming that all other design parameters are

fixed [18].

In order to come around this difficulty, in this paper we

propose the usage of a forward artificial neural network (ANN)

to serve as a more fast, accurate and flexible surrogate model

of the converter. It has been shown in [20] that forward ANN

is a universal function approximator, i.e. that the parameters in

its structure can be adjusted in such a way to approximate any

nonlinear input/output data relationship with arbitrary preci-

sion. For this reason, ANN has better generalization capability

than LUT and can thus better approximate the responses to

input samples that are outside the training data set. Another

advantage of ANN is that the number of training parameters

(i.e. weights and bias terms) can generally be several orders

of magnitude lower than the number of data points. For this

reason, ANN has much lower memory requirements than LUT.

In particular, the evaluation of the ANN used in this paper was

found to be around four orders of magnitudes faster than the

LUT. Finally, ANN is based on a nonparametric regression

model. In this case, designer does not need to know anything

about the relationship between input and output data, because

the ANN will learn them automatically during the training

process. This is particularly useful in multi-dimensional spaces

where parametric nonlinear regression approaches are not

suitable since it is difficult to guess the structure of the function

that best models input-output data relationships.

The following subsection provides a brief theoretical intro-

duction to ANNs.

B. ANN Principle

Numerous types of ANNs have been proposed in the liter-

ature [27]. Particular network choice depends mostly on the

nature of relationships between inputs and outputs in the data.

When outputs depend on historical values of the inputs and

outputs, recurrent neural networks are the most suitable. In

the case study of this paper, the relationship between design

parameters and mission profiles with the junction temperatures

is static. For this reason, forward ANN has been selected for

the case-study here. Forward ANNs are the most commonly

used deep learning algorithms and have been applied already

to various electrical engineering problems, from predicting the

voltage voltage distortion in electrical distribution networks

[28], to designing the microwave filters [29], [30].

A forward ANN comprises an input layer, one or more

hidden layers, and an output layer. Each of these layers

comprises a number of neurons that process the information

coming from neurons in the layer below. To calculate the

output of a certain neuron γl
i in layer l, the outputs of all

the neurons zl−1
j (j = [1..Nl−1]) in the layer below l − 1

are multiplied with given weights ωl
ij and the bias term bli

is then added. The result is processed through an activation

function σ that usually takes the form of a sigmoid function,

i.e. σ(γ) = 1/(1+e−γ), to generate the output zli. This output

then becomes one of the inputs for the layer above, l+1, and

the same procedure is repeated to calculate the output of other

neurons in layer l.
In the input layer, z1i takes the form of inputs. On the

other hand, the output layer typically uses the linear activation

function to allow any numerical value, as opposed to being

limited to [0,1] range as the sigmoid function. To sum up, the

complete signal flow of the ANN can be described as follows:

• Layer 1 (input):

z1i = xi i = 1, .., N1 (3)

where xi are the inputs.

• Layers l = 2,..,L− 1 (hidden):

zli = σ





Nl−1
∑

j=1

wl
ijz

l−1
j + bli



 i = 1, .., Nl. (4)

• Layer L (output):

yi = wL
i z

L
i i = 1, .., NL (5)

where yi are the outputs.

It has been shown in [20] that forward ANN is an universal

function approximator, i.e. that the weights and bias terms

in its structure can be adjusted so as to approximate any

input/output data relationships with arbitrary precision. These

parameters are adjusted during the training process, normally

using the back-propagation algorithm. This algorithm takes

advantage of the continuous differentiability of the ANN to

find out the direction in which the wl
ij and bli parameters

should be adjusted in each training iteration to reduce the error

between the measured output data and prediction made by the

ANN from previous iterations [31]. Back-propagation is a well

known algorithm that is available in standard softwares like

Matlab.

It is important to notice that, before starting the training

process, the structure of the network should be defined (i.e.

the number of layers and the number of neurons in each layer).

To this end, if too few neurons are used, the strong nonlinear

relationships may not be captured. On the other hand, over-

fitting may occur in ANNs with too many neurons. However,

up until now, an analytic method for selection for proper

number of neurons has not been established. Therefore, they

are usually selected using trial-and-error and this approach is

also used in this paper.

