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The lack of consensus regarding pollinator decline in various parts of the planet has

generated intense debates in different spheres. Consequently, much research has

attempted to identify the leading causes of this decline, and a multifactorial synergism

(i.e., different stressors acting together and mutually potentiating the harmful effects)

seems to be the emerging consensus explaining this phenomenon. The emphasis on

some stressor groups such as agrochemicals, and pollinators such as the honey bee

Apis mellifera, can hide the real risk of anthropogenic stressors on pollinating insects. In

the present study, we conducted a systematic review of the literature to identify general

and temporal trends in publications, considering the different groups of pollinators and

their exposure to agrochemicals over the last 76 years. Through an artificial intelligence

(AI)-aidedmeta-analysis, we quantitatively assessed trends in publications on bee groups

and agrochemicals. Using AI tools through machine learning enabled efficient evaluation

of a large volume of published articles. Toxicological assessment of the impact of

agrochemicals on insect pollinators is dominated by the order Hymenoptera, which

includes honey bees. Although honey bees are well-explored, there is a lack of published

articles exploring the toxicological assessment of agrochemicals for bumble bees, solitary

bees, and stingless bees. The data gathered provide insights into the current scenario

of the risk of pollinator decline imposed by agrochemicals and serve to guide further

research in this area.

Systematic Review Registration: https://asreview.nl/.
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INTRODUCTION

Insects are a major group of pollinators of flowering plants, which include flies (Diptera), moths
(Lepidoptera), butterflies (Lepidoptera), beetles (Coleoptera), ants, wasps, and bees (Hymenoptera)
(Ostiguy, 2011; Wardhaugh, 2015). Bees are the most important group of pollinating insects
(Klein et al., 2006; Potts et al., 2016). Pollinator insects are vital for the maintenance of natural
ecosystems, conservation of biodiversity, and food security. Insects, including bees, are undergoing
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a significant decline in their populations (Wagner et al., 2021).
Approximately 40% of insect species are threatened, and the
most affected orders include Lepidoptera, Hymenoptera, and
Coleoptera (Sánchez-Bayo and Wyckhuys, 2019).

The decline of pollinators can impact 35% of global
agricultural land, putting the world’s major food crops at risk
(FAO, 2018a). Climate change and anthropogenic factors, such
as habitat loss and fragmentation, agricultural intensification
and large-scale use of agrochemicals, environmental pollution,
pathogens, and invasive alien species, have been identified as the
main drivers of this decline in pollinators (IPBES, 2016).

Concerns regarding conservation of pollinators are
unquestionable. Currently, there are global initiatives to
protect pollination services in sustainable agriculture, such as
monitoring the status of pollinator insects, implementation
of risk assessments, systematization of information, and
development of public conservation policies (IPBES, 2016;
Potts et al., 2016; FAO, 2018a; EFSA, 2020). These initiatives
provide valuable information for assessing the actual scale of
risks to pollinators. Consequently, research can be directed
toward filling the knowledge gaps (IPBES, 2016). This could
potentially aid in designing management and conservation
strategies for pollinators.

Bees comprise a large group of pollinators of flowering
plants. Approximately 20,000 species of wild and managed bees
contribute to the pollination of plants worldwide, exhibiting
high efficiency in plant reproduction and improving crop yield
(Garibaldi et al., 2013; Potts et al., 2016; FAO, 2018a). For
instance, the genus Apis, which comprises 11 known species,
has spread worldwide, and currently, different subspecies are
pollinating on almost every continent (Crane, 2009). Some
species of bees are managed, which are used as suppliers of
pollination services to crops, and also provide other benefits or
products of broad use, including honey, wax, propolis, and pollen
(IPBES, 2016; Grüter, 2020).

Honey bee (Apis mellifera) is the most commonly managed
and commercialized bee species in the world (Hung et al., 2018),
followed to a lesser extent by some species of bumble bees
(Bombus sp.), and some stingless bees and solitary bees (Grüter,
2020; Delaplane, 2021). Although there is growing evidence
about the important role of wild pollinators in contributing
to crop production and environmental health (Garibaldi et al.,
2013), most studies have focused on honey bees and bumble
bees because of their role in agriculture (Abati et al., 2021).
In recent years, non-Apis species (excluding those of the Apini
tribe) have also been prioritized in conservation policies because
of their ecological importance, particularly in the Pan-Tropical
region (Barbosa et al., 2015; IPBES, 2016; Pires et al., 2018; EFSA,
2020). However, information on the biology and management of
non-Apis bees, compared to that on honeybees, is still lacking.

