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Artificial Intelligence-Aided Thermal Model

Considering Cross-Coupling Effects
Yi Zhang, Student member, IEEE, Zhongxu Wang, Student member, IEEE, Huai Wang, Senior member, IEEE,

and Frede Blaabjerg, Fellow, IEEE,

Abstract—This letter proposes an artificial intelligence-aided
thermal model for power electronic devices/systems considering
thermal cross-coupling effects. Since multiple heat sources can
be applied simultaneously in the thermal system, the proposed
method is able to characterize model parameters more conve-
niently compared to existing methods where only single heat
source is allowed at a time. By employing simultaneous cooling
curves, linear-to-logarithmic data re-sampling and differenti-
ated power losses, the proposed artificial neural network-based
thermal model can be trained with better data richness and
diversity while using fewer measurements. Finally, experimental
verifications are conducted to validate the model capabilities.

Index Terms—Artificial intelligence, thermal modeling, ther-
mal cross-coupling effects, power electronic devices and systems.

I. INTRODUCTION

THERMAL modeling is essential to reliability analysis and

thermal management of power electronics [1]. With an

increasing request for higher power density and lower parasitics

in power electronic systems, a more compact power device

packaging with multi-chips is a trend. One of the challenges

that come with it is the thermal cross-coupling (TCC) effects

among different semiconductor chips. Junction temperature of

a chip is not only affected by its own power losses but also

that of neighboring devices. Conventional one-dimensional (1-

D) RC lumped models (e.g., Cauer and Foster models [2])

neglect the TCC effects, and might result in misleading results

for multi-chip modules. Finite element method can provide

detailed thermal results, but it is restrained to a limited time

span. Beyond multi-chip components, a power electronic system

consisting of multiple components also has the TCC effects [3],

[4].

Thermal impedance matrix is a method to model the TCC

effects in thermal systems. However, the dimension of the

thermal matrix increases significantly with the number of heat

sources (e.g., the number of chips). For instance, a typical

1.7-kV power module (e.g., Infineon FF1000R17IE4 with 24

chips) requires a 24×24 thermal matrix, which imposes heavy

computation burden for long-term thermal stress estimation.
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Moreover, the parameter characterization of the thermal matrix

is also time consuming. The thermal matrix in [3] with 24 heat

sources requires 24 FEM simulations or experiments, and curve

fittings to obtain the parameters. To simplify the calculation,

only thermal resistances are considered in [3], without the

thermal capacitances which represent thermal dynamics.

Artificial neural networks (ANNs) are used to predict lifetime

of a photovoltaic system in [5]. The established work has

validated the potential of artificial intelligence-aided methods

supporting the analysis and design of power electronic systems.

However, the application of these methods to establish and

characterize a thermal model is not discussed. Thermal model

is a time-series problem essentially. Many artificial intelligence

methods have been applied to time-series applications, such

as grid phasor detection [6], health-state estimation [7], etc.

One of the assumptions of these applications is that the

training data and the prediction have an identical sampling

frequency. However, a thermal model is necessary to be

adaptive to different sampling frequencies of thermal estimation

(e.g., different mission-profile resolutions). Moreover, artificial

intelligence-aided methods usually need a large number of

training data to improve the model accuracy. Thermal model

characterization, whereas, tends to reduce the measurement

time and the number of tests. This conflict imposes a challenge

in how to obtain training data with rich diversity while using

as few measurements as possible.

This letter proposes a thermal model with the aid of an

ANN algorithm. The novel aspects are three folds: 1) the

proposed simultaneous cooling curve simplifies the thermal

characterization with less measurements, 2) the utilization of

time interval makes the trained model to be adaptive to different

sampling frequencies, and 3) the logarithmic transformation

and the differential power losses improve the data diversity.

II. CONVENTIONAL THERMAL MODEL WITH TCC EFFECTS

In a multi-chip power module, any device dissipating

power leads to a temperature rise not only for itself but also

for neighboring devices. The conventional method uses the

following thermal matrix to consider the TCC effect
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(1)

where ∆Ti and Pi are the temperature rise of a predefined

point (e.g., junction temperature of a chip) and power losses of

the i-th device, respectively. Zthi,j is the thermal impedance.
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Fig. 1. Structure of the ANN to convert power losses into temperature
variations (w: weights, b: bias and f : activation function).

