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A B S T R A C T   

Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and 
hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks 
associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-
cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently 
emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various 
challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-
erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR 
schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI 
methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and 
commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML 
algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including 
both start-ups and established companies) and large-scale innovation projects, where AI methods have been used 
for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI 
techniques for different DR tasks, and outlines directions for future research in this fast-growing area.   

1. Introduction 

The growing trend of Renewable Energy Resources (RES), and their 
rapid development in recent years, poses key challenges for power sys-
tem operators. To accommodate this new energy generation mix, energy 
systems are forced to undergo a rapid transformation. The majority of 
RES are characterised by variability and intermittency, making it diffi-
cult to predict their power output (i.e. they depend on solar irradiation 
or wind speed). These attributes make more challenging the operation 
and management of power systems because more flexibility is needed to 
safeguard their normal operation and stability [1]. The main approaches 
for providing flexibility are the integration of fast-acting supply, demand 
side management, and energy storage services [2]. 

In addition, power systems operation is entering the digital era. New 
technologies, such as Internet-of-Things (IoT), real-time monitoring and 
control, peer-to-peer energy and smart contracts [3], as well as 
cyber-security of energy assets can result in power systems which are 
more efficient, secure, reliable, resilient, and sustainable [4]. Moreover, 
several countries (both in the EU and worldwide) have set ambitious 
targets for mass deployment of advanced metering infrastructure (AMI) 
[5]; for example, in the UK, the Office for Gas and Electricity Markets 
(Ofgem) has stated a target of 53 million electricity and gas smart meters 
to be installed by 2020 [6]. 

The massive amount of data generated by this infrastructure (IoT, 
AMI) call for automated ways to analyse the resulting data. Additionally, 
the shift to more active, decentralised, and complex power systems [7], 
creates tasks which can quickly become unmanageable for human 
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operators. AI approaches have been identified as a key tool for 
addressing these challenges in power systems. AI can be used to forecast 
power demand and generation, optimise maintenance and use of energy 
assets, understand better energy usage patterns, as well as provide better 
stability and efficiency of the power system. AI can also alleviate the 
load on humans by assisting and partially automating the 
decision-making, as well as automating the scheduling and control of the 
multitude of devices used. 

1.1. Motivation and scope of the review 

Artificial Intelligence (AI) approaches have been utilised across a 
range of applications in power systems, but only recently have begun 
attracting significant research interest in the field of demand-side 
response. Demand response (DR) has been identified as one of the 
promising approaches for providing demand flexibility to the power 
system; thus, increasing the scale and scope of DR programmes is of key 
importance to many system operators. This enhanced function of DR 
schemes requires a framework which is automated and able to adjust in 
a dynamic environment and learn (e.g. consumers’ preferences). This 
framework can be created with the assistance of AI techniques; in fact, it 
is increasingly apparent that AI can contribute greatly in the future 
success of DR schemes by automating the process, while learning the 
preferences of end-use consumers. 

The rising interest in AI-based solutions in the DR sector is well 
illustrated by the sharp increase of research interest in this domain. The 
number of scientific publications on the subject has seen an order of 
magnitude increase (around 15 times), between 2012 and 2018, as 
shown in Fig. 1. This trend has intensified the need for a systematic 
review to summarise the AI algorithms used for the various DR appli-
cation areas. In fact, most of these works — while providing valuable 
contributions — tend to focus on exploring only a specific AI/ML tech-
nique and application domain. In our view, the rapid development of the 
field highlights the need for a comprehensive review that traces the 

evolution of the field, and acts as a guide for the most promising AI 
techniques used in specific sub-areas of DR, based on the existing body 
of knowledge reported so far in existing publications. 

Against this background, the aim of our paper is to provide a sys-
tematic review of the various AI data-driven approaches for DR appli-
cations. The goal of our review is three-fold: 

� First, we aim to provide a comprehensive overview of the AI tech-
niques underpinning this area, as well as the main specific applica-
tions/tasks in energy DR to which these techniques have been 
applied. Therefore, offering a broad perspective of the field’s evo-
lution and potential future research paths.  

� Second, we see our review serving as a useful guide for researchers 
and practitioners in the field. More specifically, this means informing 
them, for example, which AI techniques have been found to work 
best for their specific DR problem or application area (or at least 
which techniques have been mainly used by prior research in the 
energy DR space). This includes a systematic discussion of the ad-
vantages and drawbacks of using a specific AI technique in each 
application domain.  

� Third, we wanted to go one step beyond looking only at scientific 
papers and give some insights into the start-ups and more established 
companies applying these techniques, as well as to some of the 
industrially funded research projects in this area. As this is a very 
active field, which has seen considerable interest and investment, 
our review identifies no less than 40 companies/commercial initia-
tives and 21 large-scale projects. 

To the best of our knowledge, this is the largest and most compre-
hensive review to date of the area of AI application in energy demand- 
side response. More specifically, it includes 161 studies/papers (sum-
marised in Table 1 of the Appendix), 40 companies and commercial 
ventures (summarised in Table 2) , and 21 large-scale research projects 
(summarised in Table 3). 

Nomenclature 

AIS Artificial Immune System 
AI Artificial Intelligence 
AMI Advanced Metering Infrastructure 
ANN Artificial Neural Networks 
BRP Balance Responsible Party 
CNN Convolutional Neural Network 
DER Distributed Energy Resources 
DR Demand-Side Response 
DSO Distribution System Operator 
EV Electric Vehicle 
FCR Frequency Containment Reserve 
FF-DNN Feed-Forward Deep Neural Network 
FQI Fitted Q-iteration 
FRR Frequency Restoration Reserve 
GA Genetic Algorithm 
GBDT Gradient Boosting Decision Tree 
GMM Gaussian Mixture Model 
GP Gaussian Process 
HEMS Home Energy Management System 
HMM Hidden Markov Model 
HVAC Heating, Ventilation and Air Conditioning 
IoT Internet of Things 

kNN k-Nearest Neighbour 
LSA Latent Semantic Analysis 
LSTM Long Short-Term Memory 
MAS Multi-agent Systems 
MCTS Monte Carlo Tree Search 
MDP Markov Decision Process 
ML Machine Learning 
NSGA Non-dominated Sorting Genetic Algorithm 
PCA Principal Component Analysis 
PSO Particle Swarm Optimisation 
R-DNN Recurrent Deep Neural Network 
RES Renewable Energy Sources 
RL Reinforcement Learning 
RR Replacement Reserve 
RTP Real Time Pricing 
SOM Self-Organising Map 
STLF Short Term Load Forecasting 
SVM Support Vector Machine 
SVR Support Vector Regression 
TCL Thermostatically Controlled Load 
ToU Time of Use 
TSO Transmission System Operator 
VPP Virtual Power Plant  
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1.2. Related reviews 

There are numerous papers which have reviewed the energy demand 
response literature. In a more general setting, Siano [8] investigated the 
potential benefits of DR in smart grids, along with smart technologies, 
control, monitoring and communication systems, while Haider et al. [9] 
focused on the developments in DR systems, load scheduling techniques 
and communication technologies for DR. O’Connell et al. [10] examined 
the long-term and less intuitive impacts of DR, such as its effect on 
electricity market prices and its impact on consumers. There has also 
been work that has surveyed the economic impact of DR [11], whereas 
Dehghanpour and Afsharnia [12] examined the technical aspect of DR 
for frequency control. Moreover, Vardakas et al. [13] revised various 
optimisation models for the optimal control of DR strategies, along with 
DR pricing schemes. 

More specifically, regarding AI approaches for DR there is the work 
of Shareef et al. [14] where the authors have reviewed literature that 
utilise AI techniques for the development of schedule controller in a 
home energy management system (HEMS) which incorporates a DR tool. 
Dusparic et al. [15] focused on the comparison and evaluation of a 
number of self-organising intelligent algorithms for residential demand 
response, Yi Wang et al. [16] on load profiling in terms of clustering 
techniques, and V�azquez-Canteli and Nagy [17] focused only on the 
application of reinforcement learning for DR. Furthermore, Raza and 
Khosravi [18,19] surveyed AI based load forecast modelling work, 
focusing mainly on artificial neural networks (ANNs), Merabet et al. 
[20] reviewed the application of multi-agent systems (MAS) in smart 
grid technologies, including DR, and there has also been work which 
examines smart meter data analytics in applications for DR programmes 
[21]. Finally, Wang et al. [22] focus on the emerging concept of inte-
grated demand response, integrating various energy types and vectors 
(not just electricity, but also natural gas, heat), while Lu et al. [23] focus 
on the aggregation of thermal inertia, especially from district heating 
networks. In contrast, our review focuses mostly on electrical demand, 
discussing more in-depth the AI techniques that can enable this process. 

It is noted that, while these aforementioned reviews (which look at 
AI technologies for DR applications) have been very valuable, they tend 
to be smaller and narrower in scope. They often focus either on a specific 
AI technique such as reinforcement learning [17], or on a specific 

application setting, such as home energy management systems [14]. By 
contrast, the purpose of this paper is to provide a more comprehensive 
and holistic view of the AI techniques used in DR schemes, which sup-
port power system operation. We argue that a systematic review of this 
scale and scope is needed and useful to highlight potential research gaps 
and point future research paths in this rapidly growing area. 

1.3. Literature search strategy 

The methodology utilised to find the relevant literature for review is 
displayed in Fig. 2. The main tool used for identifying relevant literature 
has been Scopus1 search engine, which is the largest abstract and cita-
tion database of peer-reviewed literature.2 The queries used in the 
search engine are the following:  

� “Artificial Intelligence” AND “Demand Response"  
� “Machine Learning” AND “Demand Response"  
� “Neural Networks” AND “Demand Response" 

All the results returned from the Scopus’ queries have been carefully 
reviewed and filtered. The work included in this review are the papers 
where AI approaches have explicitly been used for demand-side 
response applications and are not just part of the wider energy domain. 

1.4. Structure of the review 

The remainder of this paper is structured as follows. First, Section 2 
provides the fundamental background for our review, by introducing DR 
and its relationship to the electricity grid and energy markets. The 
subsequent two sections show the classifications of the reviewed liter-
ature, along with providing basic AI concepts and an initial discussion. 

Fig. 1. Evolution of AI methods used for DR research.  

1 https://www.scopus.com/home.uri.  
2 By contrast to Scopus, other well-known scientific databases such as ISI Web 

of Science cover mostly journals, and provide less coverage of conference 
proceedings and other dissemination venues popular in AI/ML area, while other 
databases such as IEEExplore and ACM Digital Library cover mostly publisher- 
specific sources. 
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In section 3 the reviewed papers are categorised based on the type of AI 
algorithm(s) that is utilised, while in section 4 these papers are classified 
based on the DR application area of the AI techniques. Next, section 5 
presents an overview of some of the key commercial use cases and 
industrially funded research projects, where AI approaches have been 
employed to perform DR. section 6 outlines which groups of AI tech-
niques have been applied for each DR application area and focuses on 
the discussion of the strengths, limitations, and the potential implica-
tions of using these specific AI approaches for the respective DR appli-
cation areas. Moreover, the main findings of the study are discussed, 
along with a presentation of potential directions for future research. 
Finally, section 7 concludes this review paper. 

2. Demand response operation and market structure 

The traditional model of the electric grid feeds electricity to the end 
consumers through a unidirectional power flow. This flow is supplied by 
high voltage generators, which are centrally controlled. With the 
development of markets for grid services and the growing proportion of 
DER in the energy mix, demand side management and especially demand 
response have emerged as smart solutions to reliably and efficiently 
manage the electric grid. However, in contrast to traditional power 
grids, a DR model requires a bidirectional communication mechanism 
and smart algorithms to process the generated data. Consequently, smart 
metering devices are really important for DR models, and they are one of 
the key components in a smart grid [24]. Additionally, the data pro-
duced can be utilised by AI-based solutions to further facilitate DR 
programmes. 

The focus of this section is to introduce and present DR services, as 
well as describe how they fit in the current electricity market structure. 

2.1. Demand response 

Energy demand response in broad terms can be considered as one of 
the mechanisms within demand side management [25] and possible 
with ongoing smart grid activities. In this paper, with the term Demand 
Response we are specifically referring to the changes in electricity usage 
by the end-use customers (industrial, commercial, or domestic). The 
customers commit to change their normal consumption patterns by 
temporarily using on-site standby generated energy, or 

reducing/shifting their electricity consumption away from periods with 
low generation capacity in response to a signal from a system operator, 
or a service provider (i.e. aggregator) [25]. We acknowledge that DR is a 
broader term (i.e. including thermal energy, gas, etc.), but the focus in 
this paper is on electrical power systems. There are numerous types of 
DR programmes, and their most frequently used classification is based 
on which party initiates the demand reduction [8]. As displayed in 
Fig. 3, DR schemes can be partitioned into two classes [9,26,27]. 

