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Abstract: Background: Despite extensive efforts, significant gaps remain in our understanding
of Alzheimer’s disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA
(cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders.
Methods: We performed DNA methylation profiling of cfDNA from AD patients and compared them
to cognitively normal controls. Six Artificial Intelligence (AI) platforms were utilized for the diagnosis
of AD while enrichment analysis was used to elucidate the pathogenesis of AD. Results: A total of
3684 CpGs were significantly (adj. p-value < 0.05) differentially methylated in AD versus controls.
All six AI algorithms achieved high predictive accuracy (AUC = 0.949–0.998) in an independent test
group. As an example, Deep Learning (DL) achieved an AUC (95% CI) = 0.99 (0.95–1.0), with 94.5%
sensitivity and specificity. Conclusion: We describe numerous epigenetically altered genes which
were previously reported to be differentially expressed in the brain of AD sufferers. Genes identified
by AI to be the best predictors of AD were either known to be expressed in the brain or have been
previously linked to AD. We highlight enrichment in the Calcium signaling pathway, Glutamatergic
synapse, Hedgehog signaling pathway, Axon guidance and Olfactory transduction in AD sufferers.
To the best of our knowledge, this is the first reported genome-wide DNA methylation study using
cfDNA to detect AD.

Keywords: Alzheimer’s disease; circulating cell free DNA; DNA methylation; epigenetics;
artificial intelligence

1. Introduction

Alzheimer’s disease (AD) is the leading cause of severe dementia, however the eti-
ological mechanisms of the disease have yet to be elucidated. The spectrum of putative
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AD pathophysiology is wide and expanding [1]. Mechanistic information on AD could
yield clinical benefits. For example, information on disease pathogenesis could lead to the
development of novel biomarkers and therapeutic targets. Given the long latency period
and time course of AD, even in the absence of definitive treatment, therapies that slow
disease progression or reduce the dementia burden can significantly improve the quality of
life and yield substantial healthcare savings [2].

Epigenetic mechanisms regulate gene expression independent of DNA sequence
changes [3]. DNA methylation is the most commonly studied epigenetic mechanism [4]
and is known to play a significant role in AD pathogenesis while offering the future
prospect of targeted correction [5]. Currently, circulating cfDNA, so-called ‘liquid biopsy’,
is being used extensively in the study of cancer evolution [6,7], cardiomyocyte death [8]
and as non-invasive biomarkers for transplant rejection [9–11]. Circulating nucleic acid
levels were found to be elevated in the plasma of AD patients, the plasma of a transgenic
mouse model of AD, and in the culture medium of cells treated with amyloid-β [12] raising
interest in its potential as a source of AD biomarkers. Theoretically, neuronal, vascular, and
inflammatory responses along with the anatomical and functional changes in the brain of
AD sufferers, could be non-invasively monitored [13] in the future, given the fact that the
DNA of cells from brain tissues contribute to the pool of circulating cfDNA.

There is intense research interest in the development of non-invasive blood-based
biomarkers for AD. Potential advantages include reduced reliance on invasive or expensive
diagnostic techniques such as lumbar puncture, positron emission tomography (PET) scans,
and MRI techniques [14]. Artificial intelligence (AI) and machine learning (ML) approaches
including deep learning (DL), offer distinct advantages in the analysis of the vast troves of
biological data generated from omics experiments such as DNA-methylation [15–18]. AI
and ML have been used to study metabolic pathways, drug-drug interaction and to predict
significant markers in various diseases using multi-omics data [19–21]. Most of the reported
studies in AD use neuroimaging data such as PET imaging and have demonstrated DL
to be more accurate than all the platforms tested [22,23]. Systems biology techniques to
include epigenetics, genomics, transcriptomics and metabolomics combined with both
clinical and imaging data have been used to perform classification, biomarker identification,
disease subtyping, disease progression prediction and drug repurposing [24]. With regard
to transcriptomic studies and PM brain studies, AI analysis identifies candidate genes for
AD [25]. Most of the reported AI based studies used invasive biomatrices such as PM
brain tissue and the expensive imaging modalities. As such, there is a huge unmet need to
develop non-invasive and inexpensive methods for diagnosing AD.

In this study, we performed methylation profiling of circulating cfDNA collected from
individuals suffering from AD and compared them to cognitively healthy controls. Using AI
analysis, we evaluated the accuracy of putative cytosine (CpG) epigenetic markers for AD
diagnosis. Pathway analysis was used to further understand the molecular pathogenesis
of AD.

2. Materials and Methods

The study was approved by the Human Investigation Committee of William Beau-
mont Hospital, Royal Oak, MI, USA (IRB#2017-214). Written consent was obtained from
study participants or their legal representatives. A total of 52 subjects were prospectively
recruited (26 AD cases and cognitively healthy 26 controls). The diagnosis of AD was
based on existing clinical and laboratory criteria according to NINCDS-ADRDA [26]. Blood
samples were collected from each subject in Streck Cell-Free DNA BCT® tubes (Streck,
La Vista, NE, USA). This minimizes further dilution and confounding from DNA that is
released due to leukocyte lysis at the time of collection and during storage [27]. The samples
were processed within 24 h of blood draw. For initial sample processing, specimens were
centrifuged for 15 min at 3000× g and the plasma was aliquoted into 2.0 mL Eppendorf
Safe-Lock micro-centrifuge tubes without disturbing the buffy coat, and subsequently
stored at −80 ◦C for further processing [28]. The cfDNA was extracted twice for each sam-
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ple from a total of 6 mL of plasma using the QIAamp circulating nucleic acid kit (Qiagen
Cat # 55114) and a manual vacuum as per the manufacturer’s standardized protocol. We
used a minimum of 8 ng/µL of DNA from each sample for sodium bisulfite conversion as
measured using a nanodrop spectrophotometer. All samples were normalized on the Epic
array plate using 300 ng of DNA per sample (8 ng × 37.5 µL). Per the manufacturer’s proto-
col, (EZ DNA Methylation kit), 200–500 ng of DNA provided optimal results. All samples
were adjusted for the total volume of using water (45 µL) and 5 µL of M-dilution buffer
was added and incubated at 37 ◦C for 15 min before adding the CT conversion reagent.