The characterization of the thermal impedance typically

relies on cooling curves with a single power loss input at a

time. For instance, when a step power loss is applied to the first

device, i.e.,
[

P1 P2 · · · Pn

]

′

=
[

Ploss 0 · · · 0
]

′

,

the thermal impedance in the first column of (1) is obtained as

Zthi,1 (t) =
∆Ti (t)

Ploss

(2)

Applying the same procedure to other devices, the remaining

thermal impedance can be derived. Afterwards, each thermal

impedance is curve-fitted by the following expression as

Zthi,j (t) =
∑

v

Rthi,j v

(

1− e−t/τthi,j v

)

(3)

where Rthi,j v and τthi,j v are the thermal resistance and time

constant of the v-th order Foster network. The number of v is

dependent on the accuracy of the fitted curve to Zth (t). 3rd-

or 4th-order network are typically employed.

Briefly, the characterization of a thermal matrix requires

two steps: 1) applying separated power loss steps to each

chip to obtain the thermal responses, and 2) curve-fitting for

parameter extraction. Two major challenges are thus involved

in this process. Firstly, the testing time and the number of

measurements increase proportionally with the number of

heat sources. For instance, a power module with 24 chips

needs 24 separated experiments. Secondly, the number of Rth-

τth parameters increases with the square of the number of

devices. If a 4th-order network is employed (i.e., 8 parameters

for each thermal impedance), the 24×24 thermal matrix has

4608 parameters, leading to considerably heavy characterization

process and challenge in long-term thermal analysis.

III. DEVELOPMENT OF ANN-BASED THERMAL MODEL

By applying separated power loss steps, the conventional

thermal matrix model in essence simplifies a multi-input-multi-

output (MIMO) system into several single-input-multi-output

(SIMO) systems. With this regard, multiple tests have to be

conducted. Unlike the thermal matrix, artificial intelligence-

aided methods are able to deal with MIMO systems directly.

Thus, this section proposes an ANN-based thermal model

considering TCC effects with less characterization efforts.
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D1 (#3)

D2 (#4)

S2 (#2)

Optical fiber

(a) (b)

S1 D1

S2 D2

S1 (#1)
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(a) (b)

S1 D1

S2 D2

Fig. 2. Power module used in the case study: (a) temperature measurement
via four thermo-optical fibers and (b) circuit diagram.

A. ANN Principle

Various types of ANNs have been summarized in [8].

Particular network selection depends mostly on the relationship

between inputs and outputs. According to [9], the temperature

estimation of a 1st-order network is expressed as

∆T (tn) = ∆T (tn−1) e
−∆t/τth

+ P (tn)Rth

(

1− e−∆t/τth

)

(4)

where the present temperature ∆T (tn) is determined by the

previous temperature ∆T (tn−1) and the present dissipation

P (tn). Thus, a dynamic ANN method for time-series problem

is selected, which is

y(k) = f [y (k − 1) , y (k − 2) , ..., y (k − ny) ,

x (k) , x (k − 1) , ..., x (k − nx)] (5)

where y(k) is the predicted value, y(k − 1) to y(k − ny) are

the previous values of the output, x(k) to x(k − nx) are the

input data, and f [·] represents the network of the ANN.

In many applications of the ANN algorithm of (5), data

sampling frequencies used in the training and prediction are

assumed to be identical [6], [7]. However, a thermal model with

a fixed sampling frequency could limit its scope for different

mission profiles. To take into account the impact of different

sampling frequencies, the proposed method not only uses the

power loss information as the input but also the time interval

∆t as inspired by (4). As shown in Fig. 1, the proposed ANN-

based thermal model is composed of an input layer, one or

more hidden layers, and an output layer. The inputs of each

layer are multiplied by weights w and added with the bias

b. The results are processed through an activation function f ,

which is usually a sigmoid function.

B. ANN-based Thermal Model Trained by Simultaneous Cool-

ing Curves

As shown in Fig. 2, a common half-bridge module with

two IGBT chips and two diode chips is chosen as a case

study. Their thermal responses are measured by thermo-optical

fibers [10].

Unlike the conventional thermal matrix with separated power

loss steps [2], in the proposed ANN-based thermal model,

the four chips in the power module are stressed by an AC
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Fig. 3. The proposed simultaneous cooling method: (a) the circuit and method
to apply the power losses to the four power devices simultaneously (iac(t) =
5 + 35 sin(2π × 100t) A in this case) and (b) the diagram of temperature
measuring process.
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Fig. 4. The measured temperature responses based on the proposed simulta-
neous cooling method.

current, i.e., iac(t) = 5 + 35 sin(2π × 100t) A, as shown

in Fig. 3. The power losses are injected into four power

devices simultaneously. The obtained results are thus defined

as simultaneous cooling curves. The frequency of 100 Hz is

selected to ensure a relatively small steady-state temperature

variation. The measured simultaneous cooling curves are shown

in Fig. 4. The four power devices are heated up simultaneously

with smooth curves (see the zoom-in area of Fig. 4). Moreover,

the additional 5-A DC bias current is utilized to differentiate

the power losses among different devices, producing more

diversified training data for the ANN.

