
IOSR Journal Of Computer Engineering (IOSRJCE)

ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 3 (Sep-Oct. 2012), PP 01-08
Www.Iosrjournals.Org

www.iosrjournals.org 1 | Page

Artificial Intelligence Algorithms

Sreekanth Reddy Kallem
Department of computer science, AMR Institute of Technology, Adilabad,JNTU,Hyderabad, A.P, India.

Abstract-Artificial intelligence (AI) is the study of how to make computers do things which, at the moment,

people do better. Thus Strong AI claims that in near future we will be surrounded by such kinds of machine

which can completely works like human being and machine could have human level intelligence. One intention

of this article is to excite a broader AI audience about abstract algorithmic information theory concepts, and

conversely to inform theorists about exciting applications to AI.The science of Artificial Intelligence (AI) might
be defined as the construction of intelligent systems and their analysis.

Keywords: Artificial Intelligence, Algorithms

I. Introduction
 Artificial intelligence (AI) is the intelligence of machines and the branch of computer science that aims

to create it. AI textbooks define the field as "the study and design of intelligent agents"[1]where an intelligent

agent is a system that perceives its environment and takes actions that maximize its chances of success.[2] John

McCarthy, who coined the term in 1955,[3] defines it as "the science and engineering of making intelligent

machines."[4]
 AI research is highly technical and specialized, deeply divided into subfields that often fail to

communicate with each other.[5] Some of the division is due to social and cultural factors: subfields have grown

up around particular institutions and the work of individual researchers. AI research is also divided by several

technical issues. There are subfields which are focussed on the solution of specific problems, on one of several

possible approaches, on the use of widely differing tools and towards the accomplishment of

particular applications. The central problems of AI include such traits as reasoning,knowledge, planning,

learning, communication, perception and the ability to move and manipulate objects.[6] General intelligence (or

"strong AI") is still among the field's long term goals.[7] Currently popular approaches include statistical

methods, computational intelligence and traditional symbolic AI. There are an enormous number of tools used

in AI, including versions of search and mathematical optimization, logic, methods based on probability and

economics, and many others.

 The field was founded on the claim that a central property of humans, intelligence—
the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[8] This

raises philosophical issues about the nature of the mind and the ethics of creating artificial beings, issues which

have been addressed by myth, fiction and philosophy since antiquity.[9] Artificial intelligence has been the

subject of optimism,[10] but has also suffered setbacks[11] and, today, has become an essential part of the

technology industry, providing the heavy lifting for many of the most difficult problems in computer science. [12]

1.1. Applications of AI:

1.1.1. R&D Plan for Army Applications of AI/Robotics:

Robotic Reconnaissance Vehicle with Terrain Analysis,

 Automated Ammunition Supply Point (ASP),

 Intelligent Integrated Vehicle Electronics,

 AI-Based Maintenance Tutor,

 AI-Based Medical System Development.

1.1.2. Expert system:

An expert system, is an interactive computer-based decision tool that use both facts and heuristics to solve

difficult decision making problems based on knowledge acquired from an expert.

 An expert system compared with traditional computer:

Inference engine + Knowledge = expert system

(Algorithm + data structures = program in traditional computer)

1.1.3. Fuzzy Logic:

Fuzzy logic is more than thirty years old and has a long-lasting misunderstanding with artificial Intelligence,
although the formalization of some forms of commonsense reasoning has motivated the development of fuzzy

logic.