Fig. 2. Search methodology for finding relevant literature.  

Fig. 3. Categories of DR programmes.  
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� Price-based DR programmes. In this setting the price of electricity 
changes over different time periods, with the purpose of motivating 
end-use consumers to vary their energy consumption patterns. 
Schemes that fall under this category are time of use (ToU), critical- 
peak price (CPP), and real-time price (RTP) [10].  

� Incentive-based (or Contract-based) DR schemes. This type of 
schemes incentivises end-use consumers to reduce their electricity 
consumption upon request offers or according to a contractual 
agreement. Examples of this kind of programmes are direct-load 
controls (DLCs), interruptible tariffs, and demand-bidding pro-
grammes [28]. 

Each of these control strategies require to design the incentives or 
contracts that are proposed to the consumers, while taking into account 
the consumers’ behaviours and preferences. To achieve this goal, DR 
solutions extensively use AI-based solutions, as is shown in Section 3. 

In the next subsection, the main principles of electricity markets are 
described, and we explain how DR is used as a key tool to maintain the 
integrity of electricity grids. 

2.2. Electricity markets and their relationship with demand response 

Electricity markets are split between retail markets, in which elec-
tricity retailers contract the supply of electricity with the end-users, and 
wholesale markets, in which retailers, suppliers, producers, grid opera-
tors and third parties as aggregators interact to allow retailers to supply 
their customers while maintaining the integrity of the grid. The 
wholesale electricity market is split into the energy market, the capacity 
market, and the ancillary services market, all of which are designed to 
provide economic incentives to different stakeholders to contribute to 
the energy supply and to the grid operation and integrity. Demand-side 
response is associated with the energy and ancillary services markets. 
Depending on the country, contracts between the market stakeholders 
can be done through bilateral trades (over the counter (OTC)) or through 
an organized market (exchanges, pool auction with price clearing). In 
both cases, the products can be traded in the spot market (day ahead 
and/or intra-day), or in the TSO’s managed spot market for ancillary 
services markets. 

Once a resource supplier commits to provide a certain amount of 
energy into the grid, compliance is expected; otherwise there is a penalty 
incurred. Thus, it is of great importance for DR aggregators to make sure 
that end-users commit and provide the power flexibility. Below, we 
briefly describe the different stakeholders that interact through elec-
tricity markets and are related to DR mechanisms. 

2.2.1. Electricity markets stakeholders 
The main stakeholders in an electricity market are the following: 

� Grid operators: the Transmission System Operator (TSO) is a facili-
tator of the markets who ensures that every trade meets the grid 
constraints. Also, TSOs are usually operating ancillary services 
markets. TSOs and Distribution System Operators (DSOs) can buy or 
sell products in all markets.  

� Retailers and suppliers: they participate both in the retail and 
wholesale market, and they make sure the quantity of energy pur-
chased on the wholesale market will balance the consumption of 
their end-users in their portfolio. To achieve this balance, they can 
either have a sub-contract with balance responsible parties (BRPs) or 
manage their portfolio themselves. They can propose particular 
contracts to the end-customers as flat tariffs or DR programmes. 
When proposing DR programmes, the challenge for suppliers is to 
assess how these programmes will affect their portfolio’s consump-
tion. Therefore, AI based tools reviewed in this paper are important 
for suppliers to provide solutions to reduce their losses due to port-
folio imbalance. 

� End-customers, who buy electricity from a supplier. When they sub-
scribe to a DR program, they can either respond manually to a 
request or a price, or automatically through a home energy man-
agement system. AI methods reviewed in this paper also address the 
challenges faced by end-customers’ HEMS.  

� Balance Responsible Parties: they are responsible for balancing the 
portfolio of their customers (retailers/suppliers). They purchase 
electricity production or consumption in the wholesale market.  

� Producers: they produce electricity and propose their production at a 
particular price on the wholesale markets. Their products can either 
be only energy and/or grid services as frequency response.  

� Aggregators and service providers: they aggregate end-customers or 
small producers in order to reach the minimum capacity allowed to 
provide flexibility products in the energy and ancillary services 
market. Hence, they have direct contracts with end-customers, and 
offer their aggregated flexibility to suppliers or BRPs in the wholesale 
market. As for the retailers/suppliers, they must ensure that end- 
customers will commit to the flexibility that was traded in the 
wholesale market. Hence AI tools reviewed in this paper apply 
particularly to aggregators in order to minimise the difference be-
tween the traded and actual flexibility. 

The end of this subsection describes the different markets listed 
previously and specify how DR products can participate to these 
markets. 

2.2.2. Capacity markets 
In these long-term markets, the regulators ensure that the production 

capacity for the following years will meet the evolution of the demand. 
DR products are rarely exchanged within these markets. 

2.2.3. Energy markets 
These are the main markets that allow retailers to buy electricity 

from electricity producers. In these markets, retailers or suppliers are 
usually required to maintain a balanced portfolio at every market time 
interval, with as much electricity consumption as electricity production, 
in order to maintain the frequency of the grid at its nominal level. DR is a 
particular product exchanged in this market in order to allow suppliers 
to adjust their demand and maintain balance at every time interval. 

2.2.4. Ancillary services markets 
Electricity can be considered as a product carried by the electric grid 

that must satisfy contractual characteristics and requirements. The 
electric grid operator is responsible to make sure these requirements are 
met, in exchange for remuneration. Electric grid regulation can be 
summarised as the control of the grid frequency, of the voltage at each 
node of the grid, of the power quality (harmonics, flickers, etc.), and also 
the control of downtime minutes per customer per year. To ensure that 
these controls are well provided, the System Operator makes sure that a 
portion of producers and consumers contribute to these services, either 
by providing market-based incentives, or by setting up mandatory 
requirements. 

These services are called ancillary services. Specific ancillary services 
markets can be distinguished depending on the type of product that is 
required. For example, the Australian Energy Market Operator currently 
facilitates eight separate markets that can be classified into frequency 
control ancillary services markets, network control ancillary services 
markets or into the system restart ancillary services markets category 
[29]. In most countries, to contribute to the ancillary market managed 
by the TSO, it is first necessary that the resource (a generator, a battery 
or load) is certified by the system operator [30]. Demand response can 
mainly contribute to two of these services, which are frequency control, 
at a nation scale, and voltage control, at a local level. Indeed, although 
DR is mostly associated with the frequency control in current practice, it 
could also provide local voltage support as it involves assets that are 
potentially available at every node of the grid. 
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1. Frequency Control. For the effective operation of the power 
grid, system operators (SOs) are required to control the power 
system frequency between a range of specific acceptable values. 
In the majority of the cases, this range has a central value of either 
50Hz or 60Hz, depending on the national power system. In order 
to maintain the system frequency between the acceptable 
boundaries, the active power generated and/or consumed needs 
to be controlled to keep demand and supply balanced at all times. 
When demand is higher than generation, the system frequency 
decreases, and vice versa. This type of control is achieved by 
keeping a particular volume of active power as reserve, usually 
called frequency control reserve [31]. 

In general, based on the Continental European synchronous area3 

framework [32] (former UCTE), as can be seen in Fig. 4, there are 
three levels of control used to balance the demand and supply [31]: 
(a) Frequency Containment Reserve (FCR), also called primary fre-

quency control is a local automatic control that changes the 
active power production and the consumption of controllable 
loads to restore the balance between power supply and demand 
[33], with a maximum activation time of 30 s. This level was 
introduced to control the frequency in the event of large gener-
ation or load outages. Both the supply and demand side partici-
pate in this control with the use of self-regulating equipment. For 
comparison purposes, in the US market this frequency response 
corresponds to the Regulation response provided by the automatic 
governor of the turbines and the automatic generation control 
[34,35]. Most of the FCR is currently provided by gas turbines, 
hydro power plants, and storage as batteries or flywheels. How-
ever, these technologies also have a negative impact on the 
environment [36]. In many cases, DR solutions are both the most 
cost-effective and environmentally friendly technology to pro-
vide this service, if well-coordinated. 

(b) Automatic Frequency Restoration Reserve (aFRR), also called sec-
ondary frequency control is a centralised automatic control that 
fine-tunes the active power production of the generating assets to 
reinstate the frequency and the interchanges with other systems 
to their target range after an imbalance event. Secondary fre-
quency control is used in all large interconnected systems and the 
activation time generally ranges between 30 s and 15 min 
(depending on the specific requirements of the interconnected 
system). This regulation is provided in the US by the Spinning 
Reserve and Regulation response.  

(c) Manual Frequency Restoration Reserve (mFRR) and Replacement 
Reserve (RR), also called tertiary reserve involves the manual 
changes in the dispatching and commitment of generating units. 
This reserve can be used to replace secondary reserve when the 
secondary reserve is not enough to regulate the frequency back to 
its nominal value. mFRR response can be below 15 min, whereas 
RR activation time varies from 15 min up to hours. The purpose of 
this type of control includes the recovery of the primary and 
secondary frequency control reserves, the management of con-
gestions in the transmission network, and the restoration of fre-
quency to its intended value when secondary control has not been 
successful. In the US market, the tertiary response corresponds to 
Non-Spinning Reserve and Replacement Reserve. 

Different countries have different power systems, resulting to 
different implementations, and also diverse descriptions for the reserves 
related with each type of frequency control [31]. For example, in the UK 
the SO (National Grid) has an obligation to control the system frequency 
at 50 Hz �0:4%(49.8 Hz – 50.2 Hz) for operational limits [37]. More-
over, in the UK and Sweden there is no reserve defined for secondary 
frequency control, and there is a division of the primary frequency 

control reserves in various categories. 
Providing frequency control becomes more challenging due to the 

higher penetration of intermittent renewable energy sources in the 
power generation mix, resulting in lower inertia in the system [38,39], 
and the introduction of new types of loads with higher variability (e.g. 
EVs) [40]. This fact calls for research and use of novel techniques and 
flexibility, including DR at the end-user level, which requires AI-based 
solutions to increase this flexibility provision.  

2. Voltage Control. Along with frequency, voltage is a contractual 
characteristic which the system operators must ensure to confine 
within certain bounds set by the regulator. However, unlike fre-
quency, which is mainly addressed at the transmission grid level, 
voltage is a challenge faced by TSOs and DSOs. The voltage drop 
across a line of an impedance z ¼ r þ jx is due to the consumption or 
production of an apparent power S ¼ Pþ jQ, and is given in Equation 
(1) below: 

ΔV

V
�

rP þ xQ

V2
(1)  

where V is the average between the voltage at both ends of the line. 
Hence, a bus’s voltage fluctuates continuously depending on the 
power that flows through the lines that are connected to this bus. 
Voltage control consists in the action of different mechanisms that 
ensure that the voltage stays within contractual boundaries at every 
bus of the grid. According to (1), the transmission grid and the dis-
tribution grid must be differentiated. Indeed, for the transmission 
grid, the resistance of the lines is small compared to their reactance. 
Thus, the voltage drop is mainly due to the transit of reactive power. 
Hence, voltage control at the TSOs level is mainly realised by in-
jection or consumption of reactive power. This control can be done 
by generators, synchronous condensers, capacitors or flexible AC 
Transmission Systems [41]. On the distribution grid side on the other 
hand, active power and reactive power are both responsible for 
voltage drops. Hence, the growing proportion of DERs creates chal-
lenges in voltage profile management. While previously voltage was 
decreasing closer to the loads, the high penetration of DERs, such as 
rooftop solar panels, can increase the voltage locally by producing 
variable active power. To control the voltage at the distribution 
level, DSOs currently use tap changer mechanisms in transformers. 
However, although primary substations, which connect distribution 
grids to transmission grids, are often equipped with online tap 
changer mechanisms, secondary substations are usually only equip-
ped with de-energized tap changers, which require the disconnection 
of the feeding line before adjusting the voltage. Given the volatility 
of distributed generation and EVs charging power at the low voltage 
level, new services are needed at the distribution grid side to main-
tain the voltage, within acceptable limits, while minimising load and 
generation curtailment. This is where smart solutions for residential 
demand-side response could prove to be very useful in practice and 
would make it possible for the DSO to integrate more DER and EVs in 
the system, without costly grid reinforcements [42]. 

