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Abstract—In this article, we propose artificial intelligence
(AI) enabled unmanned aerial vehicle (UAV) aided wireless
networks (UAWN) for overcoming the challenges imposed by
the random fluctuation of wireless channels, blocking and user
mobility effects. In UAWN, multiple UAVs are employed as
aerial base stations, which are capable of promptly adapting to
the randomly fluctuating environment by collecting information
about the users’ position and tele-traffic demands, learning from
the environment and acting upon the satisfaction level feedback
received from the users. Moreover, AI enables the interaction
amongst a swarm of UAVs for cooperative optimization of the
system. As a benefit of the AI framework, several challenges of
conventional UAWN may be circumvented, leading to enhanced
network performance, improved reliability and agile adaptivity.
As a further benefit, dynamic trajectory design and resource al-
location are demonstrated. Finally, potential research challenges
and opportunities are discussed.

I. INTRODUCTION

Owing to their agility, as well as their ability to establish
line-of-sight (LoS) wireless links, unmanned aerial vehicles
(UAVs) have become a focal point in the wireless commu-
nications research for mitigating a wide range of challenges
encountered in diverse commercial applications [1]. Given
these beneficial characteristics of UAVs, they can be used as
aerial base stations (BSs) to complement and/or support the
existing terrestrial communication infrastructure, since they
can be flexibly redeployed in temporary tele-traffic hotspots
weaved by political rallies, sporting events or after natural
disasters. Thus, UAV-assisted wireless networks (UAWN) have
been successfully applied in UAV-assisted emergency commu-
nications (UAV-EC), UAV-aided cellular offloading (UAV-CO),
and UAV-assisted Internet-of-Things (UAV-IoT) systems [2].

To effectively exploit UAVs for assisting terrestrial wireless
networks, early research contributions have studied a number
of technical challenges [3] that include three-dimensional (3D)
deployment, trajectory design, interference management and
resource allocation. Powerful optimization techniques, such as
convex optimization [4], game theory [5], transport theory [6]
and stochastic optimization have been invoked for addressing
the fundamental challenges. In conventional UAWNs, the links
between the UAVs and the users are typically modeled as
dominant LoS channels. This assumption converts some of
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the problems to a convex problem, such as considering the
static deployment of UAVs for maximizing the number of
users supported or maximizing the coverage. More impor-
tantly, this assumption limits the design scope of UAVs to
the 2D plane. However, the dominant LoS channels are often
blocked by high-rise buildings in the practical application
of UAVs, especially in city-center scenarios. Moreover, the
users in conventional UAWNs are often assumed to be static
for simplicity, i.e. the mobility of users is typically ignored.
Another limitation in the existing literature is that the UAVs
are not capable of learning from the environment or from
the feedback of the users for further enhancing the service
quality. In practical applications of UAVs in wireless net-
works, the system parameters are treated as random variables,
which naturally tends itself to the derivation of insightful
joint probability distributions conditioned on the users’ tele-
traffic demand and mobility. However, this is a high-dynamic
stochastic environment, which constitutes quite a challenge for
conventional optimization approaches. Finally, simultaneously
employing a swarm of UAVs becomes more challenging due
to the cooperation amongst UAVs and owing to the inter-
cluster interference, which aggravates the challenge imposed
on conventional optimization.

Given these challenges, artificial intelligence (AI) aided
optimization comes to rescue [7]. More explicitly, big data
analytics and machine learning (ML) may be invoked for
tackling the high-dynamic design problem of UAWNs. Table I
provides a summary of the challenges and application scenar-
ios of UAWNs, as well as of the ML-based solutions conceived
for tackling the challenges. It has been widely accepted that by
exploiting the learning capability of ML, the aforementioned
challenges encountered in UAWNs may be mitigated, leading
to improved network performance. Against this background,
we highlight the key features of AI-enabled UAV networks.
The new contributions of this paper compared to the state-of-
the-art is provided in Table II. In contrast to the recent research
contributions, we highlight how AI copes with the dynamically
fluctuating propagation as well as tele-traffic environment and
improves the performance of UAWNs. The application of the
proposed framework is discussed in the context of a dynamic
trajectory design and a resource allocation case study.