http://en.wikipedia.org/wiki/Intelligence
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Definition_of_AI-0
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Intelligent_agents-1
http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Coining_of_the_term_AI-2
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-McCarthy.27s_definition_of_AI-3
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Fragmentation_of_AI-4
http://en.wikipedia.org/wiki/Artificial_intelligence#Problems
http://en.wikipedia.org/wiki/Artificial_intelligence#Approaches
http://en.wikipedia.org/wiki/Artificial_intelligence#Tools
http://en.wikipedia.org/wiki/Artificial_intelligence#Applications
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Problems_of_AI-5
http://en.wikipedia.org/wiki/Strong_AI
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-General_intelligence-6
http://en.wikipedia.org/wiki/Artificial_intelligence#Statistical
http://en.wikipedia.org/wiki/Artificial_intelligence#Statistical
http://en.wikipedia.org/wiki/Artificial_intelligence#Statistical
http://en.wikipedia.org/wiki/Artificial_intelligence#Sub-symbolic
http://en.wikipedia.org/wiki/Artificial_intelligence#Symbolic
http://en.wikipedia.org/wiki/Artificial_intelligence#Search_and_optimization
http://en.wikipedia.org/wiki/Artificial_intelligence#Logic
http://en.wikipedia.org/wiki/Artificial_intelligence#Probabilistic_methods_for_uncertain_reasoning
http://en.wikipedia.org/wiki/Artificial_intelligence#Probabilistic_methods_for_uncertain_reasoning
http://en.wikipedia.org/wiki/Artificial_intelligence#Probabilistic_methods_for_uncertain_reasoning
http://en.wikipedia.org/wiki/Sapience
http://en.wikipedia.org/wiki/Homo_sapiens
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-7
http://en.wikipedia.org/wiki/Mind
http://en.wikipedia.org/wiki/History_of_AI#AI_in_myth.2C_fiction_and_speculation
http://en.wikipedia.org/wiki/Artificial_intelligence_in_fiction
http://en.wikipedia.org/wiki/Philosophy_of_AI
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-McCorduck.27s_thesis-8
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-9
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-AI_widely_used-11

Artificial Intelligence Algorithms

www.iosrjournals.org 2 | Page

1.1.4. Mobile Robotics and Games (Path Planning):

Mobile robots often have to replan quickly as the world ortheir knowledge of it changes. Examples

include both physical robots and computer-controlled robots (or, more generally, computer-controlled

characters) in computer games. Efficient replanting is especially important for computer games since they often

simulate a large number of characters and their other software components, such as the graphics generation,

already place a high demand on the processor. In the following, we discuss two cases where the knowledge of a
robot changes because its sensors acquire more information about the initially unknown terrain as it moves

around.

II. Genetic Algorithm

This article describes how to solve a logic problem using a Genetic Algorithm. It assumes no prior

knowledge of GAs.A genetic algorithm is a search technique used in computing, to find true or approximate

solutions to optimization and search problems, and is often abbreviated as GA. Genetic algorithms are

categorized as global search heuristics. Genetic algorithms are a particular class of evolutionary algorithms that

use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover(also
called recombination).

 Genetic algorithms are implemented as a computer simulation in which a population of abstract

representations (called chromosomes or the genotype or the genome) of candidate solutions (called individuals,

creatures, or phenotypes) to an optimization problem evolves towards better solutions. Traditionally, solutions

are represented in binary as strings of 0s and 1s, but other encodings are also possible. The evolution usually

starts from a population of randomly generated individuals, and happens in generations. In each generation, the

fitness of every individual in the population is evaluated, multiple individuals are stochastically selected from

the current population (based on their fitness), and modified (recombined and possibly mutated) to form a new

population. The new population is then used in the next iteration of the algorithm.

 Follow that?? If not, let's try a diagram. (Note that this is a Microbial GA, there are lots of GA types,

but I just happen to like this one, and it's the one this article uses.)

Fig. 1 Genetic Algorithm

I prefer to think of a GA as a way of really quickly (well, may be quite slow, depending on the problem) trying

out some evolutionary programming techniques, that mother nature has always had.

III. Path Finding Algorithms/Ai
 The algorithms we shall discuss in this tutorial are the decisionbased algorithms as well as the simplest

of the recursive type algorithms. This is because they are easy to comprehend as well aseasy toimplement. We

will ignore BFS, Dijkstraand A* since these are very complex algorithms which may require special data

structures and are harder to implement.

Path-finding consumes a significant amount of resources, especially in movement-intensive games such as

(massively) multiplayer games. We investigate several path-finding techniques, and explore the impact on

performance of workloads derived from real player movement sin a multiplayer game. We find that a map-

conforming, hierarchical path-finding strategy performs best, and in combination with caching optimizations

can greatly re-duce path-finding cost. Performance is dominated primarily by algorithm, and only to a lesser

degree byworkload variation. Understanding the real impact of path-finding techniques allows for refined
testing and optimization of game design.