Approximately two million tons of agrochemicals are used
globally per year, with almost 95% corresponding to herbicides
(47.5%), insecticides (29.5%), and fungicides (17.5%) (Sharma
et al., 2019); there are estimates that this use will increase to
3.5 million tons in a short period (Sarkar et al., 2021). Among
these agrochemicals, insecticides, mainly neonicotinoids, are
often considered one of the main factors driving the decline
of bees (Hopwood et al., 2012; Abati et al., 2021; Siviter et al.,

2021). Most studies have used honey bees as a suitable model
for risk assessment given their controversial interaction with
neonicotinoids, and this has resulted in a dearth of studies on
other bee species and impacts of other agrochemical groups
(Barbosa et al., 2015; Lima et al., 2016; Abati et al., 2021; Siviter
et al., 2021).

Guidance for assessing the risks of agrochemicals in bees is
based on the assessment of the toxic effects of these chemical
compounds. Variables such as mortality (lethal effects) and
behavioral changes (sublethal effects) are used as parameters to
estimate the harmful effects of agrochemicals on colony health
(EFSA, 2013; IPBES, 2016; Botina et al., 2020). Evidence indicates
that non-Apis bees are more susceptible to insecticide exposure
than honey bees (Arena and Sgolastra, 2014; Tomé et al.,
2017), and that three main groups of agrochemicals (herbicides,
insecticides, and fungicides) can have lethal and sublethal effects
on bees (Tomé et al., 2017; Botina et al., 2020; Araújo et al., 2021).

There is a large volume of toxicological studies on pollinators.
However, many of them are single-species studies, focusing on
honey bees. Therefore, a meta-analysis can be a useful approach
to identify knowledge gaps and direct future research efforts.
Performing a meta-analysis can be a challenging task as it entails
intensive efforts to systematically review published studies.
However, with artificial intelligence (AI) tools, researchers can
now interactively apply natural language processing andmachine
learning (ML) models, thereby reducing the effort involved in
systematic review (Marshall and Wallace, 2019). In interactive
ML procedures, the researcher interacts with an ML model in
a loop and based on the researcher’s decisions (training data
set with relevant vs. irrelevant studies), the model updates its
predictions for the remaining dataset, selecting the next study
that is presented to the researcher. The researcher then screens
this study and provides a label (i.e., relevant or irrelevant).
The newly labeled study is added to the training dataset, and
another round is iterated (Van de Schoot et al., 2021a). Thus,
interactive ML minimizes the number of studies to be screened
by the researcher by prioritizing articles that are most likely to
be relevant.

In the present study, we conducted an AI-aided systematic
review of the literature to recognize general and temporal
trends in publications on different groups of insect pollinators
and their agrochemical exposure over the last 76 years.
Initially, we searched two databases to identify published studies
with pollinating insects in general, and a qualitative analysis
was performed to identify the main groups of pollinators
and agrochemicals studied. Through a meta-analysis, we
quantitatively assessed trends in publications on the main
pollinator groups (bees from the tribes Apini, Bombini, and
Meliponini) and agrochemicals (insecticides). This allowed us to
systematically analyze the state of agrochemical risk assessments
for bees and to detect any relevant knowledge gaps.

METHODS

We followed the guidelines outlined in the “Preferred Reporting
Items for Systematic Reviews and Meta-Analyses” (PRISMA)
(Moher et al., 2009) for the systematic literature review, which
included these stages: identification, screening, eligibility, and
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inclusion. The following subsections provide further details of the
literature review and data analyses.

Identification
To identify published studies on toxicological assessment of
agrochemicals in insect pollinators, we searched the databases
of Scopus (Elsevier) and Web of Science (main collection,
Clarivate Analytics) for the years 1945–2021. We screened the
title, abstract, or keywords of the manuscript for the search
words. The search heuristic was defined as: (pollinator∗ OR
insect∗) AND (pesticide∗ OR insecticide∗ OR agrochemical∗

OR “agricultural protectant∗” OR “phytosanitary product∗” OR
biopesticide∗ OR bioinsecticide∗ OR “botanical pesticide∗” OR
“botanical insecticide∗” OR gmo OR “bt crop∗” OR “crop
protection” OR “bt toxin∗” OR “cry toxin∗” OR “proteinase
inhibitor∗” OR “transgenic plant”). Studies that were found in
duplicate from the databases were manually removed based on
title matching.