II. AI-ASSISTED UAV-AIDED NETWORKING

In this section, we first present the system architecture of
our proposed AI-enabled UAWN, followed by its key modules.
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TABLE I
CHALLENGES, APPLICATIONS, AND ML-BASED SOLUTIONS FOR UAWNS

Challenges in the UAWN Application scenarios ML-based solutions
UAV-EC UAV-CO UAV-IoT QL DL DQN DDPG EA SARSA

3D deployment X X X X X X X
Trajectory/path planning X X X X X X X X X
Resource allocation X X X X X X X
Interference management X X X X X
3D channel model X X X X
Energy management X X X X X
Feature extraction X X X
Security X X X X
1 QL represents Q-learning; DL is short for Deep Learning; DQN represents a Deep Q-Network; DDPG is the acronym for

deep deterministic policy gradient base algorithms; EA represents evolutionary algorithms; SARSA represents state-action-
reward-state-action algorithms.

TABLE II
NEW CONTRIBUTIONS OF THIS PAPER COMPARED TO THE STATE-OF-THE-ART

this paper [1]-2017 [2]-2018 [3]-2019 [9]-2018 [10]-2019 [11]-2019
AI architecture X
Big data methods X X X
ML-based solutions X X X X X X
User mobility X
Time-variant tele-traffic X

A. Key Features for AI-enabled UAWN

Since only static communication environments are consid-
ered, conventional UAWNs are designed based on an analytical
model and the highly coupled problems of trajectory design
and power control are typically solved in an iterative man-
ner. However, wireless networks operate in a complex time-
variant environment, where the classic mathematical models
have limited accuracy, which may potentially be improved by
sophisticated AI techniques.

Fig. 1 illustrates the proposed AI-aided UAWN architecture
advocated, where the downlink of the UAWN is considered.
Multiple UAVs may be employed as aerial base stations for
supporting the mobile users in a particular area, where the
existing terrestrial networks may have limited capacity. In
our proposed AI-aided UAWN, feature extraction is invoked
with the aid of big data analytics and machine learning
algorithms before optimizing the design of the network. First,
the associated user information (e.g., position, data demand,
mobility) is collected, stored and processed. Thus, the users’
behavior and requirements can be predicted for efficiently con-
trolling and operating the UAVs. Given the feature extracted,
adaptive machine learning schemes are invoked for network
planning, resource allocation, and interference coordination. In
this system, the UAVs are capable of rapidly adapting to the
dynamic environment by learning both from the environment
and from the feedback of the users. Moreover, the cooperation
of a swarm of UAVs may be invoked. Among all the challenges
encountered by the UAWNs, the geographic UAV deploy-
ment/trajectory design and resource allocation problems are
perhaps the most fundamental ones, which will be considered
below.

1) AI-aided dynamic deployment and trajectory design of
multi-UAV: In contrast to the conventional UAWNs, in our
AI-aided UAWN, both LoS and non-line-of-sight (NLoS)

conditions are encountered, instead of assuming dominant LoS
channels for the associated air-to-ground communications. In
this context the search-space is expanded as the number of
parameters increases, which makes the conventional gradient-
based optimization techniques unsuitable. Sophisticated AI
techniques may be invoked for solving these challenging
problems, especially when the mobile users are roaming at
speed. Thus, the UAVs have to be periodically repositioned
for efficiently serving the users. More particularly, in the
first step, the users’ position information may be acquired
with the aid of a real dataset, which consists of the users’
GPS-related position information. Subsequently, the dynamic
3D trajectory of the UAVs is designed based on the users’
mobility information, while maintaining high service quality
and reducing the response time.