 Path-finding in computer games is commonly approached as a graph search problem. The world is de-

composed, abstracted as a graph model, and searched, typically using some variant of IDA* (Korf 1985),

basedon the well-known A* (Hart et al. 1968) algorithm. Underlying world decompositions can have a

significantimpact on performance. Common approaches includethose based on uniformly shaped grids, such as

squareor hexagonal tilings (Yap 2002), as well as the use ofquadtrees (Chen et al. 1995; Davis 2000) or

variableshaped tiles (Niederberger et al. 2004) for adaptivityto more arbitrary terrain boundaries. Properties

Artificial Intelligence Algorithms

www.iosrjournals.org 3 | Page

ofthe decomposition, its regularity, convexity, or Voronoiguarantees, as well as geometric computations, such

asvisibility graphs, or even heuristic roadmap information (Kavrakiet al.1996) can then be used to

improvesearch efficiency.

 Hierarchical path-finding incorporates multiple graph orsearch-space decompositions of different

granularity asa way of reducing search cost, perhaps with some lossof optimality. Hierarchical information has

been used toimprove A* heuristics (Holte et al. 1996), and proposedin terms of using more abstract, meta-
information al-ready available in a map, such as doors, rooms, floors,departments (Maio and Rizzi 1994). Less

domain-specific are graph reduction techniques based on recursively combining nodes into clusters to form a

hierarchical structure (Sturtevant and Buro 2005). Our approachhere is most closely based on the HPA* multi-

level hierarchical design, where node clustering further considersthe presence of collision-free paths between

nodes (Boteaet al. 2004).

 Path-finding can also be based on the physics of dynamic character interaction. In strategies based on

potential fields (Khatib 1985) or more complex steeringbehaviours (Reynolds 1999; Bayazit et al. 2002) a

character’s path is determined by its reaction to its environment. This reactive approach can be combined

withsearch-based models to improve heuristic choices duringsearching (Pottinger 2000). There are many

possibleheuristics to exploit; in our implementations we use a“diagonal distance” metric to approximate the cost

of unknown movement (Patel 2003).

3.1. Heuristic Function:
 A heuristic is a technique that improves the efficiency of search process, possibly by sacrificing claims

of completeness. While the almost perfect heuristic is significant for theoretical analysis, it is not common to

find such a heuristic in practice.heuristics play a major role in search strategies because of exponential nature of

the most problems.Heuristic help to reduce the number of alternatives from an exponentialnumberto polynomial

number. Heuristic search has been widely used in both deterministic and probabilistic planning. Yet, although

bidirectional heuristic search has been applied broadly in deterministic planning problems, its function in the

probabilistic domains is only sparsely studied.

A heuristic function is a function that maps from problem state descriptions to measures of desirability, usually

represented as number. Heuristic functions generally have different errors in different states. Heuristic functions

play a crucial rule in optimal planning, and the theoretical limitations of algorithms using such functions are
therefore of interest. Much work has focused on finding bounds on the behavior of heuristic search algorithms,

using heuristics with specific attributes.

3.2. Depth-First Search:

 The first strategy is depth-first search. In depth-first search, the frontier acts like a last-in first out

stack. The elements are added to the stack one at a time. The one selected and taken off the frontier at any time

is the last element that was added. This Algorithm is also called as Recursive Algorithm.

Fig. 2The order nodes are expanded in depth-first search.

 Recursive algorithms are popular because they are the most powerful and are used in association with
tile based games such as rpgs. The thing with these set of algorithms is that they require a TONof computing

power. This is because these algorithms generally run in exponential time which to put simply means that for a

small increase in map size, running time will increase a lot. If you're serious about making games, i suggest you

learn a high level language such asc++ or java. If you're just here to fool around then i suggest you stick to small

map sizes.

In order to design a recursive path finding algorithm, one mustunderstand the concept of recursion.

Basically a recursive functionis a function which calls itself. To illustrate this concept, lets look at a simple

function which calculates fibonacci numbers.(fibonacci numbers are a sequence of numbers where each

successivenumber is the sum of the previous two ie. 1, 1, 2, 3, 5, 8, 13).

Artificial Intelligence Algorithms

www.iosrjournals.org 4 | Page

Code:

Function fib (int n) {

If (n == 0) return 0

If (n == 1) return 1

Return fib (n-1) + fib(n-2)
}

 If we look carefully at the code we see that the function fib() callsupon itself to calculate the previous

two numbers. This process keepsrepeating until it either calculates the value of 0 or 1 which wealready know the

value of.