Next subsection presents the development of two ANNs that

are used in the proposed optimal design procedure, which is

detailed in Section V.

C. Deployment of ANNs for Fast and Flexible LC Evaluation

of the PV Inverter

This section elaborates the development of two dedicated

ANNs, one that serves as a surrogate model of the converter

and one that translates the design parameters into a yearly LC.

1) ANN1: Surrogate Model of the PV Inverter: The purpose

of this network is to map the operating conditions and design

parameters into the junction temperatures and is labeled as

ANN1. The data required to train this network is collected

by running a detailed simulation model of the converter nu-

merous times to cover some specific range of input parameter

variations. After each simulation, corresponding Tjm,i,data and

∆Tj,i,data are extracted.
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Fig. 3. Structure of the ANN1. For simplicity, weights and bias terms are
omitted from the figure. The inputs to the ANN1 are highlighted with green
color, while the outputs with yellow.

Layer 1, N1 = 2
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LC
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Fig. 4. Structure of the ANN2. For simplicity, weights and bias terms are
omitted from the figure. The inputs to the ANN2 are highlighted with green
color, while the outputs with yellow.

Concerning the structure of the network, it has been empir-

ically chosen to comprise an input layer, two hidden layers,

and an output layer, and it is shown in Fig. 3. Therefore,

there are 4 layers (L = 4) in total. The number of neurons

in the input layer is 4 (N1 = 4) since there are 2 design

parameters v∗dc and fsw and two mission profile parameters,

Pin and Ta. The number of layers in the two hidden layers

are 5 and 3, respectively (N2 = 5, N3 = 3). Finally, the output

layer comprises 2 neurons (N4 = 2) because it is of interest to

find out two values that characterize the junction temperature,

i.e. its mean value Tjm and the amplitude of oscillation at

fundamental frequency ∆Tj .

After specifying the data sets and structure of the network,

ANN1 was trained using the train command, which is a part

of Matlab’s Deep Learning Toolbox. Trained ANN1 can now

be used to translate the tunable design parameters and the

mission profiles given in Fig. 2 into a junction temperature

of the inverter’s devices for any given combination of design

parameters v∗dc and fsw. Next, ANN1 is put to use in order

to create ANN2, as detailed below.

2) ANN2: Mapping of Design Parameters to Lifetime of the

Inverter: Besides ANN1, another network labeled as ANN2

is trained. This network serves as the overall representation of

the system that maps the LC for a given yearly mission profile

and design parameters. The data required to train this network

is collected by running the cycle counting and performing the

Miner’s rule on a yearly junction temperature data (obtained

by evaluating ANN1 on a yearly mission profile data) for

numerous combinations of design parameters fsw and v∗dc, as

shown in Fig. 5. Therefore, ANN1 is automatically embedded

in ANN2. Once the network is trained, instead of running the

rainflow counting algorithm every time when the LC estimate

is needed, the LC can simply be obtained by evaluating

ANN2.

The structure of this particular network is shown in Fig. 4.

It was empirically selected to have an input layer, two hidden

layers, and an output layer. The number of neurons in the

input layer are 2 (N1 = 2) since there are 2 design parameters

v∗dc and fsw. The number of layers in the two hidden layers

are 5 and 3, respectively (N2 = 5, N3 = 3). Finally, the output

layer comprises 1 neuron (N4 = 1) because our design interest

is in 1 performance indicators, i.e. the converter yearly LC

for a certain mission profile. After specifying the data sets

and structure of the network, ANN2 was again trained using

the train command. Trained ANN2 can now be deployed

as a basis for the optimal design and combined with other

designed methodologies, as described in the following section

that provides the overall framework of the proposed design

approach.

V. PROPOSED AUTOMATED DESIGN APPROACH

The complete workflow of the proposed design approach

is shown in Fig. 5. It can be seen that the procedure is

split into a training phase that comprises 4 steps and an

optimization stage with a single step. The training phase steps

have been described in detail in the previous section and are

only graphically summarized in Fig. 5. The ultimate result of

this phase is trained ANN2 that serves as the basis for optimal

design since it can explicitly map the design parameters to

yearly LC.