2.1. DNA Methylation Profiling

The extracted cfDNA was subjected to bisulfite conversion using the EZ DNA Methy-
lation Kit (Zymo, Irvine, CA, USA) per the manufacturer’s instructions and the bisulfite
converted DNA was eluted using 10 µL of elution buffer [29]. Following bisulfite conver-
sion, we performed the Illumina Infinium MethylationEPIC BeadChip arrays for methyla-
tion profiling as per the manufacturer’s instructions. The vacuum dried BeadChips were
imaged immediately on an Illumina iScan System (Illumina, Inc., San Diego, CA, USA).

2.2. Data Preparation

Missing values were detected and replaced by a small value which is the half of the
minimum positive values in the original data. We made this assumption because most
missing values are caused by the low abundance of CpG probes. Furthermore, the log value
of each methylation level was centered by its mean and auto scaled by its standard deviation.
The quantile normalization method was used to reduce sample-to-sample variation.

2.3. Statistical and Bioinformatic Analysis

All data analysis was performed using R version 4.1.1. Raw EPIC array data were
processed using the package “minfi”. Noob normalization was used to normalize the
signal. Outlier detection: Probe values not passing the detection threshold were marked as
missing. Sex chromosome methylation probes were removed from the analysis to avoid
gender specific methylation bias and to avoid the possible difficulties of having matched
X and Y chromosome methylation markers caused by the epigenetic inactivation of one
X chromosome in females [30]. The fraction of missing probe values were estimated for
all samples and those with a fraction more than two standard deviations (95% confidence)
away from the mean were deemed outliers. The K nearest neighbour algorithm with default
parameters implemented in the “impute” package was used to impute missing values.
Probes with variability higher than 0.01 across all samples were retained for further analysis.
Immune cell type deconvolution was performed using the minfi package. Variance inflation:
The proportion of granulocyte markers were identified as a strongly inflated covariate
and correlated with other variables (Bcell, CD4T, CD8T, NK). After removal of the inflated
covariate (granulocyte markers), other variables did not show any correlation with each
other (Supplementary Figure S1).

The methylation beta values were transformed into M values and robust linear re-
gression (M ~ b0 + b1 * ConditionAD + b2 * Age + b3 * GenderFemale + b4 * BMI + b5
* CD8T + b6 * CD4T + b7 * NK + b8 * Bcell + b9 * Mono + error) as implemented in the
“limma” package was used to establish differentially methylated cytosines. The reported
fold change (logFC) is the value of coefficient b1. We used a False Discovery Rate (FDR)
correction (q < 0.05) as the significance threshold. In practice, we found that the q < 0.05
FDR adjusted value for EPIC arrays corresponds to roughly to a p-value = 1 × 10−8 [31].
Variance inflation:The regression model included concurrent medical disorders, age, gender
and BMI as covariates, as well as the cell type proportions of CD8T, CD4T, NK, Bcell, and
monocytes. As noted, hemolysis of these cell types can add to the apparent cfDNA pool in
plasma. Other estimated immune cell type proportions were found to be colinear with the
aforementioned ones and were not included in the model. A Fisher’s exact test comparing
the number of significant hyper-methylated cytosines among all the significant cytosines to
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the total number of hyper-methylated cytosines among all interrogated cytosines was used
to determine the overall trend towards hyper-methylation among significantly differentially
methylated cytosines. Similarly, all cytosines were annotated with genomic and CpG island
regions and enrichment of such regions with differentially modified cytosines was tested
using Fisher’s exact test.

2.4. Enrichment Analysis

Pathway enrichment analysis was performed by annotating each EPIC array probe
with the UCSC reference gene symbol. For each gene, we retained the CpG locus with the
lowest overall p-value. The genes were subsequently ranked by negative log transformed
p-values and passed to g:profiler service for enrichment analysis. Next, genes were ranked
by the sign of fold change multiplied by negative log transformed p-value and passed to
the gene set enrichment function implemented in the clusterProfiler package.

2.5. Artificial Intelligence/Deep Learning (AI/DL) Analysis

The detailed AI analysis is presented in our prior publications [18]. In brief, we used
the overall CpG markers after normalization in AD subjects as compared to controls. We
used DL and five other AI algorithms: Support Vector Machine (SVM), Generalized Linear
Model (GLM), Prediction Analysis for Microarrays (PAM), Random Forest (RF), and Linear
Discriminant Analysis (LDA) to perform classification and regression analysis [32]. More
detailed information regarding the AI and DL models is available in the Supplementary
Information section. We highlight the importance of the DL modeling. The main perception
of DL is to learn data representations through increasing abstraction levels. Deep-learning
methods are representation-learning methods with multiple levels of depiction, obtained
by composing simple but non-linear modules that each transform the representation at one
level (starting with the raw input) into a representation at a higher, slightly more abstract
level. With the composition of enough such transformations, very complex functions can
be learned. For classification tasks, higher layers of representation increases aspects of
the input that are important for discrimination and suppress irrelevant variations. This
type of hierarchical learning process is very powerful, as it allows a system to compre-
hend and learn complex representations directly from the raw data, making it useful in
many disciplines.