To our knowledge, no spot market has yet been implemented for 
voltage control at the transmission grid level, because of the need for 
very local solutions (mostly reactive power injection) [43]. In some 
countries (including most of the countries in the European Union), 
the MVAR service (Voltage and Reactive power control) is a 
mandatory service that can be contracted through bilateral or 
tendering trades and settled at regulated prices. At the distribution 
grid level, many local markets are currently under test to provide 
local support to the grid, including voltage support [44]. Even 
though open markets for contracting voltage support are not as 
well-structured and adopted as those for frequency response, con-
tracting such services will likely still be needed in the next decades. 

3 Union for the Co-ordination of Transmission of Electricity. 
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The evolution of power systems, driven by an increasing penetration 
of DER, calls for new solutions to address the technical challenges of a 
smart grid (mainly frequency and local voltage regulation). DR is one of 
these solutions. The installation of smart meters and the increasing 
adoption of IoT devices at home lay the foundations for smart DR stra-
tegies. On top of that, these strategies will rely on the implementation of 
smart algorithms based on AI solutions to achieve an efficient regulation 
of the demand without severally affecting the end-users comfort. 

In the subsequent section (Section 3) we provide a comprehensive 
review and discussion of the AI solutions that have been proposed and 
investigated so far by the research community for automating DR. Next, 
Section 4 reviews and provides a discussion of specific DR services and 
areas where AI/ML techniques have been applied. 

3. AI approaches/techniques in demand response 

AI is a multidisciplinary domain employing techniques and insights 
from various fields, such as computer science, neuroscience, economics, 
information theory, statistics, psychology, control theory and optimi-
sation. The term artificial intelligence is referring to the study and 
design of intelligent entities (agents) [45]. These intelligent agents are 
systems that observe their environments and act towards achieving 
goals. In this work, the adopted definition of an agent is the one pre-
sented in the seminal AI work of Russell and Norvig [45]. 

“An agent is anything that can be viewed as perceiving its environment 
through sensors and acting upon that environment through actuators” 

Hence AI-enabled agents can range from machines truly capable of 
reasoning to search algorithms used to play board games. Since the birth 
of AI in the 1950s various approaches have been applied to create 
thinking machines. These approaches include symbolic reasoning [46], 
logic-based [47], knowledge-based systems [48], soft computing [49], 
and statistical learning [50,51]. The focus of this paper is on the 
non-symbolic, soft computing, data-driven paradigm of AI. Furthermore, to 

present a more holistic view in this review the AI approaches are studied 
both in the single-agent and the multi-agent setting. The various AI 
techniques used for DR and their classification can be seen in Fig. 5, 
whereas Fig. 6 displays the proportion of the reviewed literature that has 
utilised a particular category of AI techniques. 

3.1. Machine learning and statistical methods 

As we enter the big data and the IoT era, there is a great need for 
automated analysis of the “data tsunami” that is being continuously 
created. Machine learning includes a set of methods that try to learn 
from data, and it is a core subset of AI. This group of AI techniques 
envelopes methods that can identify patterns in the data in an automatic 
way, and then use these patterns to predict, and techniques to perform 
other ways of decision making in an uncertain environment [52]. Ma-
chine learning is a multi-disciplinary domain that draws concepts from 
various domains, primarily computer science, statistics, mathematics, 
and engineering. The main types of machine learning, as stated in 
Murphy [52], are supervised learning, unsupervised learning, and 
reinforcement learning. 

3.1.1. Supervised learning 
In the supervised learning setting, the goal is to learn a mapping be-

tween the input vector x and the outputs y, provided that there is an 
existing labelled set of input-output pairs D ¼ fðxi; yiÞgK

i¼1. This set of 
data is called training set, and the inputs xi can be something as simple 
as a real number to a complex structured object (e.g. an image, a time- 
series, a graph, etc.). The outputs yi in general can be of any type; the 
two most common cases are when yi is a categorical variable in which 
case we have a classification problem, and when it is a real-valued scalar 
variable where we have a regression problem. 

Supervised learning tries to tackle an inductive problem, as from a 
finite set D we need to find a function f which will give an output for the 
whole spectrum of possible inputs. In simpler terms, the end goal is to 

Fig. 4. Schematic approach of frequency control mechanisms based on the Continental European synchronous area framework. The main terminology refers to the 
European nomenclature, while the US equivalent nomenclature is added below with the superscript (US). 
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find a mapping that will generalise well in data that the algorithm has 
not encountered before. The set of unseen data which is used to calculate 
how well the algorithm generalises is called test set and should not 
include datapoints which are part of the training set. In cases where a 
more/less flexible approach than the optimal is used, resulting in a 
learning algorithm that does not generalise well in unseen data, we say 
that the algorithm overfits/underfits the data. 

In DR, supervised learning techniques have been primarily applied to 
forecast the demand and electricity prices, by employing kernel-based, 
tree-based methods, and linear regression models. ANNs – trained in a 
supervised fashion – are also extensively used for forecasting but will be 
discussed in their respective section because they are heavily utilised in 
research. Kernel-based methods create representations of the input 
data to a new feature space, and subsequently find an appropriate hy-
pothesis in this feature space [53]; popular kernel-based techniques 
include support vector machines (SVM) and Gaussian processes (GPs). 
Support Vector Regression (SVR) has been used in Giovanelli et al. [54], 
Pal and kumar [55] for price forecasting, whereas Yang et al. [56] Zhou 
et al. [57,58] employ SVR for STLF, even for non-aggregated loads. The 
regression is obtained by solving the dual form of an optimisation 
problem as defined in Durcker et al. [59], and using Equation (2) to 
determine the regression function pðxÞ, with β and β* the Lagrange 
multipliers, x the inputs for the forecast, b a primal variable and Kðxi; xjÞ
a Kernel function, often chosen as the Gaussian Radial Basis Kernel 
function (Kðxi;xjÞ ¼ e�

ðxi�xj Þ2
σ2 ). 

pðxÞ¼
X

N

i¼1

�

βi � β*
i

�

Kðx; xiÞ þ b (2) 

Gaussian process regression models have been used to determine a 
probabilistic baseline estimation in Rajgopal [60] and Weng et al. [61], 
as well as for forecasting the consumption of controllable appliances in 
Tang et al. [62]. GPs have the advantage of being probabilistic models. 
Probabilistic approaches can potentially lead to better informed fore-
casts for DR; they output an estimate of the uncertainty in the pre-
dictions of the model – not just point estimates. Thus, prior knowledge 
can be included in the learning algorithm and subsequently domain 
knowledge can be incorporated in the model [52]. 

Unlike kernel-based methods, linear regression is a simple tool, easily 
implementable, which offers a good interpretability of how the inputs 
affect the output [52]. These attributes explain why it has been used 
across various domains. Even though linear regressions are often 
employed as a baseline algorithm by researchers to compare their pro-
posed algorithms [54,56,58,63,64], they have also been used as the 
main modelling technique in MacDougall et al. [65] to forecast the 
flexibility of Virtual Power Plants (VPP), in Dehghanpour et al. [66] to 
determine the aggregated power of price-sensitive loads at each hour of 
the day, in Klaassen et al. [67] to forecast the aggregated power for 
heating, as a function of the temperature, the time of the day, the type of 
day and the price, and in Grabner et al. [68] where multivariate linear 
regression is used for daily peak loads estimation. In the DR space, for 
STLF, the output of the regression is the power of the considered load 

Fig. 5. Groups of AI approaches used for energy demand response.  
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(thermal load or building) at time t (Pt 2 ½0;24�), while the inputs or fea-
tures can be time-related (hour, day, type of day), the temperature (T), 
the electricity price p, and/or a product of these inputs (e.g. hour� T, 
hour� p) to reflect the interactions between the inputs. A generic 
formulation can be found in Equation (3) below: 
2

4

P1

⋮

P24

3

5¼
X

i2inputs

2

4

ai1;1 ⋯ ai1;24

⋮ ⋮

ai24;1
⋯ ai24;24

3

5

2

4

Ii1

⋮

Ii24

3

5þ

2

4

P01

⋮

P024

3

5 (3)  

where Pj is the power consumption forecast for time t ¼ j. The vectors 
½Iij � represent the inputs or features, where i corresponds to one type of 
feature (temperature, type of day, …). For example, if there are three 
features considered, the temperature (i ¼ T), the type of day (i ¼ d) and 
the product of the price and the hour (i ¼ p⋅h), IT11 is the temperature at 
time t ¼ 11, Id11 is the type of day, and Ip⋅h11 is the product of the price at 
t ¼ 11. The terms P0j correspond to baseline consumption or offsets, and 
the aik;l coefficients are the linear coefficients for each of the features, 
that are computed and updated to minimise an error function (residual 
sum of squares for example). 

Moreover, there are also a few papers that have utilised Gaussian 
Copulas, primarily for load forecasting, in DR. Tavakoli Bina and 
Ahmadi [69] applied this technique for the prediction of EVs’ charging 
demand for day-ahead DR strategies, Bina and Ahmadi [70] for the 
day-ahead estimation of the aggregate power demand of particular 
household appliances, and Bina and Ahmadi [71] for non-controllable 
load forecasting in day-ahead DR. Besides DR, there is also work 
applying Gaussian copulas in the, more general, power system setting. E. 
g. in PV power forecasting [72,73], in short-term wind power fore-
casting [74], and in the forecasting of inflexible loads [73]. 

Tree-based methods have also been used extensively in DR for load 
forecasting [56–58,75,76] and price forecasting [54], where Giovanelli 
et al. [54] include a comparison with other methods (Linear regression, 
SVR, Gradient boosting decision tree). Yeng et al. [56] use regression 
trees to model the energy consumption of cooling systems and compares 
the outputs with SVR methods. Behl et al. [76] use multiple regression 
trees to predict the power consumption of a building as a function of the 
temperature, humidity, wind, time of day, type of day, schedule, lighting 
level, water temperature and historic power consumption. Zhou et al. 
[57,58] use classification and regression tree (CART) algorithms for 
short term load forecasting. Regression trees are hierarchical, 
non-parametric methods that segment the feature space (e.g. time of 
day, type of day, temperature) into a number of simple regions and 
subsequently fit a simple model in each one [77]. Regression trees are 
interpretable, scalable, handle missing data well, but on the other hand 
they can be prone to overfitting, and are generally unstable [52,54]. 
However, regression trees have been reported to provide accurate re-
sults even for complex prediction tasks, such as 48 h ahead predictions of 
aggregated demand with time step of 15 min [75]. 

Another commonly used approach, found in the review, for load 
forecasting in DR is ensemble learning. Ensemble learning is based on 
the idea of constructing a prediction model through a combination of 
multiple simpler base models (weak learners). Cheung et al. [78] pro-
pose a variation of ensemble learning called Temporal Ensemble Learning 
(TEL) that partitions the dataset by temporal features and forecasts 
demand in specific time ranges per day. The ensemble of these generated 
forecasts, with kernel regression as the base model, is the model that 
yielded the best results in this paper. Yang et al. [56] apply methods 
based on voting or stacking strategy to combine weak learners based on 
regression trees and SVM, to estimate the energy consumption of 
buildings that have an energy management system (EMS) which re-
sponds to DR signals, and Giovanelli et al. [54] use Gradient boosting 
decision tree (GBDT) to build an additive regression model, with the use 
of regression trees as the weak learner. This model is used to predict the 
prices in the FCR market. Ensemble learning approaches can potentially 
improve the forecasting accuracy (compared to the base models); such 

as in work of Cheung et al. [78], where ensemble learning techniques 
achieved higher accuracy for short term (1-h) load forecasts compared 
to the linear regression and SVR approaches. 

Besides forecasting, supervised learning models have been utilised 
for other tasks in DR as well. Goubko et al. [79] apply a Bayesian 
learning framework to estimate the consumer’s comfort level function, 
Liyan Jia et al. [80] an online learning algorithm (called piecewise linear 
stochastic approximation) to solve the task of day-ahead dynamic pricing 
for an electricity retailer, and Shoji et al. [81] adapt a Bayesian network 
to an EMS, with the purpose of learning the residents’ behaviour and 
controlling the appliances – under varying electricity prices. Moreover, 
Albert and Rajagopal [82] employ AdaBoost [83] to ensemble learn 
(binary) classifiers using features generated using spectral clustering. 
These classifiers are used to predict certain DR user characteristics. 