Screening
We applied text classification based on interactive ML to title
and abstract screening. Accordingly, we constructed a training
dataset by labeling studies to build our model. The training
dataset consisted of 86 irrelevant papers and 79 relevant papers.
The title and abstracts of the articles were processed (converted
to lowercase and no stop words were removed), and translated
into matrices through the term frequency-inverse document
frequency method (Ramos, 2003). We used the naïve Bayes
algorithm, which is known to perform very well for text
(Schneider, 2005), to compute the relevance scores of the
published articles. We stopped reviewing after we found 150
non-relevant published articles in succession during the learning
cycle, and the output of the process included 1,050 relevant
published articles. These AI-based screening procedures were
performed using the open-source tool ASReview (Van de Schoot
et al., 2021b).

Eligibility and Inclusion
The full-text of the articles selected after the initial screening
was assessed for eligibility. We selected peer-reviewed articles,
written in English, reporting the possible effects of agrochemicals
(active ingredient alone or formulations) on insect pollinators,
describing the response variable evaluated, and delineating a
rigorous study design with controls. Books, book chapters,
conference papers, thesis, dissertations, and reviews were
excluded. From the articles selected after evaluation of the full-
text, we systematically extracted the information for qualitative
analysis based on the defined topics (Supplementary Table S1
is available on http://rpubs.com/bernardesrc/851826). Finally,
based on the qualitative analysis, we considered only those
articles for themeta-analyses that assessed insect pollinators from
the tribes Apini, Bombini, and Meliponini.

Statistical Analyses
We performed meta-analyses on studies that assessed the
toxicological effects of insecticides as the main group of
agrochemicals on bees (Apini, Bombini, and Meliponini) as the
main group of pollinators.We considered randomized controlled

bioassays (i.e., a single study assessing different insecticides or
pollinator groups in independent trials) as a binary outcome.
Therefore, the overall likelihood of studies covering some of the
bee groups was determined through risk ratio (RR) and 95%
confidence intervals (CIs). These estimates were based on mixed-
effect models with inverse-variance and the DerSimonian–Laird
method. We measured between-study heterogeneity (τ ²), and
performed a heterogeneity test based on total heterogeneity (I²;
p < 0.05) (Schwarzer et al., 2015). Subgroup analyses were
performed to explain the statistical heterogeneity, considering
insecticide groups and type of response assessed as moderators.
All analyses were performed using the packages meta (Balduzzi
et al., 2019) and stats in R software (version 4.1.1) (R Core Team,
2021).

RESULTS

Literature Review
We found 62,715 published articles in the databases, and after
removing duplicates, we identified 62,560 articles (Figure 1).
Finally, 784 papers were selected that included data from
independent bioassays (Supplementary Table S2 is available on
http://rpubs.com/bernardesrc/851826).

Qualitative Results
Most of the studies focused on the order Hymenoptera
(Figure 2A). There were only nine and five bioassays for
Lepidoptera and Diptera, respectively, representing 0.6% of
the studies. Within Hymenoptera (2,299 independent bioassays;
99.40%), the main family was Apidae and some representatives
of Megachilidae (Figure 2A). The main pollinator species group
covered was honey bees (Apini), followed by bumble bees
(Bombini) and stingless bees (Meliponini), all of which belong
to the Apidae family (Figure 2A). Therefore, these three groups
of bees were included in subsequent meta-analyses.

There was an impressive increase in research output after the
2000s, with 28.1 ± 5.6 (mean ± standard error) independent
bioassays from 10 ± 2 articles published per year (Figure 2B).
Insecticides were the most tested group among agrochemicals,
accounting for 1,787 bioassays (77.26%) (Figure 2C). The most
predominant insecticide group was neonicotinoids (41.13%),
followed by pyrethroids (12.26%), organophosphates (10.63%),
carbamates (4.2%), phenylpyrazoles (2.85%), phytochemicals
(2.80%), and spinosyns (2.46%) (Figure 2C). Insecticidemixtures
were tested in 9.60% of the trials, and mixtures of neonicotinoids
and triazoles were the most tested (Figure 2C).