Lets go step by step how this functionworks:

1) If we try to find the 6th element in the sequence we call fib(6)

2) Since n is not equal to 0 or 1, we must calculate the valuerecursively.

3) The value of fib(6) is equal to fib(5)+fib(4) which are the twoprevious numbers in the series. So we call the

fib function to calculate these two numbers.

4) This process keeps repeating itself untill it encounters the twopreconditions which return a constant value. If

it weren't for thesepreconditions, the function would keep calling itself untill yourcomputer runs out of RAM!!!

3.3. Breadth-First Search:

 In breadth-first search the frontier is implemented as a FIFO (first-in, first-out) queue. Thus, the path

that is selected from the frontier is the one that was added earliest.

 This approach implies that the paths from the start node are generated in order of the number of arcs in

the path. One of the paths with the fewest arcs is selected at each stage.

Fig. 3The order in which nodes are expanded in breadth-first search

Depth-first search is appropriate when either

 space is restricted;

 many solutions exist, perhaps with long path lengths, particularly for the case where nearly all paths lead to

a solution; or

 The order of the neighbors of a node are added to the stack can be tuned so that solutions are found on the

first try.

 It is a poor method when

 it is possible to get caught in infinite paths; this occurs when the graph is infinite or when there are cycles in

the graph; or

 Solutions exist at shallow depth, because in this case the search may look at many long paths before finding
the short solutions.

Depth-first search is the basis for a number of other algorithms, such as ” iterative deepening”.

Breadth-first search is useful when

 space is not a problem;

 you want to find the solution containing the fewest arcs;

 few solutions may exist, and at least one has a short path length; and

 infinite paths may exist, because it explores all of the search space, even with infinite paths.

It is a poor method when all solutions have a long path length or there is some heuristic knowledge available. It

is not used very often because of its space complexity.

3.4. A* search algorithm:

 The A* algorithm combines features of uniform-cost search and pure heuristic search to efficiently
compute optimal solutions. A* algorithm is a best-first search algorithm in which the cost associated with a

http://artint.info/html/ArtInt_62.html

Artificial Intelligence Algorithms

www.iosrjournals.org 5 | Page

node is f(n)=g(n)+h(n), where g(n) is the cost of the path from the initial state to node n and h(n) is the heuristic

estimate or the cost or a path from node n to a goal. Thus, f(n) estimates the lowest total cost of any solution

path going through node n. At each point a node with lowest f value is chosen for expansion. Ties among nodes

of equal f value should be broken in favour of nodes with lower h values. The algorithm terminates when a goal

is chosen for expansion.

 A* algorithm guides an optimal path to a foal if the heuristic function h(n) is admissible, meaning it
never overestimates actual cost. For example, since airline distance never overestimates actual highway

distance, and manhatten distance never overestimates actual moves in the gliding tile.

 A* uses a best-first search and finds a least-cost path from a given initial node to one goal node (out of

one or more possible goals). As A* traverses the graph, it follows a path of the lowest known heuristic cost,

keeping a sorted priority queue of alternate path segments along the way.

I t uses a distance-plus-cost heuristic function (usually denoted) to determine the order in which the

search visits nodes in the tree. The distance-plus-cost heuristic is a sum of two functions:

the path-cost function, which is the cost from the starting node to the current node (usually denoted)

an admissible "heuristic estimate" of the distance to the goal (usually denoted).

The part of the function must be an admissible heuristic; that is, it must not overestimate the distance

to the goal. Thus, for an application like routing, might represent the straight-line distance to the goal,
since that is physically the smallest possible distance between any two points or nodes.

 If the heuristic h satisfies the additional condition for every edge x, y of the
graph (where d denotes the length of that edge), then h is called monotone, or consistent. In such a case, A* can

be implemented more efficiently—roughly speaking, no node needs to be processed more than once (see closed

set below)—and A* is equivalent to runningDijkstra's algorithm with the reduced

cost .
Example:

 An example of an A star (A*) algorithm in action where nodes are cities connected with roads and h(x)

is the straight-line distance to target point:

Key: green: start; blue: goal; orange: visited

Note: This example uses a comma as the decimal separator.