2) AI-enabled resource allocation for multi-UAV networks:
In contrast to the conventional UAWNs, the specific time-
varying tele-traffic requirement of each user may be readily
accommodated by AI-aided UAWN. Thus, the amount of
required wireless resources (e.g., bandwidth, transmit power,
and computational resource) also varies, which emphasizes the
importance of agile resource allocation to be carried out by
the UAVs for serving the demands of the associated users.
In the AI-enabled UAWNs, the users’ tele-traffic demand is
firstly predicted based on a real dataset, which consists of
census information, cellular infrastructure deployment, and
cellular data demand. Given the predicted mobile tele-traffic,
both unnecessary delays and resource wastage may be avoided.
Moreover, due to the limited-capacity battery of UAVs, UAVs
must consider energy efficiency defined as the ratio between
the system achievable sum rate and the sum energy dissipation
of both the communication-related and the propulsion-related
energy consumption of UAVs, while optimizing the resource
allocation. However, the energy efficiency depends both on
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Fig. 1. Architecture of AI-enabled UAV networks.

the transmit power and on the computational task allocation
assigned to each device. In the AI-enabled UAWNs, UAVs can
find the relationship between energy efficiency, resource allo-
cation, and quality-of-service, and, hence, jointly optimizing
energy efficiency and resource allocation.

B. Big Data in Predictive Employment of Multiple UAVs

Given the explosive proliferation of wireless data services,
a rich set of cellular-related data become available both from
online social networks (OSN), as well as from the telecom
operators’ platforms. The emergence of big data analytic
techniques also makes it possible to extract and predict the
cellular-related information from a significant volume of data
that are collected from multiple sources, such as OSN, cel-
lular networks/telecom operators and from the roadside units
infrastructures.

1) User mobility information: To fully exploit the potential
gains for enhancing the wireless quality-of-service and for
reducing the required communications resources by predicting
the users’ mobility, online social networks over smartphones,

which has accumulated a substantial amount of geographical
data, may be relied upon for acquiring the users’ mobility
information [8]. For instance, many social networking appli-
cations (e.g., Instagram, Twitter, Facebook) are authorized to
collect and share users’ locations or GPS coordinates. Thus,
the geographic user distribution may be potentially estimated
and predicted.

2) User data requirement information: On a similar note,
we can rely on the data collected from online mobile appli-
cations and on data collected by cellular networks/telecom
operators for acquiring the users’ data demand. On the one
hand, mobile applications (e.g., YouTube, Youku) have been
granted privileges for recording information, such as the users’
interests and historical requests, which characterize the tele-
traffic distribution. On the other hand, the individual users’
tele-traffic demand is recorded by the cellular infrastructure
or by the mobile internet big data platform of telecom opera-
tors [9]. These big data storage and analysis platforms provide
compelling opportunities for enhancing the efficiency of on-
demand cellular services.
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Apart from the aforementioned features, the results of
channel sounder design and channel measurement campaigns
can also be leveraged for improving the performance of the
networks. The performance of the UAWNs may be further
optimized by invoking 3D radio environment maps (including
building reconstruction) based on the geographical informa-
tion system. Hence, the performance of the 3D collaborative
UAWN design can be tested in a life-like urban environment
for verifying the above claims.