Of these studies that assessed the main groups of bees and
insecticides, only 7.52% assessed the interaction with other
stressors, and 6.37% of these studies were on honeybees, 1.07% on
bumble bees, and 0.08% on stingless bees (Figure 3). Moreover,
most of these studies tested the association with neonicotinoids
(5.37%) (Figure 3).

Most studies were conducted under laboratory conditions
(77.33%) and involved oral application (58.53%). The studies
conducted in the field (n = 266; 12.44%) were almost exclusively
with honey bees (n = 211; 79.32%). In addition, acute exposure
occurred in 64.38% and chronic exposure in 26.6% (Figure 4).
In acute exposure, 49.7% were through oral application, 15.4%
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FIGURE 1 | Flowchart depicting the stages (identification, screening, eligibility, and inclusion) of systematic literature review on the toxicological assessment of the

impact of agrochemicals on insect pollinators. In the identification stage, duplicates were recognized through the paper titles. The screening of titles and abstracts was

performed with active machine learning (ML), in which 165 labeled studies (86 irrelevant and 79 relevant) were included in the ML model. Then, several active learning

cycles were performed until 150 irrelevant studies were found in sequence (i.e., 3,050 studies were detected and 1,050 of the most relevant studies were selected). In

the eligibility stage, articles (n = 266) that did not report agrochemical tests with any insect pollinator and/or did not describe the response evaluated in pollinators

were excluded. In the inclusion stage, articles that did not assess at least one of the main identified bee groups (honey bees, bumble bees, and stingless bees)

were excluded.
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FIGURE 2 | Overall trends in publications on toxicological assessment of agrochemicals for insect pollinators. (A) Distribution of bioassays according to pollinator

groups; the circle in the center represents the root node, with the hierarchy moving outward from the center. (B) Cumulative independent bioassays (i.e., a single study

assessing a different agrochemical stressor or pollinator in independent trials) over time exhibiting the number of published articles per year and the main groups of

pollinators (bees). (C) Agrochemical groups evaluated in the published articles, detailing the insecticides and mixtures (i.e., mix of two or more agrochemical groups)

comprising the main groups. Agrochemicals, insecticides, and mixtures with occurrences ≤ 40, ≤ 40, and ≤10 were grouped as “others,” respectively.
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FIGURE 3 | Interaction flows among insecticides and other stressors that were tested in the main groups of bees found in the literature review (n = 1,304) of

toxicological assessment of the impact of agrochemicals on insect pollinators. The values on the right side of each node indicate the number of trials. The thickness of

the nodes (rectangles) and arcs (links going from one node to another) is proportional to the frequency of interactions. Terms separated by dash indicate that both

terms were assessed.

FIGURE 4 | Interaction flows among the study systems, applications, and exposures that were assessed in the main groups of bees found in the literature review (n =

2,139) on toxicological assessment of agrochemicals for insect pollinators. The values on the right side of each node indicate the number of trials. The thickness of the

nodes (rectangles) and arcs (links going from one node to another) is proportional to the frequency of interactions. Terms separated by dash indicate that both terms

were assessed.
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FIGURE 5 | Interaction flows among the development stages, experimental set ups (the level of social organization of the pollinators in which the study was

performed), and sex/castes that were assessed in the main groups of bees found in the literature review (n = 2,139) of toxicological assessment of the impact of

agrochemicals on insect pollinators. The values on the right side of each node indicate the number of trials. The thickness of the nodes (rectangles) and arcs (links

going from one node to another) is proportional to the frequency of interactions. Terms separated by a dash indicates that both terms were assessed. Microcolony: a

queenless colony, initially established with few newly emerged workers.

contact, and 14.5% topical application. In chronic exposure,
85.8% were through oral application, 9.3% contact, and 1.6%
topical application (Figure 4).

The studies mainly assessed adult workers. In addition, some
studies assessed whole colonies (9.4%), and 78.1% of the colony
studies included honey bees (Figure 5).