3.1.2. Unsupervised learning 
In this case of unsupervised learning methods only the inputs are 

given D ¼ fxigK
i¼1, where K is the number of datapoints, and the system 

attempts to detect patterns in the data that could be of interest. 
Compared to supervised learning, this is not such a well-defined problem 
due to the fact that the patterns needed to be detected are not known 
beforehand, and because there is a lack of obvious error metrics to be 
used. On the other hand, it can be applied to a wider spectrum of cases as 
it does not require labelled data, which can be difficult or expensive to 
acquire. In DR this is advantageous due to the lack of labelled data. The 
usual examples of unsupervised learning are clustering the data into 
groups, dimensionality reduction by discovering latent factors, 
learning graph structure, and matrix completion. 

In DR the dominant use of unsupervised algorithms has been for 
clustering purposes; where you create groups of objects (e.g. load pro-
files) in a way that objects within the same cluster are similar to one 
another, and dissimilar to the objects in other clusters. The various 
clustering algorithms have been applied to segment the consumers and 
find typical shapes of load profiles. In turn, this grouping can be used 
(among others) to identify potential households for DR schemes, select 
consumers for DR events, and compensate consumers for participation 
in DR programmes. 

Clustering algorithms can be classified in hard and soft; in hard 
clustering each item can belong only in one cluster, whereas in soft 
clustering each item can belong to multiple clusters. The K-means al-
gorithm has been employed in the majority of cases and with various 
distance metrics [57,68,84–89]. K-means clustering is a distance-based 
method with the purpose of predicting K centroids (points which are 
the centre of a cluster) and a label cðiÞ for each data point in the dataset. A 
data point is considered to belong in the kth cluster if the distance be-
tween the vector and the kth centroid is the smallest among all centroids. 
K-means finds the best centroids by iteratively alternating between (1) 
assigning data points to clusters based on the current estimate of cen-
troids, and (2) choosing centroids based on the current assignment of 
data points to clusters, until the assignments do not change [52]. In DR, 
K-means is mainly used to group individual households based on 
monitored load data, which are usually grouped by weekdays and 
averaged over a period of several weeks. The features used for clustering 
can include the important components from a Principal Component 
Analysis (PCA) [84,87,90] (or Self-Organising Maps (SOM) [89]), the 
daily load shapes directly – in which case the dimension of the consid-
ered space will be the size of the load profiles (e.g. 24 for hourly in-
tervals monitoring) – [57,91], and/or particular characteristics from the 
households, such as the average and peak daily consumption [85], and 
pricing information [86,88]. Cao et al. [84] compares the clustering of 
4000 households over 18 months from the Irish CER dataset, using 
K-means, SOM, and hierarchical clustering methods with different dis-
tance computations based on the 17 most significant PCA components. 
Koolen et al. [87] aim to cluster households into two groups (k ¼ 2), one 
more suited for Time of Use tariffs, and one more suited for Real Time 
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Pricing. They use spectral relaxation clustering with PCA to find 9 ei-
genvectors that define the space for the k-mean clustering. Finally, 
Grabner et al. [68] use k-means for substations’ load profile clustering, 
with dynamic time warping algorithm to measure the distance between 
time series (instead of Euclidean distance). 

Further clustering algorithms used for grouping households’ load 
profiles include soft clustering algorithms based on fuzzy clustering 
techniques [92,93], a density based spatial clustering algorithm [94], 
GMM [85,95], hierarchical clustering [84,91,96], sparse coding [96], 
and spectral clustering with a multi-scale similarity metric [97]. 

Two major challenges in unsupervised clustering cluster analysis are 
the estimation of the optimal number of clusters [98], and the validation 
of clustering structures [52]. In the DR literature the selected number of 
clusters is between 2 and 16, and the selection approaches include 
indices (e.g. Bayesian information criterion (BIC) [85], Dunn index (DI) 
[89], Davies-Bouldin index (DBI) [89,97], mean silhouette index (MSI) 
[89]), exploratory techniques [87,92,94], methods based on matrix 
perturbation theory [97], and iterative methods which increase the 
number of clusters K and perform a criteria-based comparison 
(depending on the application) for each K, while making sure to avoid 
over-fitting [62,84,86,87,91]. Indeed Tang et al. [62,91], Kwac et al. 
[91] use an adaptive k-means approach to find the best number of 
clusters of households, and Cao et al. [84] limits the number of clusters 
to 14 in order to avoid over-fitting. Moreover, bootstrapping techniques 
have been used to check the reliability of the clusters and test the results’ 

robustness [95]. Waczowicz et al. [99] propose an automatic frame-
work, based on a ranking method, to compare and select the 
hyper-parameter values for DR clustering purposes. 

Besides consumers’ segmentation, unsupervised techniques have 
also been utilised to detect the presence of heating appliances in a 
household [100], infer the dynamic elasticities curves [92], and detect 
the occupancy of a household [58,82] – where Albert and Rajagopal 
[82] use spectral clustering to cluster a collection of HMMs into classes 
of similar statistical properties. This information can be very valuable to 
aggregators, so that they can assess the flexibility of their assets. 

3.1.3. Reinforcement learning 
Learning from interaction is a fundamental idea in almost every 

learning paradigm. One of the most interesting computational ap-
proaches to learning from interaction is Reinforcement Learning (RL). RL 
is an approach which explicitly considers the whole problem of an agent 
focused on goal-oriented learning while interacting with an uncertain 
environment [101]. It is a distinct paradigm from supervised and un-
supervised learning which considers the trade-off between exploration 
and exploitation. Trial-and-error type of search as well as delayed reward 
are the two most characteristic aspects of RL. The problem of RL is 
formalised using the concept of Markov Decision Processes (MDPs). In 
MDPs at each sequential, discrete time step t the agent receives a rep-
resentation of the environment’s state (St 2 S ), selects an action (At 2
A ðsÞ) based on the state, and finds itself in the state of the subsequent 
time step Stþ1 where it receives a numerical reward (Rt 2 R ⊂ R) – 

because of its action At [101]. 
The RL framework has been applied to a number of domains with the 

most important being robotics [102,103], resource management in 
computer clusters [104], playing video games from pixel input [105], 
automated ML frameworks [106]. In the DR field, RL has been widely 
applied to the tasks of scheduling and control of the various units (e.g. 
domestic appliances, EVs), while taking into account consumers’ pref-
erences (via interaction with them). RL has been presented as a 
data-driven alternative to model-based controllers for DR, both at the 
consumer level (as part of an EMS), and at the service provider level. 
There is also research where RL framework has been used to learn the 

DR pricing mechanism for service providers [107–109] and develop a 
demand elasticity model for an aggregation of consumers [110]. 

The online nature4 of various RL methods makes it appealing for DR 
due to the low volume of many existing DR-related data sets. Accord-
ingly, it has been heavily applied and various solution methods of the RL 
framework have been used. The solution methods to RL can be arranged 
in two different classes; tabular methods where the spaces of possible 
states and actions are limited enough to allow value functions to be 
represented as tables, and approximate methods which can be applied to 
problems with arbitrarily large state spaces [101]. 

In DR, the most common tabular method applied is Q-learning [66, 
107–112]. Q-learning [113] is a temporal-difference, model-free5 RL 
technique which directly approximates the optimal action-value func-
tion, independently of the policy6 being followed [101]. In this case the 
learned expected discounted reward QðSt ;AtÞ that the agent receives for 
executing action At at state St and following policy π thereafter 
(action-value function) is defined as follows: 
QðSt;AtÞ← QðSt;AtÞ þ α½Rtþ1 þ γ max

a
QðStþ1; aÞ�QðSt;AtÞ� (4)  

where α 2 ½0;1� is the learning rate, γ is the discount factor, a 2 A , Rt the 
actual reward obtained for getting from state St to Stþ1, and 
maxaQðstþ1; aÞ is the maximum reward the agent can expect from being 
in state Stþ1. 

Using Equation (4), the agent updates his table of expected rewards 
(for state-action pairs), which will then allow him to find the optimal 
action at future times. In DR applications, Q-learning has been used to 
help the service provider company (aggregator) provide the optimal 
sequence of retail electricity prices to consumers [107–109]. In this case, 
the agent is the aggregator, the action is the price incentives sequence 
that is proposed to the customers, while the state corresponds to the 
energy demand from the customers, and the reward is a function of the 
aggregator’s profit and the cost incurred to the customers. Q-learning is 
also frequently used at the HEMS level to optimise the scheduling of 
appliances by considering the cost and comfort for the users as a reward 
function [111,112]. In O’Neill et al. [112], the authors consider 
pre-specified disutility functions for the customers’ dissatisfaction on 
job scheduling, but Wen et al. [111] address this limitation. Under this 
context, a state is composed of a price sequence from the retailer or 
aggregator, a vector that reflects the user’s consumption of specific 
appliances over time, and sometimes the priority of the considered de-
vice. The action from the HEMS is to switch on or turn off the considered 
devices at time t, and the reward is computed based on the satisfaction 
(or dissatisfaction) of the customers — quantified usually by the time 
delay in the actual switching of an appliance, or by directly modelling 
the end-user’s discomfort function [66,114]. Further, tabular methods 
are employed in Jain et al. [115] as a multi-armed bandit mechanism 
which involves learning to act in only one situation (single state), as well 
as in Ahmed and Bouffard [116] where the problem is formulated as a 
bandit problem and they apply Monte Carlo methods to learn the value 
of actions for a given policy. 

In contrast to tabular methods, the approximate RL methods used for 
DR are not online algorithms, but batch or mini-batch methods. In online 
algorithms the input data are obtained sequentially while the learning 
algorithm executes, whereas in batch algorithms the entire dataset used 
for learning is readily available [101]. Ruelens et al. [117,118] Claes-
sens et al. [119], Patyn et al. [120] use Fitted Q-iteration (FQI) at the 
end-user level (HEMS) to allow the HEMS to determine an optimal 
control sequence (policy) of thermal appliances for each time step of the 

4 Learning happens at each time step, as data becomes available in a 
sequential order.  

5 There is no need for a model of the environment.  
6 It is defined as the mapping from states to probabilities of selecting each 

possible action. It shows the learning agent’s way of behaving at a given time. 
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day based on day-ahead pricing signals. The aim for the HEMS is to 
minimise the daily cost of electricity demand. FQI algorithm estimates 
the state-action value function (expected reward QðSt ;AtÞ) offline, using 
a batch of historical data, and approximates it using either linear 
regression or ANNs. A further use case of FQI at the HEMS level is the 
construction of an optimal day-ahead load profile, which is subsequently 
sold in the market. The objective in this use case is to increase con-
sumers’ profit and minimise the deviation between the day-ahead load 
profile proposed in the market and the actual load profile. Medved et al. 
[121] propose another variant of the Q-learning algorithm, where 
action-value functions are parametrised using an ANN, called deep 
Q-learning [122], whereas Bahrami et al. [123] use an actor-critic online 
learning method [101]. 

In addition to the aforementioned centralised, single-agent methods, 
other multi-agent extensions of these have been reported in the litera-
ture. These alternative learning methods are mainly employed to 
address the limitations of centralised approaches in terms of computa-
tional power needed — by distributing the workload among the 
participating agents —, scalability, reliability of the system, as well as 
the data privacy of consumers. Hurtado et al. [114] propose a decen-
tralised and cooperative RL method which extends the Q-learning al-
gorithm to the multi-agent setting by incorporating the optimal policies 
and the actions of the other agents. Cooperation between agents has 
been considered in Golpayegani et al. [124] too, through the use of a 
collaborative and parallel MCTS, where it is used to enable EVs to 
actively influence the planning process and resolve their conflicts via 
negotiation in a DR scenario; MCTS can be considered as a form of RL 
algorithm [125]. On the other hand, there are papers that address the 
problem without collaboration among the agents, and a decentralised 
Q-learning is used [126], as well as W-learning [127]. Multi-agent ap-
proaches diminish the need for complex, computationally intensive al-
gorithms compared to centralised methods, in exchange for increased 
collaboration and communication overhead among the agents. For a 
more detailed search of RL methods in DR the reader can refer to the 
work of V�azquez-Canteli and Nagy [17]. 

3.2. Nature-inspired algorithmics 

Natural and biological systems have always been a key source where 
scientists draw inspiration from, to design novel computational ap-
proaches. In the context of AI, nature-inspired algorithms have been 
utilised for searching and planning purposes, i.e. to find the sequences of 
actions needed to reach an agent’s goals [45]. The nature-inspired al-
gorithms found in the DR literature are often meta-heuristics motivated 
from evolution, biological swarms, or physical processes. The term 
meta-heuristics refers to the class of stochastic algorithms with random-
ization and local search, and is used to denote the set of iterative pro-
cesses which augment heuristic procedures, via intelligent learning 
strategies for the exploration and exploitation of the search space, with 
the goal to efficiently discover near-optimal solutions [128]. 