C. Machine Learning Methodologies for the UAWN

Machine learning is one of the key AI-aided research
areas. The core idea of the ML-assisted techniques adopted
in the UAWN is that they allow the UAVs to improve their
service quality by learning from the environment, from their
historical experience and from the feedback of the users.
Since the collected data are of multi-source, heterogeneous and
voluminous nature [9], deep learning (DL), which is capable
of accurately tracking the state of a network and of predicting
its future evolution [10], can be a promising technique for
transforming the data to actionable knowledge. Therefore, it is
firstly invoked for predicting both the tele-traffic demand and
the mobility of the users. On a similar note, reinforcement
learning (RL) has also witnessed increasing applications in
the fifth-generation (5G) wireless systems. More explicitly, RL
models can be used for supporting the UAVs (agents) in their
interaction with the environment (states) and by learning from
their mistakes, whilst finding the optimal behavior (actions)
of the UAVs. Furthermore, the RL model can incorporate
farsighted system evolution (long-term benefits) instead of
focusing on current states. Thus, it is invoked for solving
challenging problems in UAWNs [11]. In addition to DL
and RL techniques, a range of supervised and unsupervised
learning algorithms have been applied in the current genera-
tion of wireless networks. Thus, these approaches can also
be adopted for tackling the open challenges of UAV-aided
wireless networks. In federated learning (FL), which relies
on directly training statistical models on remote devices at
the edge in distributed networks, the inaccessibility of private
data is no longer a problem. Explicitly, as a beneficial of their
privacy-preserving nature, federated learning algorithms can
be applied for the trajectory design of multiple UAVs, where
each UAV can act as a distributed learner, which trains its
generated data and transfers its local model parameters instead
of the raw training dataset to an aggregating unit.

III. AI-ENABLED DEPLOYMENT AND MOVEMENT DESIGN
FOR MULTI-UAV NETWORKS

To validate the distinguished capabilities of AI in UAWNs,
an AI-enabled multi-UAV positioning and trajectory design is
considered in this section.

A. Motivations

Since most of the existing research contributions on posi-
tioning and trajectory design of UAVs assume that the users
are static, the issues of user-mobility have been neglected.

Moreover, typically a dominant LoS connection is assumed
between the UAVs and users. This pair of assumptions converts
our problem to a statical optimization problem and limits the
design scope to the 2D plane, which falls into the field of
conventional optimization algorithms. However, the desirable
agility of UAVs is at odds with these unrealistic assump-
tions. Additionally, most of the conventional trajectory design
methods can only function in the idealized scenario, when
perfect knowledge is available about both the environment
and users. However, they are not capable of learning from
the environment or learning the users’ behavior. To address
the aforementioned challenges, we can resort to invoking AI
techniques for the repositioning of UAVs.

B. AI-Enabled Deployment and Movement Design

Based on the system architecture of AI-enabled UAWNs
discussed in Section II, let us now consider both the posi-
tioning and trajectory design of multi-UAV in this section.
The algorithms invoked are illustrated in Fig.2. As mentioned
before, the UAVs have to be periodically repositioned based on
the users’ mobility. To accumulate real mobility information,
the relevant coordinate data can be collected from the Twitter
API. When Twitter users tweet, the Twitter API is authorized
to record their GPS-related coordinate information and make
it available to the general public. Thus, the users’ movement
can be predicted by mining data from the Twitter API. Since
the UAWNs rely on a dynamic time-variant model, which is
a challenge for conventional optimization solutions. RL and
DL algorithms come to rescue, as a benefit of their learning
capability for solving the associated dynamic trajectory design
problems.

DL is capable of prompting accurate processing, hence we
have invoked it for predicting the users’ mobility. Taking
the echo state network (ESN) algorithm for example, the
input of the ESN model is users’ position vector collected
from Twitter while its output vector is the predicted users’
position information. The ESN model aims for training a
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Fig. 2. The procedure and algorithms invoked for the dynamic trajectory
design of multi-UAV.
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model with the aid of its input and output to minimize the
mean square error with lower complexity. Given the mobility
of users, the trajectory of the UAVs can be determined by
optimizing the long-term benefits for maximizing the total
throughput of multi-UAV aided wireless networks. Again,
since it is non-trivial to formulate the UAWN problem as a
supervised learning problem due to its strong interactions with
the environment, the RL algorithm is invoked for a swarm
of UAVs, which is naturally a multi-agent model. Therefore,
the multi-agent RL algorithm is employed for tackling this
problem. In the proposed RL-based algorithm, the state-spaces
are constituted by three parts: the current 3D position of each
UAV; the current 2D position of each user; as well as the
current transmit power of each UAV. At each timeslot, each
agent (UAV) chooses a specific direction and transmit power
as its action and as a result, the UAV receives a reward/penalty
based on the objective function (OF), namely the instantaneous
sum rate of the users. The global Q-value is decomposed into
a linear combination of local agent-dependent Q-values. Thus,
if each agent maximizes its Q-value, the global Q-value will
be maximized. The aim of our RL-based model is maximizing
the long-term sum rewards, namely maximizing the sum rate.
Finally, by reconstructing 3D radio environment maps of
a particular area, the performance of the 3D collaborative
UAWN design can be tested in a life-like urban environment
for verifying the performance of the proposed solutions.