Like other feed-forward artificial neural networks (ANNs), DL employs more than
one hidden layer (y) that connects the input (x) and output layers (z) via a weight (W)
matrix. The activation value of the hidden layer (y) can be calculated by sigmoid of the
multiplication of the input sample x with the weight matrix W and bias b. The transpose of
the weight matrix W and the bias b can then be used to construct the output (z) layer. The
best set of the weight matrix W and bias b is expected to minimize the difference between
the input layer (x) and the output layer (z).

Deep learning models are full of hyper-parameters and finding the best configuration
for these parameters in such a high dimensional space is not a trivial challenge. The process
of setting the hyper-parameters requires expertise and extensive trial and error. There
are no simple and easy ways to set hyper-parameters. These hyper-parameters act as
knobs that can be tweaked during the training of the model. For our model to provide
the best result, we needed to find the optimal value of these hyper-parameters. We used a
grid search to find out the best set of parameters. In grid search, we tried every possible
configuration of the parameters. We first defined a grid on n dimensions, where each
of these map to a hyper-parameter. For each dimension, we then defined the range of
possible values. We searched for all the possible configurations and waited for the results
to establish the best one. Finally, the grid search algorithm found the best set of parameters
to give us the highest AUC result. The parameters and the ranges that we utilized in the
models are as follows:

hyper_params <- list(
activation = c(“Rectifier”,“Tanh”),
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hidden = list(c(100),c(200),c(10,10),c(20,20),c(50,50),c(30,30,30),c(25,25,25,25)),
input_dropout_ratio = c(0,0.05,0.1),
hidden_dropout_ratios = c(0.6,0.5,0.6,0.6),
l1 = seq(0,1e-4,1e-6),
l2 = seq(0,1e-4,1e-6),
train_samples_per_iteration = c(0,-2),
epochs = c(500),
momentum_start = c(0,0.5),
rho = c(0.5,0.99),
quantile_alpha = c(0,1),
huber_alpha = seq(0,1))

2.6. Validation

Ten-fold cross validation and bootstrapping methods were used for generating the
model performance results. We randomly split the samples into 80% training and 20%
testing sets. The 80/20 split is a common practice for moderate sizes which utilize ML-
based approaches. We chose this ratio to have enough training samples to build a good
model and sufficient testing samples to evaluate the model. We performed a 10-fold cross
validation on the 80% training data during the model construction process and tested the
model on the hold out 20%. We used the pROC R package to compute the area under
the curve (AUC) of a receiver-operating characteristic (ROC) curve to assess the overall
performance of the models. To avoid sampling bias, we repeated the above splitting process
100 times and calculated the average AUC on the hold out test sets. AUC measures the
entire two-dimensional area underneath the entire ROC curve from (0,0) to (1,1). AUC
provides an aggregate measure of performance across all possible classification thresholds.
One way of interpreting AUC is as the probability that the model ranks a random positive
example more highly than a random negative example. The AUC ranges in value from 0 to
1. A model whose predictions are 100% wrong has an AUC of 0.0; one whose predictions
are 100% correct has an AUC of 1.0.

The study patients were randomly separated into a ‘training’ group for the develop-
ment of the predictive algorithm and an independent test or validation group to confirm
the model’s performance. The intragenic (CpGs within gene region) and extragenic CpGs
(CpGs outside of gene region) were considered separately in developing predictive models.
Further details of the AI methods are provided in a Supplementary Methods Section. To
compare performance methods, a pairwise Wilcoxon signed-rank test was used to estimate
the statistical significance of the difference in performance between DL and other methods.
We found out that the difference of DL and LDA is significant with the p value < 0.1.

2.7. Model Uncertainties

One of the uncertainties of the models is overfitting. To avoid overfitting in the DL
model, we used three regularization parameters: L1, which increases model stability and
causes many weights to become 0, and L2, which prevents weight enlargement. L1 lets
only strong weights survive (constant pulling force towards zero), while L2 prevents any
single weight from getting too big. Dropout [33] has recently been introduced as a powerful
generalization technique, and is available as a parameter per layer, including the input
layer. The key idea is to randomly drop units (along with their connections) from the
neural network during training. This prevents units from co-adapting too much. The
third parameter that we used for avoiding overfitting in DL modelling is input dropout
ratio, which controls the amount of input layer neurons that are randomly dropped (set to
zero), and controls overfitting with respect to the input data (useful for high-dimensional
noisy data). For the other models, several parameters were used to tune the models and to
overcome the overfitting problem: The number of trees for RF, classification cost for SVM
and threshold amount for shrinking toward the centroid for PAM.
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Other uncertainties of the model is to have clean data. To prepare the data for analysis
we utilized several methods: missing values were detected and replaced a small value
which is half of the minimum positive values in the original data. We made this assumption
because most missing values are caused by low abundance metabolites. Furthermore,
the log value of each methylation level was centered by its mean and auto scaled by its
standard deviation. The quantile normalization method was used to reduce sample-to-
sample variation.