3.4.1. Complexity:

The time complexity of A* depends on the heuristic. In the worst case, the number of nodes expanded

is exponential in the length of the solution (the shortest path), but it is polynomial when the search space is a

tree, there is a single goal state, and the heuristic function h meets the following condition:

where is the optimal heuristic, the exact cost to get from to the goal. In other words, the error of h will not

grow faster than the logarithm of the “perfect heuristic” that returns the true distance from x to the goal (see

Pearl 1984[11] and also Russell and Norvig 2003, p. 101[12])

 The main drawback of A*, and indeed of any best-first search,is its memory requirement.Since at list

the entire Open list must be saved, A* is severely space-limited in practice, and is no morePractical than

breadth-first search on current machines. For example, while it can be Run successfully in the Eight Puzzle, it

exhausts available memory in a matter of minutes on the Fifteen Puzzle.

3.5. A Generic Searching Algorithm:

 This section describes a generic algorithm to search for a solution path in a graph. The algorithm is
independent of any particular search strategy and any particular graph.

http://en.wikipedia.org/wiki/Best-first_search
http://en.wikipedia.org/wiki/Node_(graph_theory)
http://en.wikipedia.org/wiki/Goal_node
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Admissible_heuristic
http://en.wikipedia.org/wiki/Admissible_heuristic
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Consistent_heuristic
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Reduced_cost
http://en.wikipedia.org/wiki/Reduced_cost
http://en.wikipedia.org/wiki/Reduced_cost
http://en.wikipedia.org/wiki/Decimal_separator
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Exponential_time
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-10
http://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-11
http://en.wikipedia.org/wiki/File:AstarExample.gif

Artificial Intelligence Algorithms

www.iosrjournals.org 6 | Page

Fig.4 Problem solving by graph searching

The intuitive idea behind the generic search algorithm, given a graph, a set of start nodes, and a set of goal

nodes, is to incrementally explore paths from the start nodes. This is done by maintaining a frontier(or fringe) of

paths from the start node that have been explored. The frontier contains all of the paths that could form initial

segments of paths from a start node to a goal node. (See Figure 3.3, where the frontier is the set of paths to the

gray shaded nodes.) Initially, the frontier contains trivial paths containing no arcs from the start nodes. As the

search proceeds, the frontier expands into the unexplored nodes until a goal node is encountered. To expand the

frontier, the searcher selects and removes a path from the frontier, extends the path with each arc leaving the last

node, and adds these new paths to the frontier. A search strategy defines which element of the frontier is
selected at each step.

1: Procedure Search(G,S,goal)

2: Inputs

3: G: graph with nodes N and arcs A

4: S: set of start nodes

5: goal: Boolean function of states

6: Output

7: path from a member of S to a node for which goal is true

8: or ⊥ if there are no solution paths

9: Local

10: Frontier: set of paths

11: Frontier ←{⟨s⟩: s∈S}

12: while (Frontier ≠{})

13: select and remove ⟨s0,...,sk⟩ from Frontier

14: if (goal(sk)) then

15: return ⟨s0,...,sk⟩
16: Frontier ←Frontier ∪{⟨s0,...,sk,s⟩: ⟨sk,s⟩∈A}

17: return ⊥

Fig.5. Generic graph searching algorithm.

The generic search algorithm is shown in Figure 3.4. Initially, the frontier is the set of empty paths

from start nodes. At each step, the algorithm advances the frontier by removing a path ⟨s0,...,sk⟩ from the

frontier. If goal(sk) is true (i.e., sk is a goal node), it has found a solution and returns the path that was found,

namely ⟨s0,...,sk⟩. Otherwise, the path is extended by one more arc by finding the neighbors of sk. For every

neighbor s of sk, the path ⟨s0,...,sk,s⟩ is added to the frontier. This step is known as expandingthe node sk.

This algorithm has a few features that should be noted:

 The selection of a path at line 13 is non-deterministic. The choice of path that is selected can affect the

efficiency; see the box for more details on our use of "select". A particular search strategy will determine
which path is selected.

 It is useful to think of the return at line 15 as a temporary return; another path to a goal can be searched for

by continuing to line 16.

 If the procedure returns ⊥, no solutions exist (or there are no remaining solutions if the proof has been
retried).