Afterwards, instead of being curve-fitted to characterize

thermal matrix, the measured temperature responses are used to

train the proposed ANN-based thermal model directly. Notably,

the performance of the ANN method is largely dependent on

the diversity and richness of the training data. As shown in

Fig. 5(a), although the sampling frequency is 1 kHz (i.e.,

107 sampled data in total), approximately 90% measured

∆Tj1 information is from the steady-state (around 60-80◦C).

The sampled data from the fast dynamic range (i.e., 0-1 s)

accounts for less than 0.1% of the whole data set. The over-

concentrated training data might be challenging for ANN

algorithm to establish an effective thermal model. To tackle

this problem, a logarithmic variable is introduced inspired

by the exponential thermal transient expression in (4), that

is, z = ln (t). The measured temperatures are re-sampled

(a)

(b)

Sampling points of ΔTj1

ΔTj1 

distribution

Sampling points of ΔTj1

ΔTj1 

distribution

(a)

(b)

Sampling points of ΔTj1

ΔTj1 

distribution

Sampling points of ΔTj1

ΔTj1 

distribution

Fig. 5. Comparison of two sampling methods: (a) temperature distribution
in the original linear measurement and (d) distribution after logarithmic
transformation.
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Fig. 6. Flowchart of the proposed ANN-based thermal modeling (training
phase) and its validation process (validation).

by a piece-wise linear interpolation in the logarithmic scale,

i.e., ∆Tj (z) = ∆Tj (t = exp (z)). The re-sampling period

is selected as ∆z = 0.01. The corresponding temperature

distribution is more even now, as shown in Fig. 5(b).

The flowchart of the proposed method is summarized

in Fig. 6. The power loss information, time intervals and

corresponding temperature responses are obtained by the

proposed simultaneous cooling curve. The originally measured

data is converted by the logarithmic transformation and then

used to train the ANN model as shown in Fig. 1. In this case,

the hidden layer is a single layer with ten neurons. Since the

thermal estimation does not require the previous information

of the power loss or the time interval, ∆t(k) and P (k) are
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Fig. 7. Comparison between the measured junction temperature of S1 and
the ANN-based thermal model with different training data: (a) trained by
the originally linear-sampled data with the DC-bias current, (b) trained by
logarithmic transformation and the DC-bias current, and (c) logarithmic
transformation but without the DC-bias current.

TABLE I
COMPARISON OF THE NUMERICAL RESULTS OF FIG. 7 (90–100 S).

Unit: (◦C) Tjmax Error Tjmin Error

Measurement 54.4 32.2
ANN linear w/ DC 117.9 -63.5 117.9 -85.7
ANN log w/ DC 54.1 0.3 32.1 0.1
ANN log w/o DC 51.5 2.9 32.5 -0.3

*Note: Error = Measurement - Estimation.

selected as inputs while ∆T (k − 1) and ∆T (k − 2) are also

used. The higher order of the previous temperature than (4)

could benefit the accuracy of the ANN-based thermal model.

IV. EXPERIMENTAL VERIFICATIONS

As illustrated in Fig. 6, after training the ANN-based

thermal model, its validation process is conducted based on

the same IGBT module but operating as a DC/AC inverter.

The operational conditions are: iac(t) = 20 sin(2π×0.1t) A, 1-

kHz switching frequency, and 100-V DC voltage. The junction

temperature of the four devices are measured and compared

with the results from the proposed method.

Fig. 7 presents the measured temperatures and the estimated

results from ANN-based thermal model with different training

methods. In Fig. 7(a), the ANN-based thermal model is trained

by the originally linear-sampled data. The DC-bias current

is applied to differentiate the power losses of devices in the

IGBT module. It can be seen that the estimated temperature is

Thermal matrix

ANN (log w/ DC)

Thermal model w/o TCC

ANN (log w/o DC)

Thermal matrix

ANN (log w/ DC)

Thermal model w/o TCC

ANN (log w/o DC)

Fig. 8. Estimated errors of different methods. [error = measurement-estimation,
ANN (log w/ DC): ANN trained by the logarithmic data and the DC-bias
current, ANN (linear w/o DC): trained by the logarithmic data but without
the DC-bias current, Thermal model w/o TCC: conventional thermal model
without considering TCC effects, and Thermal matrix: refers to (1)].