In DR, nature-inspired algorithms have been primarily used to 
schedule loads or appliances at the consumer level (algorithm embedded 
in HEMS) or help aggregators and retailers to optimise the pricing of 
their customers who offer DR services. Since meta-heuristics are able to 
find solutions in a reasonable timeframe, they have been heavily utilised 
under the DR context, where the scheduling task can be computationally 
expensive. 

3.2.1. Evolutionary algorithms 
Evolutionary algorithms, or Evolutionary Computation (EC), is a 

heuristic-based approach which uses methods inspired by biological 
evolution, by mirroring computationally some of its core principles, 
such as reproduction, mutation, recombination, and selection. The ar-
chitecture of an EC algorithm includes three main steps. The first step is 
the initialisation step, where a set of possible solutions is chosen — most 
of the time randomly. The second step is the evolutionary iterations with 

two operational steps, namely, fitness evaluation and selection and popu-
lation reproduction and variation. The fitness evaluation consists in 
evaluating the objective functions obtained for all the individuals of the 
initialisation population, while the selection criteria allow to select the 
individuals that performed best in order to determine a new population 
using reproduction (crossover, replacement) and variation (mutation) 
methods. Then, this new population is re-evaluated, and a new iteration 
is realised until the evaluation of the optimisation function on an indi-
vidual meets a termination criteria. Evolutionary learning algorithms 
are a family of algorithms which include genetic algorithms (GA), 
evolutionary programming (EP), evolutionary strategies (ES), genetic 
programming (GP), learning classifier systems (LCS), differential evo-
lution (DE), and estimation of distribution algorithm (EDA) [129]. 
Strengths of evolutionary algorithms are the fact that no gradient in-
formation is needed, they can be implemented in a parallel manner, and 
are highly exploratory. Compared to traditional optimisation/search 
approaches, this enables evolutionary computation to be used for opti-
misation and search in problem domains where the structure cannot be 
well characterised in advance (e.g. optimising an unknown function that 
describes a user’s utility for energy consumption, or predicting future 
power market prices). On the other hand, evolutionary methods have 
inherent drawbacks in convergence, interpretability, can have unpre-
dictable results, and there is no guarantee of finding the optimal solu-
tions [130]. Because of their advantages, EC algorithms been used in a 
variety of fields [131,132]. 

In the literature on energy DR the prevailing method from the 
evolutionary computation is genetic algorithms [130–134]; GA is a model 
which abstracts the biological evolution process as described in Charles 
Darwin’s theory of natural selection [135]. At the HEMS level, GAs are 
used to find the optimal switching time of each appliances. In this case, a 
population’s individual xi is constituted by a set of binary values (xi ¼

fxi1;xi2;…;xiJg) stating if the corresponding appliance is on or off at the 
considered time j [136,137], as explained below. For retailers’ or 
aggregators’ price scheme optimisation, GA usually consider individuals 
that consist in a set of prices pi ¼ fpi1;pi2;…;piJg, with pij the price for the 
jth period of the day [130,134,138–140]. These prices are the first 
generated randomly within the constraints, and the sets that produce the 
best outputs will then generate a next generation of prices. The objective 
function used to compute the output is usually a cost or benefit function, 
which aims at maximising the aggregator’s profit. Then, each approach 
has its own replacement, crossover and mutation methods between the 
different prices’ sets of one population. Finally, GA have also been used 
to train a neural network [141], and find the optimal parameters of an 
SVR model [55]. 

Furthermore, variations of the GA have been used in the multi- 
objective setting by primarily utilising the Non-dominated Sorting Ge-
netic Algorithm II (NSGA II) [142]. The NSGA-II is an evolutionary al-
gorithm that employs an elitist strategy to discover Pareto-optimal 
solutions for multi-objective problems, while being efficient in handling 
various constraints [143]. In DR it has been widely applied in the 
multi-objective scheduling of loads [144–148]. 

Other evolutionary algorithms which have used in the DR setting are 
the population-based differential evolution algorithm [140], which can 
be though as an further extension to GA with explicit updating equations 
[130], a differential Evolutionary Algorithm (EA) for the multi-objective 
management of lithium-ion battery storage in a datacenter for DR [149], 
and a bi-level evolutionary algorithm (EA) to determine a retailer’s 
optimal power pricing in the face of DR strategies of consumers trying to 
minimise their electricity expenses [134]. 

3.2.2. Swarm artificial intelligence 
The term swarm intelligence refers to a subdomain of AI related to 

the intelligent behaviour of biological swarms and how simulating these 
biological behaviours can be used to solve various tasks [150]. Swarm 
Intelligence algorithms most commonly found in the literature are 
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Particle Swarm Optimisation (PSO) algorithm [151], and Ant Colony 
Optimisation (ACO) [152]. The work of Kar [153], Chakraborty and Kar 
[154], and Lakshmaiah et al. [155] are reviews that provide extended 
information about these algorithms. Similarly to evolutionary methods, 
swarm AI methods suffer from slow convergence speed and the risk of 
getting stuck in local optima [128]. On the other hand, in swarm AI 
algorithms, all particles’ histories contribute to the search, unlike in GA 
where “poor” particles are discarded [156]. Additionally, swarm AI 
methods have less parameters requiring prior tuning and adjustment 
and are usually subject to easier implementation. 

In energy DR, swarm AI algorithms are mostly used at the aggregator 
or retailer level in order to find the optimal scheduling or pricing scheme 
to minimise a cost function. Indeed, in DR, the optimisation problems 
often consider a large number of variables, with quadratic optimisation 
functions and constraints from AC power flow computation that make 
the problem non-convex. In this context, heuristic optimisation can 
easily find a near-optimal solution in less time than other mathematical 
techniques. Among these heuristic optimisation techniques, PSO is the 
most widely used in DR. PSO is based on the natural social behaviour of 
animals associated with swarms (e.g. flock of birds, fish shoal), where 
each of the individuals constituting the swarm (called particles) searches 
for an objective (e.g. food) but also considers the findings of the other 
individuals in the swarm [150]. 

When PSO is used for scheduling the customers’ consumption [86, 
157–159] or VPP assets scheduling (including loads) [160–164], a 
particle p is defined as a matrix Xp ¼ ½xijp �N�J, where N is the number of 
loads (customers, appliances, or VPP’s assets) and J is the number of 
time periods in the considered DR scenario. Each of the xijp correspond to 
the state of the considered load i at time j. xijp can be a binary variable to 
indicate if the load is on (1) or off (0) [158,159,162], or it can be the 
power of the load [160–164]. 

PSO is an iterative process, where a population (swarm) of particles 
is randomly determined during the first step of the iteration by choosing 
the x0

ijp values randomly for each particle p (or x0
ijp can be initialised using 

the result of the optimisation of a simplified problem using Mixed 
Integer Linear Programming [161]). In parallel with the choice of the 
swarm’s particles initial position (x0

ijp ), the aggregator determines the 
utility function he wants to minimise, which is often given by the cost: 
c ¼

P

time  j

P

assets  i
pj⋅Pi⋅xij in the case where xij is a binary variable, but it 

could also be a multi-objective function that also integrates the Peak to 
Average Ratio [136,157–159]. 

For the use case of loads scheduling in VPP, Pereira et al. [163] 
provides an optimal scheduling based on a multi-objective function that 
includes the cost for customers and the operational costs of the aggre-
gator. Similarly, Pereira et al. [163], Faria et al. [164] optimise the as-
sets schedule based on four demand response remuneration programs 
(that belong to incentive and price-based categories). In Faria et al. 
[164], PSO is used to minimise the operational costs of the VPP, while 
ensuring load balancing, meeting resources capacities and DR shifting 
constraints. In Pedrasa et al. [162], the authors include constraints on 
curtailment duration and aim at minimising the cost for the consump-
tion of the group of interruptible loads. Finally, electric vehicles and 
Vehicle-to-Grid charging can also be addressed by PSO algorithms 
[161]. 

The customers’ discomfort for reducing consumption during a DR 
event can also be included in this utility function, as proposed in Herath 
and Venayagamoorthy [159,162,165]. The aggregator also takes into 
account the constraints of all the loads, as the maximum and minimum 
power, but also the minimum and maximum time for the use. Then, the 
utility function is evaluated for each of the particles, in order to prepare 
the update of the position of each particle in the next iteration. Indeed, 
each particle will be brought closer to the particle that reached the best 
cost ck

best reached by the particle pbestk at iteration k, while also taking into 
account its best position. Unlike in GA, all the particles are kept and 

updated. At iteration k, the position of each particle p will be updated 
from xk

ijp to xkþ1
ijp using the following equation (5): 

xkþ1
ijp

¼ xk
ijp
þ vkþ1

ijp
(5)  

where vkþ1
ijp is defined as the velocity of particle p at iteration k þ 1 in the 

direction i; j, and is given by Equation (6). 

vkþ1
ijp

¼ωp ⋅ vk
ijp
þ c1r1

�

xbest
ijp

� xk
ijp

�

þ c1r1

�

xk
ijp

bestk
� xk

ijp

�

(6)  

where c1 and c2 are the cognitive and the social acceleration constants 
respectively, r1 and r2 are random numbers between 0 and 1, ωp is the 
inertia of the particle p, that can evolve through time [157], xbest

ijp is the 
position of particle p that gave the best (lowest) cost c in the previous 
positions it was in, and xk

ijpbestk 
is the position of the particle pbestk that 

achieved the best cost in the swarm at iteration k. The initial velocity is 
usually defined as 0, and should stay within boundaries, which can be 
defined using price information, as proposed in Faria et al. [166]. Once 
all the particles have been updated and constrained, within the 
boundaries defined by the aggregator and the consumers preferences 
(limits of time of use for each load for example), the current best position 
of each particle xbest

ijp is updated iteratively until the termination criteria 
of the cost function c are met. In this case, the optimal scheduling of 
loads through the day is given by Xpbest ¼ ½xijpbest �. PSO can also be used to 
determine an optimal price scheme, in which case the particles’ position 
can be defined by Pp ¼ fp1;…; pJg where pj is the price at time j. Some 
researchers also implement a Gaussian mutation in the parameters c1, c2 
and ωp in order to improve the exploration of the space [161,166]. 

Finally, for optimal scheduling of loads at the aggregator level, 
Margaret and Uma Rao [167] also use the Artificial Bee Colony (ABC) 
algorithm which imitates the food searching behaviour of honeybees. 
Similarly, at the HEMS’s level, Kazemi et al. [137] propose a Gray Wolf 
Optimiser (GWO) to schedule the appliances based on the price from the 
retailer and on each appliances’ needs. GWO algorithm draws inspira-
tion from the social hierarchy and hunting behaviour of gray wolf packs 
[156]. 

3.2.3. Other nature-inspired meta-heuristics 
In addition to the aforementioned algorithms, there have been found 

various nature-inspired meta-heuristics which cannot be classified in the 
existing groups. In Herath et al. [165] the CLONALG-based [168] Arti-
ficial Immune System (AIS) algorithm, derived from the processes found 
in biological immune systems [169], is used to determine the aggre-
gators’ pricing scheme. Developed on the annealing concept,7 the 
simulated annealing method is employed for DR in Spinola et al. [86], and 
the Wind Driven Optimisation (WDO) algorithm [136], which is based on 
atmospheric motion, is used to determine an optimal scheduling of ap-
pliances at the household level. 

3.3. Artificial neural networks 

Artificial Neural Networks (ANNs) are computational models 
inspired by, albeit not identical to, biological nervous systems. ANNs 
have been developed since the early years of AI as connectionist models; 
models which are large networks of simple processing units, massively 
interconnected and running in parallel [170]. Although ANNs could fall 
under both categories of machine learning and nature-inspired AI ap-
proaches, we present them in this review as a distinct category since they 
are heavily utilised in DR applications. 

The basic component of an ANN are the units (or nodes) which are 

7 The process undergone by misplaced atoms in a metal when it is heated, and 
then its temperature is decreased it in a controlled and gradual way. 
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connected by directed links; the strength of each link is determined by a 
numeric weight. Nodes can either be input nodes (get data inside the 
network), output nodes, or hidden nodes (modify the data en route from 
input to output). Each unit calculates linear combinations of its inputs, 
which is then passed to an activation/transfer function (e.g. sigmoid 
functions, ReLU) to derive the unit’s output [45]. 