Quantitative Results
Meta-analyses with the most studied insecticides showed a high
likelihood of published articles covering honey bees, wherein
the RR was significantly higher than that expected by the null
hypothesis (RR = 3.81, 95% CI = 2.29–6.34, z = 5.15, p
< 0.001). There was a nearly 10 times lower probability of
published articles addressing bumble bees (RR = 0.10, 95%
CI = 0.05–0.17, z = −7.69, p < 0.001) and stingless bees
(RR = 0.11, 95% CI = 0.04–0.27, z = −4.77, p < 0.001)
(Figure 6). Due to the high heterogeneity among insecticide
groups for all bee groups (honey bees: I² = 93%, τ ² = 0.42;
bumble bees: I² = 88%, τ ² = 0.48; stingless bees: I² = 95%,
τ ² = 1.4), insecticides were included as moderators in the
mixed-effect models, and there was a significant difference
among insecticide groups for all bees (honey bees: χ²6 = 83.51,
p < 0.001; bumble bees: χ²6 = 48.23, p < 0.001; stingless
bees: χ²6 = 119.3, p < 0.001). In this scenario, synthetic
insecticides (i.e., carbamates, neonicotinoids, organophosphates,
phenylpyrazoles, and pyrethroids) were the most tested in
honey bees and bumble bees, whereas biopesticides (e.g.,
phytochemicals and spinosyns) were the most tested in stingless
bees (Figure 6).

The results of the meta-analyses considering the type of
response assessed as moderators demonstrated that honey bees
were well-explored (RR= 3.67, 95%CI= 2.48–5.43, z= 6.50, p<

0.001). In contrast, there is a lack of published articles exploring
these responses for both bumble bees (RR= 0.16, 95%CI= 0.10–
0.27, z = 7.27, p < 0.001) and stingless bees (RR = 0.07, 95% CI
= 0.04–0.11, z = 11.97, p < 0.001) (Figure 7). Heterogeneity was
high (honey bees: I²= 97%, τ ²= 0.46; bumble bees: I²= 97%, τ ²
= 0.71; stingless bees: I²= 90%, τ ²= 0.43), and the subgroup test
showed a significant difference in the type of response assessed
(honey bees: χ²12 = 388.9, p < 0.001; bumble bees: χ²12 =

392.9, p < 0.001; stingless bees: χ²12 = 125.1, p < 0.001).
Survival and behavioral responses were more prevalent in the
research, as they presented the highest weights, indicating high
representativeness and low variability. In contrast, the omics and
microbiota responses presented the lowest weights, indicating
little prevalence in the research. Likewise, gene expression in
stingless bees also exhibited very little weight (Figure 7).

DISCUSSION

Most toxicological assessments of the effects of agrochemicals
on insect pollinators included the Hymenoptera clade, especially
the family Apidae. After the first report of massive honey
bee colony losses occurring due to the phenomenon called
“Colony Collapse Disorder,” the scientific community joined
efforts to identify and understand the factors that caused this
phenomenon, which remain under investigation (VanEngelsdorp
et al., 2009; IPBES, 2016). Not surprisingly, protocols for
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FIGURE 6 | Estimated size effect in the meta-analysis of the occurrence of published articles on toxicological assessment of the impact of insecticides on bees from

the main groups found in the literature review. The forest plots depict the estimated risk ratio (RR), 95% confidence interval (CI), and weight (inverse of the variance;

larger squares indicate more precise results, i.e., small variances). The black diamond shape indicates the summary of RR ± 95% CI (overall effect for all insecticides).

These estimates are based on mixed-effect model meta-analyses with inverse-variance and DerSimonian–Laird methods. RR ± 95% CI > 1 indicates a high likelihood

of published articles covering the effects of agrochemicals in the bee group, while RR ± 95% CI < 1 indicates a low likelihood, and no bias is present when RR ± 95%

CI includes 1.

risk assessment in pollinators are focused on bees, mainly
honey bees, and protocols for other groups of pollinators
are uncommon (OECD, 1998a,b; EFSA, 2013). The testing
guidelines provided by these agencies for the development
of toxicity tests and risk analysis for agrochemical exposure
are standardized for honey bees, and recently, some of them
included guidelines for Bombus sp. and solitary bees (IPBES,
2016; EFSA, 2020). Among the pollinators, honey bees and
bumble bees have a higher commercial value in crop pollination
programs, as they have the advantage of being generalist
pollinators (Goulson, 2010; Hung et al., 2018). Therefore, there
is a greater investment in these studies due to the influence
of farmers and beekeepers (IPBES, 2016; Abati et al., 2021).
This is revealed by the number of publications on each group
of non-Apis pollinators, which reflects the lack of data to
assess the actual risks that these pollinators face when exposed
to agrochemicals.