Nevertheless, minimization of the LC often needs to be

balanced with other metrics of the system. In this paper, the

idea is to optimize the trade-off between the LC and the system

size, while respecting the performance metrics defined by

relevant standards. To account for the power electronic system

size in quantitative fashion, the standard methodology for the

LCL filter design of grid-connected converters is adopted here

(e.g. as suggested in [21] and [22]).

Similarly like with lifetime consumption, the required LCL

filter parameters are also dependent on the fsw and vdc.

The first step is to select the inductance of the converter

side inductor Lf , which is normally done in accordance

with maximum permissible ripple in the converter current, as

follows [22]:

Lf =
vdc

6fsw∆ILmax

. (6)

where ∆ILmax is usually selected to be 10 % of the rated

converter current. The filter capacitor Cf is then selected to

limit the reactive power consumption of the filter. Usually,

its value is limited to 5 % of the base capacitance value, as

follows:

Cf ≤ 0.05 ·
Pn

ωgE2
n

. (7)
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Fig. 5. Flow diagram of the proposed artificial intelligence based design optimization of the power electronic system.

where Pn is the rated power of the converter, ωg is the grid

angular frequency, while En is the grid voltage amplitude. The

attenuation of the harmonics from the converter side current

depends also on the grid side inductor Lfg , as follows:

ig
ic

= ka =
1

1 + r(1− LfCfω2
sw)

. (8)

where ka is a required attenuation.

The equation (8) then provides the basis for the selection

of Lfg:

Lfg =
sqrt(1/k2a) + 1

Cfωsw

. (9)

It can be seen from (9) that the higher the Cf , the lower Lg

is needed to achieve the same level of attenuation. Therefore, it

is of interest to set the Cf at the upper limit in order to reduce

the size of the Lg , which has a more dominant influence on

the size of the system. It is also proposed in some references

to initially select Cf at a value lower than maximum in order

to allow sufficient headroom for iterative re-engineering the

design if the resonance frequency of the filter does not meet

the following mandatory requirement [21]:

10fg < fres =
1

2π

√

Lf + Lfg + Lg

Lf (Lfg + Lg)Cf

< 0.5fsw. (10)

Finally, the resonant frequency is taken into account to

derive the value for the damping resistor that is connected

in series with the capacitor, as follows:

Rf =
1

6πfrefCf

. (11)

To sum up, the standard LCL filter design methods take

fixed fsw and vdc as inputs and provide the Lf , Cf and Lfg

as outputs using the set of equations (6)-(10). It should also be

noted that (6)-(10) can be used when generating the data for

training ANN1, as indicated in Fig. 5. Considering that there

is not much freedom in designing Cf , it is proposed here to

use the total size of inductors (Ltot = Lf+Lfg) alongside with

the yearly LC (predicted by ANN2) to formulate the overall

fitness function, as follows:

fsys(w1) = LC2
ann + w1 · (Ltot)

2. (12)



where w1 is the parameter that is used to balance the impor-

tance of the two terms. By using different values of w1, a

Pareto front that characterizes the relationships between the

reliability and size of the system can be constructed.

The case-study analysis in the next chapter is carried out

using the fitness function (12). However, it is important to

notice that this particular fitness function is only exemplary

and any other one can be easily adopted within the frame-

work of proposed design methodology. For example, detailed

calculation of total volume and power losses of the LCL filter

has been carried out in [23] using comprehensive models

of inductive power components. Consequently, a Pareto front

indicating a trade-off between volume and power loss of the

filter has been derived. On the other hand, the LCL grid filter

of a multimegawatt medium-voltage neutral-point-clamped

converter for a wind turbine is designed using the selective

harmonic elimination PWM in [24] to improve the converter

efficiency. Design considerations concerning filter volume and

efficiency could easily be embedded with the design process

proposed in this paper by expanding the fitness function

(12). Similarly, effect of alternative modulation schemes on

converter efficiency could easily be considered by embedding

any type of modulator in the simulation model from which

the data is extracted. Consequently, the converter power loss

could then be embedded in the fitness function (12) as well.

Nevertheless, since research on advanced modulation schemes

and detailed modeling of inductive components is out of the

scope of this paper, these design considerations have not been

considered in the case study carried out in the following

section.