To compare the performance methods, a pairwise Wilcoxon signed-rank test was used
to estimate the statistical significance of the difference in performance between DL and
other methods. We found out that only the difference of DL and LDA is significant with
the p value < 0.1.

3. Results

We evaluated genome-wide DNA methylation of circulating cfDNA from 26 people
suffering from AD and compared them to 26 cognitively healthy controls. The study in-
volved both familial AD cases and sporadic cases identified based on questionnaire and
we did not genotype the samples. All control subjects were 60 years and above and age-
matched to the AD group. All control subjects were cognitively tested using the standard
battery of tests (MMSE scoring, SLUMS scoring and clinical dementia scoring; Supplemen-
tary Table S1). From closer inspection of the data, one AD subject and three controls were
considered statistical outliers and removed from further analyses (Figure 1a–f). Clinical
and demographic details are presented in Supplementary Table S1. The mean (SD) age
was slightly higher in AD cases [82 (7)] versus controls [79 (9)], p = 0.01 and as such,
all methylation changes were normalized for age. No other significant differences were
noted for all other potential confounders to include gender (p = 0.52), ethnicity (p = 0.48),
cardiovascular diseases or TBI (Supplementary Table S1). As expected, the Mini-Mental
State Exam (MMSE) score was significantly lower for AD cases compared to controls: Mean
(SD) = 20 (4) versus 29 (1), p < 0.001. Fifteen cases and 13 control samples were considered
in the test group, while 10 cases and 10 controls were used in the training group.

3.1. Abundance of Significantly Methylated Cytosines

Based on the p-value histogram, we identified a significant number of CpG methylation
changes having a significance value less than 0.05 (Figure 2a), which is also reflected in the
volcano plot (Figure 2b). 356,796 CpG probes passed the quality control. Overall, the study
yielded a significantly higher number of hypermethylated CpGs (Figure 2c).

We identified a statistically significant change in methylation (adjusted p < 0.05) in
a total of 3684 CpGs, among which 2729 CpGs were found to be hypermethylated and
the remaining 955 CpGs were hypomethylated (Supplementary Table S2) in AD. We also
identified 920 differentially methylated regions (DMRs) (adj. p < 0.05), among them,
854 DMRs were hypermethylated and the remaining 66 DMRs were hypomethylated
(Supplementary Table S3).

3.2. Enrichment Analysis

Based on the enrichment of CpG regions, the CpGs on the islands were hypermethy-
lated with a FDR p = 1.4 × 10−137. Based on the genomic regions, CpGs in the intergenic
region were the most hypermethylated with FDR p = 5.1 × 10−83, followed by those in
the promoter regions in AD cfDNA (FDR p = 8.8 × 10−29). Further details are provided in
Supplementary Table S4 and Supplementary Figure S2a,b.
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3.3. Disease and Functional Enrichment

We used gene ontology analysis to identify biological processes and/or molecular
functions associated with the differentially methylated genes. Analysis identified the
Calcium signaling pathway (CpG set size = 227) (q = 9.77 × 10−5), Glutamatergic synapse
(CpG set size = 109) (q = 9.77 × 10−5), Hedgehog signaling pathway (CpG set size = 52)
(q = 0.00032), Axon guidance (CpG set size = 174) (q = 0.00032) and Olfactory transduction
(CpG set size = 387) (q = 0.00044) as the top five perturbed networks. The cluster of genes
encompassing these mechanisms are depicted in Figure 3. Detailed information of KEGG
pathway identifiers, pathway description, statistical significance followed by the list of the
enriched genes are provided in Supplementary Table S5.
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3.4. AI Prediction of AD

A total of 262,046 intragenic and 94,750 extragenic CpG sites that passed QC were
used for an unbiased AI analysis, immaterial of the p-value of the methylation change in
AD cases. Training algorithms were developed using 15 AD cases and 13 controls and
the performance of these algorithms was independently validated in an independent test
group (10 AD cases and 10 controls).

The performance of the 20 intragenic CpG algorithms in the test group when a
bootstrapping approach was used is shown in Table 1. The AI algorithms achieved
excellent diagnostic performance in the independent test group AUC for the AI plat-
forms (0.949−0.999). For example, in the independent test group, DL achieved an AUC
(95% CI) = 0.998 (0.950−1.0), with 94.5% sensitivity and 94.5% specificity respectively, as
shown in Table 1. The performance was close to that of the initial training data used to de-
velop the algorithms, and is shown in Supplementary Table S6. The CpG predictors listed in
decreasing order of contribution in each AI model are provided along with results from the
training data in Supplementary Table S6. Similarly, excellent diagnostic performance was
achieved in the independent test group using a 20 CpG intragenic algorithm-based 10-fold
cross-validation (Table 2). The AUCs = 0.939–0.984 for the test group. For example, DL
achieved an AUC (95% CI) = 0.984 (0.92−1.0), with 92.5% sensitivity and 93.5%specificity
(Table 2). The performance in the training set used to develop the 20 marker predictive
algorithms with 10-fold cross-validation is shown in Supplementary Table S7. The CpG
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predictors in each model are presented in decreasing order of contribution to prediction
along with results in its training data set, and are provided in Supplementary Table S7.
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Table 1. Artificial Intelligence and circulating cfDNA prediction for the Alzheimer’s disease intragenic
CpGs (20 Variables Bootstrapping–Independent Test group).