One of the main factors identified as causing (directly
and indirectly) the decline of bee colonies is the exposure to
agrochemicals, widely used in plant protection, during foraging
(Johnson, 2015; Lima et al., 2016). Accordingly, it is not
surprising that many pesticide toxicity studies, particularly those
on insecticides, have focused on control-targeted and non-target
insects, such as pollinators (Brittain and Potts, 2011). Concerns
regarding the effects of insecticides on bees are evident in the high
number of studies on these agrochemicals. These studies have
demonstrated the high toxicity of insecticides to bees. Likewise,
the few studies carried out with stingless bees showed higher
susceptibility to insecticides than that of honey bees (Arena and
Sgolastra, 2014; Tomé et al., 2017).

The number of papers on stingless bees has increased in the
last 12 years. This group is predominant in theNeotropical region
(77% of the species), followed by the Indo-Malay/Australasian
region (16% of the species) and the Afrotropics (7% of the

Frontiers in Ecology and Evolution | www.frontiersin.org 8 May 2022 | Volume 10 | Article 845608

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Bernardes et al. Meta-Analysis of Agrochemicals in Bees

FIGURE 7 | Estimated effect sizes in the meta-analysis of the occurrence of published articles covering the type of response assessed from the main groups found in

the literature review of toxicological assessment of the impact of agrochemicals on bees. The forest plots depict the estimated risk ratio (RR), 95% confidence interval

(CI), and weight (inverse of the variance; larger squares indicate more precise results, i.e., small variances). The black diamond shape indicates the summary of RR ±

95% CI (overall effect for all types of responses). These estimates are based on mixed-effect model meta-analyses with inverse-variance and DerSimonian–Laird

methods. RR ± 95% CI > 1 indicates a high likelihood of published articles covering the effects in some response, RR ± 95% CI < 1 indicates a low likelihood, and

no bias are present when RR ± 95% CI includes 1.

species). In countries such as Brazil, Colombia, Mexico, and
Costa Rica, stingless bees represent ∼50–70% of all flower
visitations by bees (Grüter, 2020). Despite this, toxicological

studies on stingless bees are incipient compared to those on
honey bees, and there are reports that stingless bees may be
more susceptible to exposure to agrochemicals than honey bees
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(Lima et al., 2016; Tomé et al., 2017). In addition, the Brazilian
Institute of Environment and Renewable Natural Resources
includes stingless bees in risk assessments, and some protocol
proposals have been developed to diagnose the impact of
agrochemicals on these bees and consequently on their ecosystem
services, which are invaluable in both natural and agricultural
ecosystems (Barbosa et al., 2015; Lima et al., 2016; Pires
et al., 2018; Botina et al., 2020; Grüter, 2020). Our meta-
analyses demonstrated that neonicotinoids, phytochemicals, and
spinosyns were the agrochemicals most tested on stingless
bees, and that the most assessed toxicological responses were
survival, behavior, and feeding (Figures 6, 7). However, there are
many gaps in our knowledge about the toxicological effects of
agrochemicals on stingless bees, especially the effects of other
synthetic insecticides and their impact on gene expression, omics,
metabolism, and microbiota.

Omics and microbiota were the least studied parameters in
honey bees and bumble bees. Considering that omics studies
may reveal responsive biomarkers (i.e., genes, metabolites,
and proteins) that potentially cause homeostatic changes (Goh
et al., 2021) and that gut microbiota is associated with insect
nutritional health, immunocompetence, and neutralization of
damage caused by xenobiotics and pathogens (Nogrado et al.,
2019; Giambò et al., 2021), further research including these two
parameters could significantly contribute to our understanding
of the metabolic changes behind the decline of bees.

As in the case of stingless bees, there are few published articles
on the toxicological assessment of the effects of agrochemicals
on solitary bees. Their role in pollination is being studied in
specific crops in the United States and Europe. As a consequence,
their role as important wild pollinators has been recognized in
recent years (Peterson and Artz, 2013; Woodcock et al., 2013). In
2013, solitary bees were included in the risk assessment protocols
proposed by the European Food Safety Authority (EFSA, 2013).
Given this scenario, it is expected that studies will be carried out
in other parts of the world and also include non-Apis species.