VI. CASE STUDY

In order to verify the proposed design methodology, a

case study for a PV system located in Denmark has been

carried out. As already shown in Section II-B, irradiance and

temperature data sampled minute by minute was available

from a location in Aalborg/Denmark.

A. Data Extraction, Normalization and Training

First and most computationally demanding step in the

proposed method is to extract the data required to train ANN1.

A detailed simulation model of the grid connected inverter

with associated heat sink and thermal networks was used for

this purpose. The model was simulated for 3 sec in order

to ensure that the mean junction temperature converges to a

steady state value. Such simulation took around 2 minutes in

real time.

In this paper, the design and mission profile parameters were

swept using 5 values for each parameter except for the dc link

voltage where 3 values have been used (since the temperatures

have been observed to rise linearly with the increasing dc link

voltage). The main reason why this number of data points

was enough to represent the power electronic system at hand

is a monotonically increasing nature of underlying functional

relationships between input and output data. For instance, if

the converter processes higher amount of power, Tjm and ∆Tj

will both be higher. Similarly, higher ambient temperature,

higher switching frequency and higher dc link voltage will

also cause increased temperatures of devices. Because of the

monotonically increasing nature, the strong nonlinearity in

these relationships is avoided and it turned out that it is

possible to represent accurately the system only with limited

number of data points. In this paper, the following parameter

sweep values were used:

Pin = [1000, 3000, 5000, 7000, 10000]W ;

Vdc = [450, 500, 550]V ;

fsw = [3000, 5000, 7000, 10000, 15000]Hz;

Ta = [−10, 0, 15, 25, 35] ◦C. (13)

Overall number of data points was thus 375 and the same

number of simulations needed to be carried out to extract

Tjm and ∆Tj . All the results were obtained in approximately

one hour on a workstation with 24 parallel cores using

Matlab’s Parallel Computing Toolbox. The overall data set

can also be accessed in Matlab (please find data375.mat in

the Active Content/Multimedia, where variables Tmean and

deltaT correspond to the mean temperature and amplitude of

temperature swing, respectively).

This data set was then randomly divided into three data sets,

i.e. the training set (70 % of data, corresponding to 263 data

points), the validation set (15 % of data, corresponding to 56

data points) and the testing set (15 % of data, corresponding to

56 data points). It should be noted that the precision of ANN

turned out to be highly robust to data division ratios. Namely,

empirical investigation has shown negligible differences in

ANN precision if the training set was kept between 15 % and

90 % of overall data. Regular normalization technique was

then deployed on the extracted data. To this end, the largest

value of each data point was used as its norm and all other

values of the same data type were then divided by the norm

prior to the training. This procedure prevented the possibility

of having different scales of input data, as all data points were

in the [0,1] range.

Consequently, ANN1 was trained and passed the next stage

where it was used to generate data for yearly mission profile

(see stage C. in Fig. 5). Here the fsw was swept from 3

to 15 kHz with a step of 1 kHz, whereas v∗dc was swept

from 450 to 550 V with a step of 10 V . Therefore, the total

number of data points was 143. The whole data collection

process was executed in less than 25 seconds, again by using

Matlab’s Parallel Computing Toolbox. As mentioned before,

50 Hz junction temperature cycles were counted automatically

while the other cycles were counted using a rainflow counting

algorithm. As with ANN1, this data set was randomly divided

into three data sets, i.e. the training set (70 % of data,

corresponding to 101 data points), the validation set (15 %
of data, corresponding to 21 data points) and the testing set

(15 % of data, corresponding to 21 data points). Data was also

normalized. Finally, ANN2 was trained on a given data and

passed forward to the optimization phase.

B. Design Optimization

After the training phase was accomplished, trained ANN2

was used in the optimization stage together with conventional
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Fig. 6. Pareto front of optimal designs obtained by sweeping the parameter w1

from (12) from 0 to 25. The three black diamonds correspond to w1 = 0.1,
w1 = 1, and w1 = 10, respectively (plots of corresponding fitness functions
are shown in Figs. 7-9).

design procedure, as indicated at the bottom of Fig. 5. In

particular, the minimum of the fitness function (12) was

calculated for different parameter values of w1, which was

swept from 0 to 25. As an example, three arbitrary points

corresponding to three different w1 (for w1 = 0.1, w1= 1 and

w1 = 10, respectively) have been selected from a given curve.