The properties of ANN are conditional to the network’s topology (the 
way units are connected) and the attributes of units. The two main ar-
chitectures of ANNs are the feedforward and the recurrent architecture 
[45]. In feedforward ANNs (FF-ANNs) the connections between units 
form a directed acyclic graph, whereas recurrent neural networks (RNNs) 
allow for feedback connections and thus form a directed cyclic graph. In 
FF-ANNs the nodes are usually structured in hierarchical groups of units 
called layers; in which case the units’ inputs come only from units in the 
immediately preceding layer. There is no upper bound to the number of 
hidden layers an ANN can have. 

ANNs have been utilised for classification, clustering, pattern 
recognition and prediction across a number of disciplines [171]. In DR, 
ANNs of various architectures and depth (number of layers) have been 
used primarily for forecasting applications. Most of DR applications use 
ANNs to forecast the future consumption of an asset (building, appli-
ance, group of consumers), or the flexibility of a load, or the electricity 
price in a short term (from several minutes to one day ahead). Indeed, 
ANNs can successfully replace nonlinear regression tools for those 
applications. 

The inputs to be included depend on the variable that is forecasted. 
For instance, in load forecasting most of the implementations use inputs 
as previous consumptions (at a short time before, and sometimes at the 
same time but for previous days), weather (mostly temperature), type of 
day (value between 1 and 7, or 0 for week days, 1 for week-ends), hour 
for the prediction, and sometimes the price. For a price forecast, inputs 
are mostly previous prices (for the same day and for previous days at the 
same time). Flexibility forecast on the other hand is a function of pre-
vious consumption, weather, and set points from the DR aggregator 
(current and previous set points). The output of these forecasts is 
generally the variable value at a future time (power consumption or 
price), but it can also be the main wavelet transform’s coefficients of the 
considered variable [172,173]. 

Based on the extensive literature on the topic, two main classes have 
been identified: single hidden layer ANN and Deep Learning, as 
shown below. 

3.3.1. Single hidden layer ANN 
The most widely used class of ANNs in the DR domain is the single 

hidden layer, feedforward ANN. There are also cases where autore-
gressive feed-forward are built [174,175]. The only two papers found to 
be using RNNs is in Liu et al. [176], where an Elman neural network is 
employed, and in Lee and Moon [177] (non-linear Autoregressive with 
external inputs RNN). In the DR context, the vast majority of the liter-
ature has employed single hidden layer ANNs for load and price fore-
casting. Besides these tasks, single hidden layer ANNs have been used to 
classify customers based on their potential participation in a DR event 
[178], and as simple black-boxes to model complex functions, such as 
consumers’ thermal discomfort [179] or consumers’ ability to shift their 
consumption [180], that mostly depend on temperature, time, type of 
day and price. All the ANNs that fall under this group are using sigmoidal 
activation functions. Most of the papers use the logistic sigmoid function 
[65,178,181–188], although there are papers using other variants; hy-
perbolic tangent [67,180,189–192], bipolar sigmoid [179], and 
log-sigmoid [191]. 

The prevalent methods for training ANNs8 have been found to be 
gradient-based algorithms. The plain back-propagation with gradient 
descent [193] has been used in some cases [173,178,187,188,192,194], 

but the majority of the literature trains ANNs using variations of this 
algorithm to deal with its limitations. There is work where they try to 
avoid overfitting by using Bayesian regularisation [66,93,174,191,195], 
momentum [196], early stopping [197], and cross-validation [175, 
198]. The Levenberg-Marquardt Algorithm is used for training in 
numerous papers [64,67,93,179,180,189,190,198–200] to provide 
faster convergence than the plain backpropagation, in exchange for high 
memory usage. Further implementations include the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [65,181, 
181–183], resilient backpropagation (RPROP) [201], and kernel based 
extreme machine learning [202], used for higher convergence speed. 
Non gradient-based methods for training ANNs are PSO [203], and a 
combination of PSO and GA in Xie et al. [141]. 

Even though the global approximation theorem [204] states that a 
FF-ANN with a hidden layer is sufficient to learn any function, there is 
evidence that utilising models with more hidden layers (deep ANNs) can 
result in architectures with smaller number of units and lower gener-
alisation error [205]. 

3.3.2. Deep learning 
Deep learning is a branch of machine learning methods which 

involve learning multiple levels of representation and abstraction, and 
has the ability to process data in their raw format, as well as discover the 
representations needed for detection or classification in an automated 
fashion [205]. Even though, the modern term of deep learning can be 
applied in ML frameworks that are not necessarily neurally inspired 
[205], the most common use of the term refers to ANNs which have two 
or more hidden layers. 

Deep learning approaches have given really promising results and 
have achieved human or even superhuman performance [206] in certain 
types of problems. There are many different architectures of deep neural 
networks. The most commonly used for supervised learning are feed-
forward NNs [193], convolutional NNs [207], RNNs [208], while 
autoencoders [209] and Restricted Boltzmann Machines [210] are used 
commonly in the unsupervised setting. There is also the combination of 
deep learning used in conjunction with RL leading to deep reinforcement 
learning [105]. In our search, the primary use of deep architectures in DR 
has also been for load and price forecasting tasks — like in the case of 
single hidden layer ANNs. Additionally, deep architectures have been 
applied to predict the users’ response behaviour [63], control residential 
appliances (considering DR events) [211], identify socio-demographic 
information about the consumers to help retailers provide more per-
sonalised services and make more reliable decisions on the targeting of 
DR [212], as well as for clustering customers based on the encoded load 
profile, by using deep autoencoders [213]. 

Similar to “shallow” ANNs, the prevalent topology of deep networks 
used for DR is the feedforward architecture [109,211,214–218]. Other 
types of deep ANNs found in the literature are long short-term memory 
(LSTM) [63], convolutional neural network (CNN) [212], and a deep 
RNN [217]. LSTM is a type of RNN which can handle better long-term 
dependencies — in exchange for higher computational cost — and 
CNNs are well suited for processing data with a grid-like topology. Most 
of these models have been used for regression, with the exception of 
Ahmed et al. [211], Wang et al. [212], and have been trained with the 
Levenberg-Marquardt backpropagation algorithm [109,211,217]. To 
avoid overfitting the surveyed literature has used data augmentation 
[212], dropout [212,214], and training with momentum [215]. 

In comparison with traditional “shallow” techniques, deep learning 
has the ability to learn highly non-linear, complex relationships and 
correlations between the input and output data. For that reason, in the 
DR literature it is shown that deep learning methods usually outperform 
in prediction accuracy traditional techniques like SVR [63,214,217], 
shallow ANNs [63] and Random Forest [63]. However, this flexibility 
comes with a cost. Specifically, deep learning architectures require a 
large amount of data to outperform other approaches, are computa-
tionally expensive to train, and are not easily interpretable. Further, it is 8 Learning the weights of the network. 
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not fully understood why they work so well in certain types of problems 
[219], and it should be noted that arbitrarily increasing the depth of an 
ANN might not always yield the best results [220]. 

3.4. Multi-agent systems 

Due to the distributed nature of the demand-side in power systems 
there is the need for approaches that can learn, plan and make decisions 
in an environment that involves multiple interacting intelligent agents. 
The tools to study these problems are provided by a sub-area of 
distributed AI called multi-agent systems (MAS). The subfields of MAS 
studied in this review are automated negotiations for the negotiation 
between the various participants in a scheme, cooperative/coalitional 
game theory for the study of coalitions among these participants, as well 
as mechanism design. 

3.4.1. Coalitional game theory 
Game Theory is a branch of economics that is largely involved with 

the domain of decision making by self-interest entities [221,222]. The 
main concept in Game Theory is the game which is a mathematical 
model that describes and captures the main features of the interaction 
between these self-interest entities [223]. One of the key objectives of 
game theory is to try to understand what constitutes as a rational outcome 
of a game, and numerous solution concepts have been developed to find a 
subset from the set of possible outcomes in a game (e.g. Nash 
Equilibrium). 

Coalitional (or cooperative) game theory is one of the basic classes of 
game theory. In cooperative game theory, there is an abstraction from 
individual players strategies and instead focus on the coalitions players 
may form. There is the assumption that each coalition may attain some 
payoffs and then the goal is to try and predict which coalitions will form 
(and hence the payoffs the agents obtain). Cooperative game theory 
concentrates on division of the payoff, and not so much on what players 
do to achieve those payoffs [223]. 

In the DR context, cooperative game theory has been highly used; 
especially in the cases where there are binding agreements in place (i.e. 
incentive-based DR). The main applications of cooperative game theory 
in DR is the selection of the optimal set of electricity consumers to 
participate in DR schemes, and the allocation of the coalition’s payoff 
among DR participants (known as solution concept). The solution 
concept corresponds to the way the total revenue is split among the DR 
flexibility participants, which depends on the criteria that the aggre-
gator wants to meet. Some of the main solution concepts are the Shapley 
Value (fairness criterion), the Banzhaf Index (fairness criterion), the core 
(coalitional stability), Nucleolus (based on the notion of deficit), Kernel 
and Stable set. In DR, the most commonly used solution concept is the 
Shapley Value (SV), which defines a fair way of distributing the payoff of 
each participant after a DR event [224–226]. Indeed, the SV proposes a 
unique, fair and symmetrical distribution of the effort, reward or penalty 
between participants of a DR program, as it proposes a reward to each 
participant that is proportional to their contribution. 

For example, in a coalition game, we can consider the total expected 
payoff for the set of participants to a DR event S⊆χ (with χ ¼ f1;2;…Ng

the set of all N loads associated with the considered aggregator) defined 
as a characteristic function v : S 2 2N→R. This characteristic function 
can be determined by an aggregator. In the case of a load reduction DR 
event, vðSÞ ¼ cP

k2S
Qk where Qk is the quantity of energy reduction from 

participant k and c the amount of money determined for the reduction of 
1 kWh. The Shapley Value is determined for each participant as the 
mean marginal contribution of this participant to all possible coalitions’ 

permutations of other participants. Mathematically, this can be 
expressed with Equation (7), where vðS [ fkgÞ � vðSÞ is the marginal 
contribution of participant k belonging in a coalition S: 

ϕkðχ; vÞ¼
X

S⊆χnfkg

jSj!ðjχj � jSj � 1Þ!

jχj!
½vðS [ fkgÞ� vðSÞ

#

(7)  

where χ=fkg is the set of all participants except participant k. 
Although the concept of the Shapley value provides a fair and unique 

solution to coalitional games, its downside is its computational hardness 
and for that reason a number of papers have proposed approximations. 
Bakr and Cranefield [227] compare three methods for calculating the 
exact or approximate Shapley value, which include a linear-time 
approximation proposed in Fatima et al. [228], and a stratified 
random sampling proposed in Maleki et al. [229]. O’Brien et al. [226] 
propose a stratified sampling technique in conjunction with a RL heu-
ristic to approximate the Shapley value. 

3.4.2. Mechanism design 
Mechanism design is a strategic variant of social choice theory. 

Under this theory agents are assumed to behave in a way that maximises 
their individual payoffs. In mechanism design, the goal is to design a 
game (e.g. DR pricing scheme, scheduling of appliances) in a way that 
the equilibrium of the game is guaranteed to have a specific set of 
properties, independent of the unknown individual preferences (e.g. 
unknown preferences of DR participants) [230]. As stated in the book of 
Shoham and Leyton-Brown [230] mechanism design can be thought as 
an exercise in “incentive engineering”. 

In the DR literature mechanism design has been widely applied, 
because it is of high importance to the success of DR schemes to guar-
antee certain properties. In DR, mechanism design is primarily utilised 
to design incentive-based mechanisms where consumers are incenti-
vised to provide truthful bids. Several papers propose DR mechanisms 
that make sure that the consumers will maximize their utility function 
by reporting their preferences truthfully [115,231–233]. Such mecha-
nisms are called Incentive Compatible (IC) mechanisms. Hayakawa et al. 
[231] propose a scheduling and payment function based on future pri-
ces, and end-users’ preferences to the different time periods within the 
day. Two dominant-strategy equilibrium, “penalty-bidding” mecha-
nisms are proposed in Ma et al. [233], and Ma et al. [232] propose a 
mechanism that uses a “reward-bidding” approach rather than the 
approach of Ma et al. [233] to stimulate truthful behaviours. Meir et al. 
[234] use the Vickrey-Clarke-Groves (VCG) mechanism to design DR 
contracts, ensuring that the participating agents will reveal their true 
costs for participating in DR. Finally, Kota et al. [235] propose a coop-
erative mechanism that is efficient and incentive compatible, in the 
sense that participants do not gain by augmenting their baseline con-
sumption to show an artificial demand reduction. In this mechanism, the 
aggregator selects a subset of agents, place bids for this subset in the 
electricity flexibility market and distributes the revenue among agents 
according to their consumption reduction’s commitment, while penal-
ising those who increased their consumption. 