Fig. 3 of [8] characterizes the throughput of the UAWN,
where the trajectory of the UAVs was designed with the
aid of Google-map based on our Twitter dataset. The design
objective of [8] was to determine both the UAV trajectory
and transmit power control at each time slot for maximizing
the total transmit rate, while satisfying the rate requirement
of each user. The numbers in the Google Map represent the
sequence of timeslots (e.g., number n in the Google Map
means the n-th timeslot), where the Genetic K-means (GAK-
Means) algorithm is used as our benchmark. It can be observed
from Fig. 3 that the instantaneous transmit rate decays as
time elapses. This is because the users are roaming during
each time slot. At the initial time slot, the users (namely the
people who tweet) are flocking together around Oxford Street
in London, but after a few hundred seconds, some of the users
move away from Oxford Street. In this case, the density of
users is reduced, which affects the instantaneous sum rate.
It can also be observed from Fig. 3 that mobile UAVs are
capable of improving the service quality compared to that of
static BSs/UAVs. Additionally, this figure also illustrates that
as expected, a high-quality service can be maintained with the
aid of accurate transmit power control of the UAVs compared
to its counterpart dispensing with power control.

IV. AI-ENABLED RESOURCE ALLOCATION FOR UAV
NETWORKS

Let us now continue by highlighting the motivation of using
AI techniques for resource allocation in UAV-based wireless
networks, followed by a use case scenario.

A. Motivations

Recently, most of the existing contributions that optimize
resource allocation for UAV-based wireless networks assume
that the transmission links between the UAVs and users are
static LoS channels. Hence, the loss of the air-to-ground
channel depends only on the distance between the UAVs and
users, which may not capture the unique feature of UAVs, such
as the altitudes of UAVs and the rainy or snowy conditions that
substantially affect the loss of transmission links. Moreover,
due to the lack of accurate UAV channel models for the
visible light communication and millimeter wave (mmWave)
band, most of the existing treatises are focused on resource
allocation for UAVs in the sub-6 GHz band. Additionally,
most of the conventional resource allocation methods ignored
both the user behavior and the wireless environment that
may significantly affect all aspects of resource allocation. For
instance, by generating the radio map related to the wireless
environment, UAVs can optimize the resource allocation de-
pending on the potential frequency-domain interference. To
address these challenges, we can invoke AI-based optimization
techniques for UAVs. In particular, AI techniques enable UAVs
to analyze their collected data so as to predict both the wireless
environment and the user states. Based on the prediction and
analysis results, AI-enabled UAVs can automatically optimize
their resource allocation. For example, AI-enabled UAVs can
use RL to adjust their resource allocation decisions, locations,
path planning, and flying directions, according to the users’
movements and the change of wireless environment so as to
service their ground users optimally.