The results showed that neonicotinoid insecticides are the
chemical group of pesticides receiving the most attention in
toxicological assessments (Figure 6). Neonicotinoids are widely
used globally. They are characterized by their rapid absorption
and translocation within the plant and are found in both
pollen and nectar, which are food for pollinators and a direct
contamination source (Hopwood et al., 2012, 2018; Van Der
Sluijs et al., 2015). Their exposure exhibits high lethality and
triggers sublethal effects on bees (Lundin et al., 2015; Bernardes
et al., 2022). However, it should be noted that exposure to a
product with a relatively high toxicity, and thus hazard, does
not necessarily result in a high risk if the level of exposure
is low. In contrast, high exposure to agrochemicals with low
toxicity may result in adverse effects on bees. This issue has been
recognized by the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services. It provides an opportunity
for governments, organizations, civil society, and concerned
citizens everywhere to promote actions that will protect and
enhance pollinators and their habitats, improve their abundance
and diversity, and support the sustainable development of
beekeeping (FAO, 2018b).

The most studied neonicotinoids were imidacloprid,
thiamethoxam, and their metabolites, together with clothianidin
(used alone, but also a thiamethoxan metabolite). This does not
preclude the possibility that other agrochemicals could influence
bee health, nor should it be presumed that the regulation of
neonicotinoids alone is sufficient. Concern about the negative
effects of these insecticides on bees should lead to research in
assessing compounds in mixtures with other insecticides and
in combination with other biotic stressors, such as viruses,
fungi, and bacteria. In addition, our findings demonstrate
that there are few reports on the insecticides phenylpyrazoles
and phytochemicals in bumble bees and phenylpyrazoles and
carbamates in honey bees and stingless bees.

The data obtained here indicate that, besides insecticides,
other agrochemicals, including fungicides, acaricides, and
herbicides, were also targets of attention and concern. Insects are
not targets of these compounds, but there is evidence that bee
exposure to these agrochemicals can lead to lethal and sublethal
effects, potentially compromising colony success (Lima et al.,
2016; Botina et al., 2020; Tomé et al., 2020). Therefore, it is
crucial to include these compounds, and other newly developed
chemicals aimed at crop protection, in risk assessments for honey
bees as well as non-Apis bees.

Most published articles have conducted tests under laboratory
conditions, rather than in the field. There are commonly accepted
methods for assessing the toxicity of agrochemicals in bees under
laboratory conditions (Medrzycki et al., 2013), and at least three
key dosage factors (concentration, duration, and choice) are
relevant to field conditions; however, these factors have been
overestimated in many laboratory-based studies (Carreck and
Ratnieks, 2014). Additionally, most of the published articles
indicated assessment of individual adults, though most species
of bees are social. Therefore, these findings highlight the need for
future research to develop tests or experimental protocols capable
of establishing new approaches that consider the sociability of
bees and field conditions.

The meta-analysis detected a discrepancy in the number
of articles published with adult individuals, mostly workers,
oral application, and acute exposure in relation to those
with immature individuals, other sex/castes, contact or topical
application, and chronic exposure. It is evident that testing
with adult workers is much easier than testing with immature
individuals, males, or queens, because of their relative abundance
and ease of collection. However, understanding the effects
of agrochemicals on all sex/castes and stages of development
is imperative to fully understand the implications of these
compounds on colony life. Finally, methods with contact/topical
applications and chronic exposure should receive special
attention in bee agrochemical investigations.

CONCLUSIONS

Using AI tools through ML allowed us to efficiently assess a
large volume of published articles, providing a more complete
picture of the status of toxicological assessments of agrochemicals
for insect pollinators. This systematic review recognized a
primary focus on the order Hymenoptera, mainly bees of
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the family Apidae, highlighting gaps in other pollinating
insects and even within the same family, such as bumble
bees and stingless bees. The most studied agrochemical group
comprised insecticides, especially neonicotinoids. These studies
were primarily conducted in laboratory settings, focusing on
acute oral exposure. Furthermore, the pattern of the quantified
response variable in the studies was quite heterogeneous, with
most studies quantifying survival and behavior as response
variables. The data from this work gather valuable information
on the current scenario of these toxicological analyses and can
guide further research in this area.
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