SVM GLM PAM RF LDA DL

AUC
95% CI

0.9760
(0.8900–1)

0.9773
(0.8500–1)

0.9886
(0.9000–1)

0.9874
(0.9000–1)

0.9493
(0.9500–1)

0.9988
(0.9500–1)

Sensitivity 0.9200 0.9200 0.9200 0.9300 0.9350 0.9450

Specificity 0.9220 0.9090 0.9080 0.9100 0.9250 0.9450
Support Vector Machine (SVM), Generalized Linear Model (GLM), Prediction Analysis for Microarrays (PAM),
Random Forest (RF), Linear Discriminant Analysis (LDA) and Deep Learning (DL).

Table 2. Artificial Intelligence and circulating cfDNA prediction for the Alzheimer’s disease intragenic
CpGs (20 Variables Cross Validation–Independent Test group).

SVM GLM PAM RF LDA DL

AUC
95% CI

0.9700
(0.8700–1)

0.9673
(0.8800–1)

0.9786
(0.8800–1)

0.9774
(0.8800–1)

0.9393
(0.8700–1)

0.9840
(0.9250–1)

Sensitivity 0.9100 0.9100 0.9100 0.9200 0.9250 0.9250

Specificity 0.9120 0.8990 0.8980 0.9000 0.9150 0.9350
Support Vector Machine (SVM), Generalized Linear Model (GLM), Prediction Analysis for Microarrays (PAM),
Random Forest (RF), Linear Discriminant Analysis (LDA) and Deep Learning (DL).
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We also evaluated the performance of 20 variables using extragenic only CpG markers
with bootstrapping. Overall, the AI platforms achieved an AUC = 0.949–0.999 in the
independent test group (Table 3). DL achieved an AUC (95% CI) = 0.999 (0.95−1.0), with
94.5% sensitivity and 94.5% specificity (Table 3). The performance in the training group
used to develop the algorithms is shown for comparison (Supplementary Table S8). The
CpG predictors in decreasing order of contribution in each model are provided along with
the associated training results in Supplementary Table S8. Finally, we also evaluated the
performance of more parsimonious models using only 5 CpGs for intragenic CpG markers
using bootstrapping. The performance of the different AI 5-marker algorithms is shown
for the test group in Supplementary Table S9 and for the related training group used to
develop the models for the sake of comparison is shown in Supplementary Table S10. The
performance for the test group was slightly lower than for the 20-marker algorithm for the
6 AI platforms (AUC = 0.899−0.923). For example, the DL algorithm achieved an AUC
(95% CI) = 0.92 (0.81–1.0), with 92.5% sensitivity and 93.5% specificity.

Table 3. Artificial Intelligence and circulating cfDNA prediction for the Alzheimer’s disease Extra-
genic CpGs (20 Variables Bootstrapping–Independent Test group).

SVM GLM PAM RF LDA DL

AUC
95% CI

0.9770
(0.8900–1)

0.9744
(0.8500–1)

0.9856
(0.9000–1)

0.9860
(0.9000–1)

0.9488
(0.9500–1)

0.9988
(0.9500–1)

Sensitivity 0.9200 0.9200 0.9200 0.9300 0.9350 0.9450

Specificity 0.9220 0.9090 0.9080 0.9100 0.9250 0.9450
Support Vector Machine (SVM), Generalized Linear Model (GLM), Prediction Analysis for Microarrays (PAM),
Random Forest (RF), Linear Discriminant Analysis (LDA) and Deep Learning (DL).

Our study focused on circulating cfDNA and therefore we were unable to evaluate
gene expression. We did however investigate whether there was a possible correlation
between our circulating cfDNA methylation analysis and previously published brain
transcriptomic studies. O’Connell et al. (2020) [34] collated and performed a bioinformatic
analysis of published studies that evaluated mRNA expression data. Using a total of
12,000 human specimens, they evaluated 17,000 protein-coding genes and determined their
feasibility as blood biomarkers for brain damage. Genes were considered and ranked as
possible biomarkers for brain injury based on the following criteria: (i) enrichment in brain
tissue compared to non-neuronal tissue, (ii) abundantly expressed in brain and (iii) had low
expression variability across various brain regions. Of the top 100 ‘brain biomarker’ genes
identified by O’Connell et al. (2020) [34], we found 16 genes (16%) that were differentially
methylated (adjusted p < 0.05) in our study. They include, C11orf87, FBXL16, GABRA5,
GNG13, GPM6A, GRM4, HPCA, KCNN1, KLHL1, LRTM2, NR2E1, SLC17A7, SLC1A2, SNCB,
SOX1 and SYNPR. The primary neurological cell type of preferential expression of these
is shown in Supplementary Figure S3. Similarly, Shigemizu et al. (2020) [35] evaluated
mRNA expression using blood based transcriptomic analysis in AD versus controls. They
identified 846 significantly differentially expressed genes. When we correlated those with
our results, we found 102 genes (12%) that were also differentially methylated in our study.

4. Discussion

Circulating cfDNA is classically released into the bloodstream from damaged or dead
tissues into the brain [36]. Using DNA-methylation analysis of circulating cfDNA, we
report extensive epigenetic modification in cytosine nucleotides in genes from individ-
uals diagnosed with AD as compared to cognitively healthy control subjects. Multiple
different algorithms were evaluated using six different AI platforms and different analytic
approaches. Combining AI analysis with DNA methylation data from circulating cfDNA,
we achieved excellent diagnostic accuracy for AD. This was true when either intra- and
extra-genic CpG markers were considered. The observed diagnostic accuracy was sustained
using different analytic approaches (e.g., cross-validation and bootstrapping) and with the
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use of parsimonious models consisting of 5 predictive CpGs. An important objective of
our study was to use cfDNA to further elucidate the molecular mechanisms of AD. We
identified epigenetic changes in molecular pathways previously linked to neurological
disease, and thus are congruent with our current understanding of AD.