B. AI-enabled Resource Allocation

An elegant application of AI techniques for spectrum allo-
cation within AI-enabled UAV networks is explained in [12].
In [12], the joint caching management and resource allocation
problem is studied for a cache-enabled UAV network in which
the UAVs can service users using both the LTE unlicensed
(LTE-U) and licensed bands. The contents that the users
request can be transmitted from either the cache units at
the UAVs directly or via content servers. Since the users’
content requests dynamically change, the UAVs must develop
an intelligent algorithm to adapt their resource allocation
and caching schemes so as to optimally service users. In
[12], A liquid state machine (LSM)-based RL algorithm is
proposed for optimizing spectrum resource over Sub-6 GHz
and LTE over unlicensed (LTE-U) bands as well as finding
optimal contents to cache. Using the LSM-based approach,
AI-enabled UAVs can find the optimal policies for the optimal
contents to store at UAV cache, spectrum allocation, and user
association, when the wireless environment states and the users
content requests change dynamically. This is because an LSM
can build the relationship between the content requested by
each user and the content caching, user association, resource
allocation schemes, as a benefit of its large memory.

Fig. 4 of the simulation result of [12] shows how the
average number of users that have stable queues varies, as
the number of AI-enabled UAVs changes. The aim of [12]
is to to develop an effective spectrum allocation scheme for
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cache-enabled UAVs that can judiciously allocate the most
appropriate bandwidth both in the licensed and unlicensed
bands to satisfy the queue stability requirement of each user.
From Fig. 4, we show that, as the number of AI-enabled
UAVs increases, the number of users that have stable queues
increases. This stems from the fact that, as the number of
UAVs increases, the users have more connection options, and,
hence, improving the number of users that have stable queues.
In Fig. 4, it can be observed that, compared to the Q-learning
having a cache and to Q-learning operating without cache, the
LSM-based learning approach can improve 17.8% and 57.1%
gains of the number of users that have stable queues for a
network supported by 5 UAVs. This is due to the fact that
the LSM based learning approach can exploit the historical
information of the ground users to predict the users’ content
request distribution so as to optimize caching contents and to
find an optimal user association scheme.

V. CONCLUDING REMARKS AND FUTURE CHALLENGES

A. Concluding Remarks

In this paper, we have analyzed the prospects of AI tech-
niques in UAV-assisted wireless networks. Both big data aided
feature extraction and ML-aided optimization solutions are

employed for enhancing the service quality of the users. The
key benefits of AI-enabled networks were identified compared
to conventional UAWN. This was followed by introducing
a pair of UAWN case studies, namely the positioning and
dynamic trajectory design as well as the dynamic resource
allocation of multi-UAV networks.

B. Challenges of Using AI for UAV-aided Wireless Networks
1) Distributed and online solutions for the AI-enabled

UAWNs: Since the cooperative deployment/trajectory design
and resource allocation of a swarm of UAVs was considered,
intensive communication and coordination among the UAVs or
between the UAVs and the ground control center is required
in the centralized MAQL model. Each UAV has to maintain a
Q-table that includes data both about its own states as well as
about the other UAVs’ states and actions. Naturally, additional
communication resources are also required for coordination
among the UAVs. To alleviate this limitation, decentralized
approaches that are capable of making decisions and taking
actions in a distributed manner can be invoked for maximizing
the long-term benefits. Therefore, each UAV decides the
optimal position or allocated resource of itself without any
information exchange with other UAVs. When designing the
RL model for multiple UAVs, the UAVs have to transmit their
near-instantaneous coordinates and near-instantaneous actions
to other UAVs. However, guaranteeing real-time collaboration
is quite challenging. In this case, an online algorithm with
a fast convergence rate is required due to the limited UAV
endurance and highly dynamic of the environment.

2) Uninterruptible wireless supply for the AI-enabled
UAWN: Since UAVs are battery-powered, their energy con-
sumption is one of the gravest challenges, especially when
on-board data processing and on-line computation are used.
Moreover, bad weather such as strong breeze, excessively
cold or hot conditions can also drain the batteries more
quickly. Since increasing the battery size is impracticable due
to the size and weight constraints, frequent battery recharge is
expected. To alleviate this limitation, energy-efficient designs
have to be conceived for AI-enabled UAWNs by considering
the propulsion energy. An alternative is to recharge the UAV
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by wireless power transfer or laser charging using laser-guns
at the roof-tops [13]. However, uninterruptible wireless supply
form UAVs has not as yet been realized.