TABLE II
COMPARISON OF THE THERMAL SYSTEM CHARACTERIZATION TIME AND

THE COMPUTATIONAL EFFICIENCIES.

ANN
method

Thermal matrix
(4 chips)

Thermal matrix
(n chips)

Thermal measurement
time (hours)

4 × 1 4 × 4 4 ×n

Computational time (s) 109 1,005 –

*Conditions: Intel Xeon CPU@2.40GHz, 128-GB RAM, 64-bit system.

almost a constant without fluctuations. The estimation error is

as large as 80◦C compared with the measurement. By contrast,

when the logarithmic transformation is applied, as shown in

Fig. 7(b), the junction temperature can be more accurately

estimated by the proposed method and it is in a good agreement

with the measured result. It verifies that the proposed ANN-

based method is able to characterize the thermal model of an

IGBT module by a single measurement, and the logarithmic

transformation is necessary to avoid over concentrated data

with better data richness and diversity. In addition, various

power losses for different devices (i.e., achieved by a DC-bias

current in this case study) can contribute to a better model

training performance compared with Fig. 7(c) where the DC-

bias current is not employed. Furthermore, the numerical results

during the period of 90–100 s in Fig. 7 is summarized, as listed

in Table I. From the maximum and minimum temperatures (i.e.

Tjmax and Tjmin), the differences between the proposed method

and the measurement are no more than 1◦C. The above results

verify the effectiveness of the proposed method again.

Temperature estimation errors of different methods are

compared in Fig. 8. Both the proposed ANN-based thermal

model with DC bias current and the thermal matrix method

can achieve a good thermal estimation compared to the

measurement with the error being less than 1◦C. Although

the error of the proposed ANN-based method is slightly larger,

the minor temperature fluctuations have a negligible impact on

the reliability evaluation according to [11]. For the ANN model

trained without a DC-bias current, a larger but stable estimation

error (i.e., around 4◦C) can be observed. Furthermore, when it

comes to the conventional thermal model without considering

TCC effects, the estimation error increases over time (not

stable) and becomes the largest among the four methods at
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t = 100 s. The conclusion can be reached that the proposed

ANN-based thermal model can substitute the thermal matrix

to consider the TCC effect with less testing efforts.

Furthermore, the thermal system characterization time and

the computational efficiency are compared as listed in Table II.

The characterization of the thermal system (i.e., the IGBT

module plus its heat sink) requires around four hours to com-

plete the heating and cooling process. Due to the simultaneous

cooling method, the proposed ANN-based thermal model needs

one test. By contrast, the conventional thermal matrix has to

inject power losses in each semiconductor chip separately. In

this case study with four chips, 4×4 hours are needed. If

a power module with n chips, much more characterization

time (e.g., 4×n hours) is required. Moreover, computational

efficiency comparison is conducted by converting the power

loss profiles (data size: 800019×4, double type) into thermal

profiles. The proposed method costs around 109 s while the

CPU time of the conventional thermal matrix is 1,005 s in

total. Both of these two comparisons reveal the potentiality of

the proposed method to do efficient thermal characterizations

and estimations.

V. DISCUSSION

The core idea of the proposed method is to establish a thermal

model consuming less time and efforts, while considering the

TCC effects. However, several limitations still need further

studies. Firstly, the discussion of this letter is based on the

power module that each switch is composed of a single chip.

The feasibility for a power module in which each switch

consists of multiple chips in parallel has not been discussed.

Moreover, the thermo-optical fibers are used in this letter with

a sampling frequency of 1 kHz. The feasibility of the different

thermal measuring methods or sampling frequencies could be

studied in the future. Finnally, it should be pointed out that the

discussion in this letter does not take into account the imapct

of temperature dependent material property on the thermal

model parameters.

VI. CONCLUSION

This letter proposes an artificial intelligence-aided thermal

model considering TCC effects. The target is to simplify

the characterization process of thermal modeling compared

with the conventional thermal matrix method. The ANN-based

thermal model can be established with the aid of the proposed

simultaneous cooling curves. The testing time of a multi-chip

power module can be reduced to only once. Moreover, by using

the sampling time interval ∆t as one of the inputs, the proposed

method is applicable to different data sampling frequencies.

The logarithmic transformation of the originally linear-sampled

data and the additional DC-bias current further improve the

training performance. The experimental measurements show

that the proposed method can provide thermal estimation with

an error less than 1◦C in the case study.
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