We found increased hypermethylation of CpGs in cfDNA from AD patients across the
genome as compared to controls (Figure 2c). The gene promoter and 5′UTR regions were
increasingly hypermethylated as opposed to hypomethylated (Supplementary Table S4)
in AD. Hypermethylation classically regulates the genome by silencing gene promoters,
silencing or at least downregulating (partial activity) the enhancers, and through the control
of non-coding RNA genes [37]. Overall, these results suggest the possible downregulation
of gene expression in association with AD.

Here we review some of the genes that were found to be significantly differentially
methylated and provide information on their known or putative roles in neuronal function
and AD. KDM2A was the most significantly differentially methylated (hyper-methylated)
gene at the Transcription Start Site 1500 (TSS1500; adj. p = 7.45 × 10−5) and is involved in
histone demethylase activity. Essentially, it recruits HP1 and establishes H3K9 and CpG
methylation to form mature heterochromatin and regulates complex nucleosome binding
mechanisms. Disrupted nucleosome binding results in transcriptional deregulation and
genomic instability [38]. This mechanism was reported to be disrupted in synaptic genes of
AD affected brains [39,40]. The second most significantly differentially methylated gene was
ZNF529, which was hyper-methylated at TSS1500 and the 5′ UTR (adjusted p = 7.45 × 10−5).
While this gene has not previously reported to be associated with neurodegenerative
disorders, blocking its activity results in increased low-density lipoprotein (LDL) receptor
expression and with increased cholesterol (LDL-c) uptake by cells in association with
cardiovascular diseases (CVD) [41]. It is notable that CVD and LDL-c are both significant
AD risk modifiers [42]. The next gene found to undergo significant methylation change
was HOXD13. This gene was hyper-methylated on exon 1 and is involved in regulating
neuronal stemness [43]. The role of this gene in AD pathogenesis is yet to be explored.

AI algorithms are increasingly being utilized to build accurate disease predictors based
on big data from omics experiments [44]. As noted, we developed excellent AD diagnostic
models using multiple platforms (e.g., DL, SVM, GLM, PAM and RF) that were validated
in an independent test group. The AI algorithms rank the contribution of markers (in
decreasing order of contribution (Tables 1–3 and Supplementary Tables S6–S10). Based
on AI ranking, we were able to identify 5 CpG markers that appeared to be the best AD
predictors across the different platforms. Five CpGs: cg19760734 (TACC1), cg05876416
(FAM173B), cg00234736 (ELMO1), cg21243612 (C9orf6), and cg24040188 (RBBP8) consis-
tently appeared among the four AI algorithms (SVM, PAM, RF and DL) for AD detection
(Table 1). We reviewed the literature to determine the potential biological relevance of these
genes in relation to AD. TACC1, FAM173B, C9orf6 and RBBP8 are expressed in various
regions of the brain according to “The Genotype-Tissue Expression (GTEx)” portal [45].
Further work is needed to ascertain their possible roles in AD. In contrast, ELMO1 has been
linked to AD. A knock down of ELMO1 inhibits neurite outgrowth and deactivates Rac1
and Rac1 mediated neurite outgrowth leading to age-dependent neurodegeneration and
AD development [46,47]. To the best of our knowledge, no prior study has reported on AD
detection based on cfDNA. However, a study using brain epigenetic analysis identified
kinases associated with AD [48]. DNA methylation analysis based on brain tissue [49] has
achieved good predictive accuracy with an AUC of >0.79 [50] but not an excellent predictive
accuracy. Another study with the same dataset [49] along with an additional dataset [51]
also did not reach an excellent predictive accuracy [52]. A computational approach aided
by supervised ML was used to identify predictive CpGs from microarray-based Epigenome
Wide Association studies (EWAS) for six traits associated with AD. Postmortem brain tissue
was used to generate CpG methylation data using the Illumina-450 array. These traits were
beta-amyloid accumulation, neurofibrillary tangles (NFTs), Braak staging, Consortium to
establish a Registry of Alzheimer’s Disease (CERAD) score, global pathology and cogni-
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tive trajectory study using epigenetic analysis of brain tissue [48]. CpG methylation had
AUCs = 0.850−0.962 for trait detection. The AUC for the detection of NFT, a hallmark of
AD, was equal to 0.962. A study of DNA methylation in brain tissue [49] reported good
predictive accuracy, with an AUC of >0.79 for AD detection [50]. A subsequent in silico
publication combining two prior datasets [49] in which methylation profiling of the superior
temporal gyrus of AD cases and controls was used [51]. Random Forrest feature selection
evaluated the diagnostic performance of a 10 CpG marker algorithm for AD detection.
After 10-fold CV the decision tree (DT), SVM, and RF models achieved an AUC of 89.6,
75.8 and 92.7, respectively. Overall, these studies indicate a strong correlation between
CpG methylation with AD in general, cognitive performance in AD and marquee brain
histologic changes used to define AD such as NFT.

Disease and Functional Enrichment

Beyond the possible role of individual genes, we evaluated gene networks to further
our understanding of AD. We found significant over-representation of gene pathways
linked to neurological disease: Calcium signaling pathway, Glutamatergic synapse, Hedge-
hog signaling pathway, Axon guidance, and Olfactory transduction.