C. Future Works

1) AI in UAV-assisted wireless networks with NOMA:
The key idea of power-domain non-orthogonal multiple ac-
cess (NOMA) is to superimpose the signals of two users at
different powers for exploiting the spectrum more efficiently
by opportunistically exploring the users’ different channel con-
ditions. By invoking NOMA for pursuing further throughput
enhancement, and massive wireless connectivity, the UAWN
scenario becomes an attractive multi-cell downlink NOMA
transmission model. Feature extraction can be invoked for
predicting the tele-traffic demand of users, which aims for
identifying potential tele-traffic congestion events, while the
multi-agent RL algorithm can be leveraged for determining
the trajectory and power allocation of the UAVs, as well as
the UAV-user association.

2) AI in UAV-assisted vehicular networks: The UAVs can
be invoked for assisting the vehicular networks by forming
cooperative air-to-ground vehicular networks. The vehicular
subnetwork on the ground is enhanced with the aid of the aerial
subnetwork formed by the multi-UAV layer. In cooperative
vehicular networks, UAVs are not only employed as aerial
BSs but are also capable of collecting traffic information from
areas that are inaccessible for ground vehicles or roadside units
due to hostile conditions [14]. Moreover, the UAVs are also
capable of acting as intermediate relays for enhancing the
connection among vehicles as well as between vehicles and
the infrastructures.

3) AI in charging solutions for UAVs: By mounting a
compact distributed laser charging (DLC) receiver or wire-
less power transmission (WPT) receiver antenna on UAVs,
complemented by a DLC/WPT transmitter (termed as a power
base station) on the ground, building roof, or even on mobile
vehicles, the UAVs can be charged as long as they are flying
within the coverage range of the DLC/WPT transmitter. Thus,
these DLC/WPT-aided UAVs can operate for a long time
without landing until maintenance is needed. The dynamic
charging problem can be modeled as a Markov decision
process (MDP), where the optimal number and position of
the charging stations, the trajectory of both the UAVs and the
MPC, as well as the UAV-station association can be optimized
with the aid of AI solutions.

4) AI in space-air-ground integrated networks: In an effort
to tackle the challenges, such as the UAVs’ limited coverage
area, meagre energy supply, as well as their limited backhaul
and frequent handovers, the UAV-aided terrestrial networks
may be intrinsically amalgamated with sky-platforms and
satellites for forming space-air-ground integrated networks,
known as SAGINs. In multi-tier and multi-functional SA-
GINs [15], multiple objectives have to be optimized for finding
all the Pareto-optimal solutions instead of simply striking a
trade-off among all the conflicting design metrics, such as
the capacity, delay, BER and power. However, the search-
space becomes extremely large as the number of optimization

parameters increases, which makes the conventional gradient-
based techniques unsuitable. Hence, near-real-time AI-aided
Pareto-optimization can be adopted for tackling the high-
dynamic adaptation of SAGINs by designing the trajectory
of drones and resource allocation protocols.

5) AI in intelligent reflecting surface assisted UAV net-
works: Intelligent reflecting surfaces (IRS) are capable of
proactively ’reconfiguring’ the wireless propagation environ-
ment by compensating the path-loss over long distances, as
well as for forming virtual LoS links between the UAVs and
users via passively reflecting their received signal. Due to
the intelligent deployment and design of the IRS, a software-
defined wireless environment may be constructed, which in
turn, provides potential received SINR enhancements. The
throughput enhancement attained becomes more considerable
when the LoS link between the UAVs and users is blocked by
high-rise buildings. Thus, the performance of UAWNs may be
further improved.
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