 The algorithm only tests if a path ends in a goal node after the path has been selected from the frontier, not

when it is added to the frontier. There are two main reasons for this. Sometimes a very costly arc exists

from a node on the frontier to a goal node. The search should not always return the path with this arc,

because a lower-cost solution may exist. This is crucial when the least-cost path is required. The second

reason is that it may be expensive to determine whether a node is a goal node.

http://artint.info/html/ArtInt_51.html#GraphSearch
http://artint.info/html/ArtInt_51.html#GraphSearch
http://artint.info/html/ArtInt_51.html#generic-search-alg
http://artint.info/html/ArtInt_51.html#generic-search-alg
http://artint.info/html/ArtInt_51.html#search-alg-select
http://artint.info/html/ArtInt_51.html#search-alg-select
http://artint.info/html/ArtInt_109.html#nondet-choice
http://artint.info/html/ArtInt_51.html#search-alg-return
http://artint.info/html/ArtInt_51.html#search-alg-return
http://artint.info/html/ArtInt_51.html#search-alg-return-to
http://artint.info/html/ArtInt_51.html#search-alg-return-to

Artificial Intelligence Algorithms

www.iosrjournals.org 7 | Page

 If the path chosen does not end at a goal node and the node at the end has no neighbors, extending the

path means removing the path. This outcome is reasonable because this path could not be part of a path from a

start node to a goal node.

IV. Problem Reduction Algorithms
 Problem reduction search can be planning how best to solve a problem that can be recursively

decomposed into sub-problems in multiple ways.

1) Matrix multiplication problem

2) Tower of Hanoi

3) Blocks world problems

4) Theorem proving

4.1. AO* Algorithm:

1. Let G consists only to the node representing the initial state call this node INTT.Computeh' (INIT).

2. Until INIT is labeled SOLVED or hi (INIT) becomes greater than FUTILITY, repeat the
 following procedure.

(I) Trace the marked arcs from INIT and select an unbounded node NODE.

(II) Generate the successors of NODE. if there are no successors then assign FUTILITY as

 h' (NODE). This means that NODE is not solvable. If there are successors then for each one

 called SUCCESSOR, that is not also an ancester of NODE do the following

 (a) add SUCCESSOR to graph G

 (b) if successor is not a terminal node, mark it solved and assign zero to its h ' value.

 (c) If successor is not a terminal node, compute it h' value.

(III) propagate the newly discovered information up the graph by doing the following . letS be a

 set of nodes that have been marked SOLVED. Initialize S to NODE. Until S is empty repeat

 the following procedure;

(a) select a node from S call if CURRENT and remove it from S.
(b) compute h' of each of the arcs emerging from CURRENT , Assign minimum h' to

 CURRENT.

(c) Mark the minimum cost path a s the best out of CURRENT.

(d) Mark CURRENT SOLVED if all of the nodes connected to it through the new marked

 are have been labeled SOLVED.

(e) If CURRENT has been marked SOLVED or its h' has just changed, its new status must

 be propagate backwards up the graph. Hence all the ancestors of CURRENT are added to S.

4.1.1.AO* Search Procedure:

1. Place the start node on open.

2. Using the search tree, compute the most promising solution tree TP .
3. Select node n that is both on open and a part of tp, remove n from open and place it no closed.

4. If n is a goal node, label n as solved. If the start node is solved, exit with success where tp is the solution tree,

remove all nodes from open with a solved ancestor.

5. If n is not solvable node, label n as unsolvable. If the start node is labeled as unsolvable, exit with failure.

Remove all nodes from open ,with unsolvable ancestors.

6. Otherwise, expand node n generating all of its successor compute the cost of for each newly generated node

and place all such nodes on open.

7. Go back to step (2)

Note: AO* will always find minimum cost solution.

Properties of AO*:

• AO* is a generalization of A* for AND-OR graphs

• AO*, like A*, is admissible if the heuristic function isadmissible and the usual assumptions (finite
branchingfactor etc) hold

• AO*, like A* is also optimal among the class of heuristicsearch algorithms that use an additive cost /

evaluation function.

V. Conclusion
 We conclude that by using this algorithm we can solve AI problems easily.AI algorithms are also
called as a problem solving algorithms. Artificial Intelligence will surpass human intelligence. Although it has

proven itself to be similar to the human brain, computers do not think in the same way. In this report, we have

discussed Algorithms of AI and their impact on problem solving and our lives.

Artificial Intelligence Algorithms

www.iosrjournals.org 8 | Page

References
[1] http://www.hutter1.net/ai/uaibook.html.