Calcium signaling pathway: Calcium is an important signaling ion, and the disrupted
calcium homeostasis is linked to amyloid plaque (Aβ) formation in AD. Calcium signaling
is linked to the Calcium/calmodulin-dependent kinases MAPK/ERKs and the CREB
cycle which regulates the homeostasis in AD [53–55]. In AD, the amyloidogenic pathway
remodels neuronal Ca2+ signaling, leading to enhanced cellular entry of Ca2+ through
ryanodine receptors [56]. Disrupted cellular calcium can induce synaptic deficits that
promote the accumulation of Aβ and neurofibrillary tangles [57], both of which are marquee
pathological features of AD. The gene CACNA1C displayed altered methylation in 5 CpG
loci (3 hyper- and 2 hypo-methylated). The interaction between RYR3 and CACNA1C
is crucial in terms of AD pathogenesis. Both genes are involved in modulating Aβ load
and increasing intracellular calcium levels [58]. MYLK (hypermethylated CpGs in AD
as reported herein) codes for myosin light chain kinase (MLCK). MLCK is involved in
hippocampal neuronal microfilament damage in hyperglycemia. Chronic hyperglycemia
induces irregularities in nuclear shape, induces shrinking of synapses and thus damages
the neuronal microfilament [59]. Hyperglycemia is an established risk factor for AD
development [59].

Glutamatergic synapse: Excitatory glutamatergic neurotransmission is essential for
synaptic plasticity and neuronal survival. This type of neurotransmission occurs via the
N-methyl-d-aspartate receptor (NMDAR) [60]. Synaptic NMDAR supports plasticity and
promotes cell survival while extrasynaptic NMDAR promotes excitotoxicity which leads
to cell death and neurodegeneration, a hallmark of AD [60]. Differentially methylated
genes involved in the Glutamatergic synapse include the PPP3CB gene. PPP3CB codes for
protein phosphatases that reverse the activity of protein kinases, which are important in
the process of tau and amyloid-β accumulation [61]. PPP3CB was previously reported
to be linked to long-term memory potentiation in AD [62]. We also identified epigenetic
changes in genes from the solute carrier (SLC) superfamily of solute carrier transporters.
The SLC superfamily participates in the uptake of small molecules into cells [63]. We
identified 86 differentially methylated SLC superfamily genes in our study, five of which
(SLC8A3, SLC1A2, SLC1A6, SLC17A7, SLC24A4) were found to be enriched in significant
signaling pathways in this study. SLC8A3 is involved in Calcium signaling, and along
with SLC1A2, SLC1A6, and SLC17A7 is known to participate in glutamatergic synapses,
while SLC24A4 is involved in olfactory transduction. In the brain, SLC family transporters
are important for returning synaptic neurotransmitters to the presynaptic neurons [63,64].
Altered expression of these genes can lead to synaptic dysfunction, an important feature of
AD pathogenesis [65].

Hedgehog signaling pathway: The Sonic hedgehog (SHH) signaling pathway is
involved in neurogenesis, neural patterning and cell survival during nervous system
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development [66,67]. SHH signaling requires intact primary cilia in brain cells and fails
with structurally disrupted cilia. Elevated Aβ peptide levels that result in plaque formation
disrupt the cilial structure and thus inhibit SHH signaling. Human ciliary disease results in
cognitive impairment, a feature of AD [67]. We found epigenetic changes in genes involved
in the SHH signaling pathway, including the CDON CUL3 and GLI3 genes. The CDON
gene may participate in the generation of neurons and in nervous system development [68].
The CUL3 gene is one of the ubiquitin ligase genes and it was found to be downregulated in
various brain regions in AD subjects [69]. We found hypermethylation of this gene which
is consistent with the down-regulation of gene expression. GLI3 is a gene that we found
to be hypermethylated and which has previously been linked to language dysfunction in
AD [70].

Axon guidance: Axonal guidance is a neurodevelopmental process in which the axons
are directed to their target neurons. The molecules involved in axon guidance also play key
roles in immune and inflammatory responses in the nervous system [71]. Several of the
genes involved in axon guidance were also differentially methylated in our study. BMP7 is
involved in Axon guidance [72] and in the recovery of cardiac function after myocardial
infarction [73]. We found hypomethylation of this gene in AD. BMP7 is a candidate gene
for vascular diseases [74]. The gene variants of BMP7 stimulate inflammation and are
associated with acute myocardial infarction and AD [75]. The other gene identified in
axon guidance is MYL9, which codes for the myosin light chain. Biologically, it interacts
with NMDAR, which regulates synaptic plasticity and thereby regulates neurons in the
hippocampus [76,77]. SEMA6D is a cardiac expressed gene that codes for semaphorins.
SEMA6D interacts with TREM2, which is a gene that is involved in axonal growth in AD,
and has been linked to AD pathogenesis [78].

Olfactory transduction: The olfactory neurons are thought to provide an entry portal
into the brain for external substances believed to be involved in the pathophysiology of
major neurodegenerative disorders such as AD and Parkinson’s disease. Diminution of
the sense of smell is a common non-specific feature of early stage Parkinson’s disease [79]
and also AD. NCALD codes for Neurocalcin delta, which is a neuronal calcium sensor [80].
Complete loss of function of the gene is believed to impair neurogenesis, and reduced
expression in the brains of AD subjects has been reported [80,81].