3.4.3. Automated negotiation 
Broadly defined, negotiation is an allocation mechanism that can be 

used to allocate goods (e.g. in Bajari et al. [236]), resources (e.g. in Sun 
et al. [237]), or tasks (e.g. in Edalat et al. [238]), among a set of agents. 
Existing literature identifies two main classes of allocation mechanisms 
[239]:  

� Auctions are mechanisms where one side automates the process 
during which participants from the other side compete among them. 
In this case there is a fixed protocol as well as rules. The aim of 
auction theory is to create an optimal auction design so that certain 
desirable properties are guaranteed, using mechanism design prin-
ciples discussed in Section 3.4.2.  

� Negotiations are a rich and not so well-defined group of processes 
used for allocating goods, resources, services or tasks, and they 
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include an exchange of information comprised of offers, counterof-
fers and arguments with the purpose of reaching a consensus [240]. 
Automated negotiation approaches give the ability for more decen-
tralised, flexible protocols and for customised and complex agree-
ments. The agents can use incomplete information about their 
opponent (and their own) preferences and the primary focus is on the 
design of the agents’ strategies, not on the allocation mechanism 
itself. In this section, the focus is on negotiation (bargaining) 
mechanisms, as mechanism design approaches have been discussed 
in Section 3.4.2. 

There is a number of definitions of automated negotiation in the 
existing literature. In this work we use the broad definition of Lomuscio 
et al. [241]: 

“Negotiation is the procedure by which a set of agents communicate with 
one another to try to reach agreement on some matter of common 
interest.” 

In more detail, in automated negotiation research the interest lies in 
the creation of software programs which will be able to negotiate on 
behalf of their users or owners [242]. These programs are called soft-
ware agents, or more simply agents. In the most general way automated 
negotiation is mainly the design of high-level protocols for the interac-
tion among agents and is one of the key research topics in multi-agent 
systems. 

In automated negotiations related to energy DR, a buyer agent 
(consumer or aggregator) will negotiate with a seller agent (producer or 
retailer) on several issues, for all the periods of the day. Issues are the 
objects of the negotiation, e.g. the price, or the quantity of energy. For 
example, in the context of forward bilateral contracts, Lopes et al. [243] 
present a negotiation framework where buyers and sellers negotiate the 
amount of energy E ¼ fE1;…E6g and the prices p ¼ fp1;…; p6g for the 6 
periods that constitute one day. Negotiations take place in several 
stages. First, a pre-negotiation phase, where the number and type of 
issues are defined by the market operator, and each agent determines its 
preferences for each issue. Each agent also sets its own (private) utility 
function. For the buyer, Lopes et al. [243] propose a cost function (c ¼
P6

i¼1pi⋅Ei) to be minimised, with some constraints, i.e. the minimum 
energy quantity for each time period and for the whole day. For the 
seller, a benefit function is proposed (b ¼

P6
i¼1ðpi � ciÞ⋅ Ei, where ci is 

the cost to produce one unit of energy). Finally, based on this utility 
function, each agent also defines the threshold utility value (highest 
acceptable cost for the buyer, lowest acceptable benefit for the seller), 
under/over which it will not agree to accept a deal. After this 
pre-negotiation phase comes the actual negotiation phase, where each 
agent applies its strategy to obtain the best deal. The negotiation consists 
in an iterative process, where for each iteration, an agent makes an offer 
(consisting of a specific value for each issue under negotiation). The 
other agent may accept the offer, send a counteroffer, or end the 
negotiation if the offer results in a value for its utility function under/-
above the threshold it has determined before. In the case of a counter-
offer, the process is repeated until one of the agents accepts the other 
agent’s offer or abandons the negotiation. 

As automated negotiations are performed by software agents, it is 
natural to use AI techniques to improve the negotiation strategy of the 
agents. In applications in the energy sector, Rodriguez-Fernandez et al. 
[244,245] propose a Q-learning approach (RL algorithm based on pre-
vious negotiations with all the other agents) to predict the expected 
prices for all possible scenarios, and then choose the best negotiation 
counteroffers and reach the deal with the highest/lowest utility. More-
over, Golpayegani et al. [124] utilise an argumentation-based negotia-
tion, where the proposing agent justifies its proposal and the negotiating 
software agents can exchange arguments (encoded in formal logic) when 
they do not accept the opponent’s proposal. The core idea is that these 
arguments will help agents to search for and propose offers that are more 
likely to be accepted by their opponent. 

4. Application areas of AI in demand response 

For the effective implementation of DR programmes, there are 
numerous issues that need to be considered; from load and electricity 
price forecasting to identifying the right consumers to participate in DR 
schemes and creating automated systems that manage demand-side re-
sources. AI methods have been applied across the spectrum of DR by 
providing the tools for prediction, real-time efficient control of distrib-
uted systems, decision-making, while adapting to an ever-changing 
environment and learning from human behaviour [246]. In this sec-
tion, we identify the areas of DR where AI has been employed in the 
literature and classify them accordingly. The proportion of the reviewed 
literature where AI has been used for each particular DR application area 
is shown in Fig. 7. 

Fig. 6. Proportion of the reviewed literature using specific group of AI techniques for DR purposes.  
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4.1. Forecasting in DR 

One of the major purposes, for which AI techniques have been 
employed, is forecasting. It has been identified, that in the DR context AI 
methods have been used for the prediction of electricity prices and 
various load types. Forecasting can inform real-time electricity sched-
uling, as well as longer-term system and service providers’ planning 
[247]. Short-term forecasts can improve electricity scheduling, enabling 
aggregators to provide better services, and consumers to respond closer 
to optimal in DR signals. Better long-term forecasts can enhance the 
planning process, helping service providers and operators to have a 
better understanding of the available flexibility, which consumers to 
target for DR, and setting DR signals (compensation/prices). 

4.1.1. Load forecasting 
Prediction and estimation of loads is an integral part of a reliable and 

efficient power system operation. Effective demand forecasting is an 
important tool for tackling various issues in DR, including properly 
planning, rewarding DR participants, and estimating capacity potential 
of DR resources [18]. A widely used distinction of demand forecasting — 

based on prediction horizon — is long-term load forecasting (> 24h), 
and STLF (< 24h). In this review, the papers included are those which 
explicitly look the load forecasting problem in the DR domain. The 
reader interested in the wider spectrum of load forecasting in the smart 
grid context can refer to the review of Raza and Khosravi [18]. 

Another basic distinction is whether load is predicted while taking 
into account, or not, the DR factor. In the literature there is a variety of 
papers which estimate demand including reduction or shifting due to 
DR. The bulk of the papers predict demand for the short-term or day- 
ahead [57,58,78,93,176,196,200,203,215,217], but there are also pa-
pers forecasting the week ahead load [177]. Moreover, load forecasting 
has been performed in various aggregation levels; residential [58,173, 
174,199], large buildings [93, 187.196], and appliance-level (e.g. 
chiller, ice bank, lighting) [56,217]. 

For aggregated residential loads forecasting, Zhou et al. [58] and 
Zhou et al. [57] compare different forecasting techniques, including 
least squares, lasso and ridge regressions, kNN regression, SVR and de-
cision tree regression. Similarly, Cheung et al. [78] provide a 1-h ahead 
aggregated load forecasting using SVR and ANN to a dataset already 
partitioned based on temporal features. Aggregated loads forecasting 
can also focus on determining day-ahead peak demand, either at a 
building level [93], or at a feeder or community level [203,215]. 

For domestic load forecasting, Pereira et al. [93] use an ANN based 
algorithm for single prosumer consumption and production forecast for 
day ahead, based on historic demand and temperature. Load forecasting 

at the appliance level can also be done with ANNs. Schachter and 
Mancarella [200] utilise ANNs for HVAC systems load forecasting, and 
Mohi Ud Din et al. [217] focus on the prediction of loads of domestic 
appliances by using deep neural networks with a PCA-based feature 
selection scheme. 

The case of load forecasting without factoring for DR is referred as 
baseline load estimation. The baseline load is the counterfactual 
power consumption in the absence of a DR scheme and is important in 
the context of DR [184]. The baseline consumption estimation of con-
sumers plays a key role in the implementation of the various DR pro-
grams, and it is utilised to reliably estimate the consumers’ normal 
power consumption, which is subsequently used to reward the DR par-
ticipants [184]. In the reviewed literature, there is work regarding 
baseline load estimation for a residential environment [89,184], in-
dustrial factories [64], and office buildings [76,194,248]. There are also 
instances of forecasting baseline using aggregated loads over time [60, 
61], over consumers [60], and over independent energy processes 
[194]. Aggregating loads can lead to smaller prediction variance, and 
allocation of DR rewards with much higher confidence. 

Complementary to the above, flexibility forecasting is frequently 
studied in the research literature. Flexibility is defined as the effect of 
the smart-grid control signal on the load — which is considered as a 
function of time, weather circumstances and the control signal — [67]. 
Knowledge of the available capacity for DR is considered crucial and is 
beneficial for developing and optimising DR-strategies, as well as for 
assessing their economic value [67]. In the context of VPPs, there is 
work that estimates the flexibility of a cluster of heating devices for DR, 
which are assumed either homogeneous [65,181,182], or heterogeneous 
[183]. The estimated flexibility can be traded either in a single market 
(DA) [65,183], or in multiple energy markets (intraday, DA market, 
imbalance) [181,182]. Further studies include flexibility forecasting of 
residential heating systems [67], aggregated flexibility prediction [191], 
and estimation of the potential capacity for peak time DR. 

Other literature related to load forecasting is the work of Liu et al. 
[63] where they predict the consumption’s reduction of users under 
different incentives in DR, and the paper of Akhavan-Rezai et al. [190] 
where a prediction model of the future car arrivals is employed as part of 
a wider EMS for incorporating aggregated plug-in EVs in future smart 
parking lots. Future car arrivals translate to potential load which is going 
to be available for providing real-time pricing DR services. 

4.1.2. Price forecasting 
Prediction of the electricity prices has been done both at the aggre-

gator and the consumer level. Li et al. [185] present a multi-aggregator 
setting, where only one aggregator is implementing a DR scheme, and 

Fig. 7. Proportion of the reviewed literature using AI techniques for specific DR application areas.  
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they predict the regional, wholesale electricity price, based on the de-
mand bids of the various aggregators to the SO. Additionally, Lu and 
Hong [109] apply a model to predict the wholesale electricity market 
price, and that forecast (among others) is used to obtain the optimal 
incentive rates for different consumers. At the consumer level the ma-
jority of the papers are concerned with forecasting the day-ahead prices 
of residential, dynamic pricing schemes [54,55,172,186,192]. A 
different example is the work of Huang et al. [216], where the dynamic 
electricity price of the next hour, only for industrial facilities, is 
forecasted. 

4.2. Scheduling and control of loads for DR 

The large number and range of devices which can be used for DR 
pose an important challenge, both for the companies offering services 
and the end-use consumers. In the case of service providers, it is tech-
nically infeasible to manage their portfolio of DR units without auto-
mating the process of units’ scheduling and control. Additionally, for 
widening participation of consumers in DR schemes, it is imperative to 
schedule and control the multitude of demand-side appliances in an 
automated fashion; otherwise consumers will suffer from the phenom-
enon known as response fatigue [249], and drop out of the DR programme 
eventually. The scheduling and control of the various units for DR can be 
done either in the service provider (aggregator) level, or the consumer 
level. The main difference between the two levels is the scale and scope 
of units. Algorithms used to schedule and control devices at the aggre-
gator level need to be more scalable and able to work in a more diverse 
environment, than in the consumer level. 

4.2.1. Load scheduling and control at the aggregator level 
While control of units for DR is self-explanatory, in a scheduling 

problem the time schedule of a sequence of events needs to be planned to 
improve the time efficiency of the solution. The scheduling can actually 
be considered as a constrained multi-objective optimisation problem. 