[2] Elaine Rich, Kevin Knight, ” Artificial Intelligence", Second Edition, page no.3.

[3] “ Universal Artificial Intelligence”Subtitle: Sequential Decisions based on Algorithmic Probability.

[4] http://en.wikipedia.org/wiki/Artificial_intelligence.

[5] http://www.codeproject.com/Articles/16286/AI-Simple-Genetic-Algorithm-GA-to-solve-a-card-pro.

[6] http://artint.info/html/ArtInt_51.html.

[7] David Poole,AlanMackworth, “Artificial Intelligence: Foundations of Computational Agents”,2010.

[8] http://www.kirupa.com/forum/showthread.php?72863-Tutorial-Path-Finding-Algorithms-AI.

[9] http://webdocs.cs.ualberta.ca/~lanctot/files/papers/pathfinding-orbius-2006.pdf.

[10] http://en.wikipedia.org/wiki/A*_search_algorithm.

[11] Richards E.Korf* , “Artificial Intelligence Search Algorithms”, Computer Science Department University of California, Los

Angeles,Ca.90095 June 23,1998.

[12] http://www.synergy.ac.in/intranet/e-book/(Ebook%20-%20Paper)%20Artificial%20Intelligence%20Search%20Algorithms.pdf.

[13] Robin ,“A star algorithm”December 18th, 2009 |

[14] http://intelligence.worldofcomputing.net/ai-search/a-star-algorithm.html.

[15] http://artificialintelligence-notes.blogspot.in/2010/07/problem-reduction-with-ao-algorithm.html.

[16] http://www.cs.iastate.edu/~cs572/WWW-honavar07/cs572problem-reduction.pdf.

[17] lowa state university, deparment of computer science artificial intelligence research laboratory.

[18] ReferedFrom Artificial Intelligence TMH.

[19] http://www.eetindia.co.in/VIDEO_DETAILS_700000062.HTM Prof. PallabDasgupta of the Department of Computer Science and

Engineering, IIT Kharagpurconducted this lecture.

[20] KoushalKumar ,GourSundarMitra Thakur“ Advanced Applications of Neural Networks and Artificial Intelligence: A Review.”

Published Online June 2012 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2012.06.08,pg.no.58.

[21]]By National Research Council, ”Applications of Robotics and Artificial Intelligence to Reduce Risk and Improve

Effectiveness”.pg.no.2-3

[22] RC Chakraborty, ”Expert Systems: AI course lecture 35-36”,pg no. 03.

[23]]Didier Dubois-Henri Prade,” The place of Fuzzy Logic in AI”.

[24]]Andrew Ilyas,” An Isearch research paper(Artificial Intelligence)”, May 13, 2010.

[25] NirPochter and Jeffrey S. Rosenschein, ”Requirements on Heuristic Functions when Using A* in Domains with Transpositions”.

[26] Robin, ”Heuristic Search(artificial intelligence articles on artificial intelligence)”. December 14
th
,2009.

[27] Peng Dai,” Heuristic Search Ideas for Deterministic and Probabilistic Problems”, Journal, Pg.no.1.

[28] Sven Koenig Maxim LikhachevYaxin Liu David Furcy, “Incremental Heuristic Search in Artificial Intelligence”, Pg.no. 08.

http://www.hutter1.net/ai/uaibook.htm
http://en.wikipedia.org/wiki/Artificial_intelligence
http://www.codeproject.com/Articles/16286/AI-Simple-Genetic-Algorithm-GA-to-solve-a-card-pro
http://cs.ubc.ca/~poole/
http://cs.ubc.ca/~mack
http://www.kirupa.com/forum/showthread.php?72863-Tutorial-Path-Finding-Algorithms-AI
http://webdocs.cs.ualberta.ca/~lanctot/files/papers/pathfinding-orbius-2006.pdf
http://en.wikipedia.org/wiki/A*_search_algorithm
http://intelligence.worldofcomputing.net/ai-search/a-star-algorithm.html
http://intelligence.worldofcomputing.net/ai-search/a-star-algorithm.html
http://artificialintelligence-notes.blogspot.in/2010/07/problem-reduction-with-ao-algorithm.html
http://www.cs.iastate.edu/~cs572/WWW-honavar07/cs572problem-reduction.pdf
http://www.eetindia.co.in/VIDEO_DETAILS_700000062.HTM