The super-high-fidelity plots of associated fitness functions

(together with optimal design parameters and corresponding

total filter inductance, as well as LC) are given in Figs. 7,

8 and 9, respectively. The respective minimums have been

found using an exhaustive search algorithm, which is feasible

for this case study since the evaluation of ANN2 is computa-

tionally extremely light (around 0.1 µsec). For comparison, a

commonly used look-up table that comprises the same dataset

turned out to be significantly more computationally intensive

as it took approximately 800 µsec to evaluate it. While this

time can still be considered relatively short, it would quickly

present a limitation when sweeping through the whole design

space with high fidelity.

Fig. 6 shows the Pareto front that shows the yearly LC

and the filter size corresponding to minimums of many fitness

functions obtained by sweeping the parameter w1 from 0 to

25. The obtained Pareto front clearly illustrates the trade-off

between the yearly LC and size of the system and provides

the formal framework for optimal design. Considering fast

evaluation of the fitness function (12), each of the 4-megapixel

plots shown in Fig. 7 and Fig. 8 and Fig. 9 were generated

in less than 0.5 seconds. The optimal solution was then

simply obtained by finding the lowest value in the given plot,

which can be done in Matlab almost instantaneously using the

embedded min function.

It also needs to be noted that if more design parameters

should be considered, the computational burden of the exhaus-

tive search method might become too high. If this happens,

there are several alternative ways to do the minimization. One

possibility may be to evaluate fitness function sequentially,

with higher and higher fidelity. Another option could be to

apply advanced approaches such as evolutionary optimization.

This would not impose strict limitation on the number of

design parameters, but would bring risk of getting stuck in

local minimums.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, an artificial intelligence aided methodology

for design optimization of power electronic systems has been

Fig. 7. Plot of the fitness function (12) for w1 = 0.1. The optimum is
achieved for fsw = 3870 Hz and v∗

dc
= 550 V , resulting in yearly LC of

0.342 % and Ltot = 6.89 mH.

Fig. 8. Plot of the fitness function (12) for w1 = 1. The optimum is achieved
for fsw = 5784 Hz and v∗

dc
= 540.5 V , resulting in yearly LC of 0.482 %

and Ltot = 3.3 mH.

Fig. 9. Plot of the fitness function (12) for w1 = 10. The optimum is achieved
for fsw = 8370 Hz and v∗

dc
= 498 V , resulting in yearly LC of 0.679 %

and Ltot = 1.83 mH.

proposed. The fundamental idea behind the method is to

substitute the key two steps of the system’s standard reliability

evaluation procedure with dedicated ANNs that serve as fast

and accurate approximations of these steps. As shown in Fig.

5, the first one, ANN1, is trained to act as a surrogate model

of the power electronic converter that can map the operating

conditions and design parameters into junction temperature(s)

of the converter’s power devices. The other one, ANN2, is

then trained using both ANN1 and any given mission profile

(e.g yearly) to serve as an overall system representation that

maps the design parameters into a LC. Since ANN can be

evaluated extremely fast (around 1 µsec), numerous design

parameter combinations can be tested almost instantaneously

in order to shed light on their influence of design goals. Here,

this capability was exploited in order to formally investigate

the influence of two exemplary design parameters, i.e. fsw



and v∗dc on the trade-off between the filter size in the single-

phase grid-connected PV system and the LC of the devices in

the converter. With aid of proposed methodology, this trade-

off was represented with the Pareto curve that provides the

precise design limitations of the system and allows one to

analytically find the optimal fsw and v∗dc in accordance to

desired position on the Pareto curve. This provides a clear

improvement over the state of the methods that can only

evaluate the LC for a fixed design and allows powerful design

optimization capability. Possible interesting directions for the

future work could be to look at more design parameters (e.g.

heat sink parameters, modulation strategy, etc.). This would

prolong the data extraction process, but the trained neural

network could then be used for more comprehensive design

optimization. Another research direction could be to embed

more performance metrics such as the volume and cost of

the system. Finally, it would be interesting to investigate

the proposed system design procedure on types of power

electronic converters that exhibit unequal thermal stress distri-

bution among their devices.
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