One limitation of our study is that given the focus on circulating cfDNA, we were
unable to perform expression analysis specific to the DNA. As brain cells also contribute
to the circulating cfDNA pool, we investigated whether there was a possible correlation
between our methylation findings and published brain transcriptomic studies. Of the
top 100 ‘biomarker’ genes indicating neurological damage identified by O’Connell et al.
(2020) [34], we found that 16% of these damage genes, which are known to be differentially
expressed in the brain, are also be differentially methylated (adjusted p < 0.05) in circulating
cfDNA in AD cases. Furthermore, based on specific biomarker enrichment analysis, we
found astrocyte and neuronal coding genes to be significantly differentially methylated
along with other genes in which the cell type in which the gene is preferentially expressed is
unknown (Supplementary Figure S3). The differentially methylated astrocyte coding genes
found to be enriched in AD cases were SLC1A2 (one CpG hypomethylated and two hyper-
methylated) and GPM6A (1 CpG hypermethylated). The differentially methylated neuron
enriched genes were FBXL16, HPCA, SNCB, and SYNPR. All these neuronal associated
CpGs were hypermethylated in our study. For the remaining 12 differentially methylated
genes, the origin of the brain cells in which they are differentially expressed is listed as
“currently unknown” [34]. We also compared our significantly differentially methylated
genes with single cell transcriptomic analysis in AD using prefrontal cortex tissue [82]. We
found 116 differential methylated genes showing differential expression in astrocytes, and
21 differential methylated genes showed similar differential expression in microglial cells
based on an adjusted p-value <0.05 in both of the data sets. Overall, these findings suggest
a possible correlation between gene expression in the brain and the circulating cfDNA
methylation markers. Finally, we compared our significantly differentially methylated
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genes with those reported by Shigemizu et al. (2020) [35] and found 12% of the genes to be
differentially expressed in the blood. Based on this, we predict that higher concentrations
of cfDNA may derive from the brain of AD subjects due to neuronal damage.

Identifying the organ of origin has been shown to be feasible [83], and could prove
to be valuable in future studies. We have the limitation of using a relatively modest
sample size in this study; despite this limitation, we did demonstrate strong diagnostic
performances. Validation in larger cohorts is required, as much larger studies using cfDNA
help to further elucidate the etiopathogenesis of AD while also developing novel, diagnostic
biomarker panels.

5. Conclusions

We report significant genome-wide methylation changes in circulating cfDNA from
AD subjects. Using multiple AI techniques and both intragenic or extragenic CpG methy-
lation markers in an independent test or validation group, we report excellent diagnostic
accuracy (AUCs of ≥0.9) for AD. Intriguing and plausible pathogenic information on AD
development was also generated. Multiple genes that were epigenetically altered in AD in
our study were previously known or linked to the control of synaptic activity, neuronal
stemness and age-dependent neurodegeneration. A substantial number of genes that are
highly ranked as plausible markers for brain damage based on their differential expression
in the brain were also found to be differentially methylated in circulating cfDNA. Finally,
using pathway analysis, we found epigenetic dysregulation of gene networks involved in
neurotransmission, synaptic plasticity, cell survival, learning and function of memory. Our
findings provide the basis and justification for larger patient studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11111744/s1, Supplementary Figure S1: Variance inflation analysis using all speci-
fied covariates (Full) and after removal of inflated covariates (Reduced); Supplementary Figure S2:
(a) Enrichment of CpGs in various regions of the genome (CpG islands) and (b) the enrichment of
genomic features including intergenic and within gene regions; Supplementary Figure S3: Enrich-
ment of differentially methylated genes in neurological damage biomarkers panel. The correlation
analysis used O’Connell et al., (2020) study with about 12,000 human subjects’ mRNA expression
data; Supplementary Table S1: Comparison of demographics and clinical characteristics: Alzheimer’s
disease cases vs. normal controls; Supplementary Table S2: Significantly differentially methylated
cytosine loci (CpGs) based on adjusted p-value for circulating cfDNA in Alzheimer’s disease.; Sup-
plementary Table S3: Significantly differentially methylated regions (DMRs) based on adj. p-value
in association with cfDNA in Alzheimer’s disease; Supplementary Table S4: DNA methylation
changes in circulating cell free circulating DNA in Alzheimer’s disease in different genomic regions
Supplementary Table S5: List of KEGG based molecular mechanisms enriched with differentially
methylated genes are provided. The table details the KEGG pathway identifiers, CpG set size, sta-
tistical significance, core enriched genes and the differentially methylated genes of top 5 significant
pathways are listed; Supplementary Table S6: Artificial Intelligence and circulating cfDNA methy-
lation for prediction of Alzheimer’s disease using intragenic CpGs (20 Variables Bootstrapping–
Training group); Supplementary Table S7: Artificial Intelligence and circulating cfDNA methylation
for prediction of Alzheimer’s disease using intragenic CpGs (20 Variables Cross Validation–Training
group); Supplementary Table S8: Artificial Intelligence and circulating cfDNA for prediction of
the Alzheimer’s disease -extragenic CpGs (20 Variables Bootstrapping–Training group); Supple-
mentary Table S9: Artificial Intelligence and circulating cfDNA prediction of Alzheimer’s disease
-intragenic CpGs (5 Variables Bootstrapping–Test group); Supplementary Table S10: Artificial Intelli-
gence and circulating cfDNA for the prediction of Alzheimer’s disease -intragenic CpGs (5 Variables
Bootstrapping–Training group) [18,32,84–89].
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