Regarding load scheduling, Pedrasa et al. [162] schedule the loads of 
DR participants for the day ahead (DA), and there is research on 
scheduling the DR resources in a VPP, assuming no constraints [160], as 
well as network constraints [166] and the system balance [163]. 
Furthermore, Medved et al. [121] propose a scheduling of the DR units 
in the portfolio of the aggregator for DA with the objective to maximize 
the aggregator’s profit, and the aim to minimise the impact of variable 
resources on the grid. It is noted that in this case there is no initial 
knowledge of the network’s constraints, but the constraints are learned 
through the interaction with the DSO. Herath and Venayagamoorthy 
[158], Zhu et al. [250] employ a multi-objective and cooperative model, 
respectively for scheduling appliances in a smart neighbourhood; the 
inconvenience is factored into the model as the delay of each appliance, 
and the deviation from an acceptable temperature range. A 
multi-objective decision-making framework is also proposed by Fotouhi 
Ghazvini et al. [147] to assist retailers, with a small number of assets, by 
scheduling their resources for DR, while trying to minimise the retailer’s 
short-term financial losses and avoid future capacity charges. 

Furthermore, Hurtado et al. [114] developed a cooperative and 
decentralised agent-based platform to exploit and manage the demand 
flexibility potential of non-residential buildings (part of an aggregator’s 
portfolio), while taking into account the individual building dynamics. 
Moreover, there is also research on the setting of an aggregator con-
trolling directly a cluster of homogeneous [117], and heterogeneous 
[119] residential thermostatically controlled loads (TCLs); the control of 
TCLs is for providing DR services. There is also research focused on 
scheduling the charging of EVs’ fleets, for providing DR services [161, 
231]. 

4.2.2. Load scheduling and control at the consumer level 
The automated scheduling and control of the various units at the 

level of power consumers, is provided by individual systems which are 

called energy management systems [81,112,136]. EMS act as an agent 
for energy users, by making automated decisions in response to DR 
signals while taking into account electricity expenses, the customers’ 

comfort preferences and lifestyles trade-offs, as well as optimal uti-
lisation of appliances/equipment. Automated EMSs are the key for a 
higher adoption of DR schemes by residential, and small commercia-
l/industrial entities. Scheduling of loads for DR under an EMS have also 
been considered by Lin and Tsai [251] and Veras et al. [252] where they 
propose an in-home power scheduler for domestic appliances without 
user intervention, while taking into consideration constraints for the 
various household appliance groups. 

Such trends of understanding consumer behaviour and appliance 
usage, coupled with non-intrusive load monitoring (i.e. monitoring 
which is ‘invisible” to the individual energy user [100,253,254]), are 
key for assuring user-friendly friendly demand-side response, especially 
in residential settings — potentially enabling faster consumer adoption 
of demand response programmes. 

The objectives in the scheduling and control problem of consumers’ 

appliances, usually are the minimisation of electricity cost [112,120, 
123,134,136,137,157,167], energy consumption [136,211], Peak to 
average ratio (PAR) [136,137], as well as the maximisation of social 
welfare [255], and environmental pollution [144]. These objectives 
need to be met, while considering the users’ preferences at the same 
time. There are two basic approaches to formulating users’ preferences. 
One way is to represent the user preferences over home appliance use 
with a utility function, which can be pre-specified [81,112] or learned 
[79,111]. The second approach is by imposing constraints on feasible 
schedules [123,134,137,157]. Typical appliances used for control in the 
DR context are TCLs, such as heat pump [81,118,120] and water heater 
[81,118,211], air conditioners (ACs) [66,81,175,211], battery storage 
systems (BESS) [81,256], and EVs [81,127,189,256]. There has also 
been work where, along with the household appliances, they schedule 
the self-consumption of PV generation in order to minimise the pro-
duced PV power fed back in the grid under a dynamic electricity pricing 
scheme [257], and work where they schedule the battery assets for DR in 
a datacenter while trying to minimise the batteries’ degradation [149]. 

Regarding the type of consumers, even though the majority of the 
papers are focused on residential buildings [79,120,137,157], there is 
also research for small commercial buildings [111], and smart EV 
charging stations which can receive peak demand signals and accord-
ingly adjust their charging schedules to provide a DR service [189], and 
in the industrial setting where a multi-objective optimisation model has 
been employed to coordinate the load interruption strategies of complex 
industrial processes [146]. 

4.3. Design of pricing/incentive schemes (compensation mechanisms) 

The way a pricing or incentive mechanism is designed affects not 
only the profitability of the aggregator, or the retailer company, but also 
the success of the DR scheme. How successful a DR programme is in 
appealing to new participants, and ensuring that consumers remain 
enrolled in it, relies in part on a fair and attractive compensation 
mechanism. 

Regarding pricing mechanisms, the majority of the papers use AI 
techniques to find the optimal dynamic scheme for day-ahead in a hi-
erarchical electricity market [66,80,107,108,138,139], while max-
imising the service provider’s profit subject to realistic market 
constraints and consumers’ discomfort for load reduction/shifting. 
Moreover, Babar et al. [110], Herath et al. [165] have built a model 
based on price elasticity matrix which is proposed for dynamic pricing, 
and Gamage and Gelazanskas [198] are using the modelled relationship 
between real-time price and electricity consumption in a DR scenario for 
real-time pricing. Robu et al. [225] propose a new tariff structure called 
the prediction-of-use (POU) that calculates the tariff based on the dif-
ference between the predicted and the realised power consumption of 
the end-use consumers. Carrasqueira et al. [134] are simultaneously 
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exploring different electricity prices — with upper and lower bounds for 
the prices — to charge the consumers in a bi-level model. 

As far as the incentive mechanisms are concerned, there are quite a 
few papers involved with fairly compensating a coalition of consumers, 
who are collectively reducing or shifting their consumption during a 
load curtailment event [224,226,227]. Additionally, Lu and Hong [109] 
focus on learning the optimal incentive rates for different electricity 
consumers considering the profitability of both consumers and the ser-
vice providers (aggregators) in a hierarchical electricity market. Kota 
et al. [235] develop an incentive-based DR mechanism, where DR par-
ticipants are rewarded based on their contribution towards a reduction 
target, and the reward function has two components. A positive 
component which is its payment for participation in reduction, and a 
negative component denoting any penalties imposed on the agent. Jain 
et al. [115] develop a model where monetary rewards (offers) are made 
to the consumers in exchange for reducing the consumption, and at the 
same time it is learning the probabilities of consumers accepting the 
offer. Xie et al. [141] learn the interruption load compensation price, 
which in turn is used as an initial assumption for a multi-round bidding 
model. 

Furthermore, Meir et al. [234] propose a new DR mechanism that 
offers a flexible set of contracts for DR using Vickrey-Clarke-Groves 
pricing. In this new mechanism, a subset of consumers is selected in 
order to reduce consumption, while taking into account the probability 
that the reduction target is met (reliability). Ma et al. [232] generalise 
previous work [233] by incorporating uncertain costs for preparing, 
multiple levels of effort, and multi-unit consumption reduction. To 
achieve efficient incentives, this work proposes a reward-bidding 
approach instead of a penalty-bidding mechanism. There is also work 
concerned with the design of contracts in incentive-based DR. Lopes 
et al. [243] study bilateral contracts (involving a retailer agent and a 
commercial customer) in a multi-issue negotiation setting. Similarly, 
Haring et al. [258] design reward contracts for ancillary services, where 
service providers take part in the wholesale ancillary service market and 
coordinate consumer interaction at the retail level. Their work also takes 
into consideration the interaction among consumers, except from the 
communication between the service provider and the consumers. 

4.4. Load/customer segmentation 

Categorising electricity consumers in groups is an important appli-
cation area for DR. It can support service providers in designing DR 
programmes, aggregating resources, evaluate the load potentiality of 
participation in different DR program, etc. [97]. 

In the researched literature, the generated groups of consumers are 
created to accomplish various tasks in the DR setting. A large part of the 
reviewed work, classify consumers to discover potential consumers for 
DR programmes [57,84,87,91,95], and identify the optimal set of con-
sumers — participating in DR schemes — to be called for demand 
curtailment during DR events [85,116]. Wang et al. [212] identify 
socio-demographic information from load profiles, and these con-
sumers’ characteristics can be used to select potential DR participants, 
and Zeifman [259] classify households based on their probability of 
enrolling in DR schemes. An additional part of the literature, groups 
electricity consumers to support the DR compensation mechanism. Chen 
et al. [90] use the resulting typical daily load profiles in every group to 
design individualised electricity price schemes for price-based DR pro-
grammes, whereas Panapakidis et al. [92] utilise these typical load 
profiles to create the dynamic price elasticities curves. Spinola et al. [88] 
cluster DR resources to obtain compensation prices. This way the most 
efficient resources are well compensated, and that gives them the 
incentive to participate in the aggregator’s scheduling. Other uses of the 
classifying customers are the design of DR programmes and load control 
schemes [97], aggregation of DR resources [86,260], the analysis of a 
DR project’s potential benefit [68], and the identification of hourly loads 
for implementing DR programmes [178]. 

The most widespread categorisation of consumers for DR purposes is 
based on their load profiles [68,82,84,85,90,91,95,97]. The load fea-
tures used for clustering could be peak load [84], average load of 5 
consecutive weekdays [57], and various chosen attributes (e.g. mean 
relative standard deviation, seasonal score) [85,95]. On the other hand, 
there are methods for allocating consumers to groups without the use of 
load data. A number of works categorise consumers considering their 
bid-offer data — in an incentive-based DR scheme — [94], their 
behaviour (for EVs participating in DR) [261], their expected effect of 
the DR program [96], number of household occupants, building size, 
building type and terrain type [87]. 

Moreover, additional work utilises clustering techniques to define 
flexibility envelopes for DR applications. In this vein, Spinola et al. 
[262], Spínola et al. [263] have grouped the flexibility of DR resources, 
in support of an aggregator, while Kouzelis et al. [264] have grouped 
flexible loads for DR services. Trovato et al. [265] have created flexi-
bility envelopes of TCLs for DR, whereas Develder et al. [266] have 
partitioned the flexibility of EVs for DR services by clustering EV 
charging sessions. Alizadeh et al. [267] have utilised a custom clustering 
algorithm to aggregate the flexibility of batteries and small deferrable 
loads for DR. In the more general case of electricity markets, clustering 
methods have been applied to compute the aggregated flexibility of an 
aggregator’s portfolio of assets, such as the work of Iria and Soares 
[268]. 

5. AI industrial/commercial initiatives in demand response 

In addition to being a highly active area of research, the energy in-
dustry, including stakeholders, DR companies, policy makers and utility 
companies have shown a growing interest in AI-based technologies and 
especially their use for tackling the complex challenge of balancing the 
power system. This section of the review discusses the potential of AI in 
DR services and presents a general overview of its current application in 
the industry. In addition, it reviews the changes and developments in the 
business models due to the use of AI approaches. A catalogue of the 
companies that use AI technologies to provide demand-side ancillary 
services can be found in Table 2 of the Appendix. 

The value in DR is constantly shifting as the needs of the power grid 
changes. Originally, the simplest example of DR assets that were tar-
geted by DR companies were the back-up generators and cold/heat 
storages of large businesses. This was because conventionally larger 
commercial assets were preferred as they would be easier to schedule, 
control, commission, etc. However, the emergence of new technical 
solutions (e.g. IoT, big data solutions), and the diminished revenue in 
simple DR markets — due to the increased number of offers —, has 
shifted the need for DR to real-time and fast response services. Conse-
quently, certain regulatory changes are driving slower assets out of the 
market [269]. 

In response to these changes, the Department for Business, Energy 
and Industrial Strategy (BEIS) of the UK Government launched two 
different schemes to boost the use of innovative technologies in DR 
which are namely, Innovative Domestic [270], and Non-Domestic 
Demand-Side Response Competition [271]. The attractive funding pro-
vided by these schemes created an environment for start-ups, spin-offs 
and other new companies to emerge. Hence, the new trend in industry is 
scalable DR and auto-DR. Through the use of AI and ML, companies can 
now integrate domestic and smaller assets into their portfolios. A good 
example is the Ubiquitous Storage Empowering Response (USER) proj-
ect (Levelise) which aims to increase the number of prosumers in the 
domestic sector by using AI-led hot water tanks. This project claims that if 
9 million tanks were managed using AI, they could have an aggregated 
capacity of 27 GW available for DR services [270]. Meanwhile in the 
small and non-domestic DR competition, Flexitricity received funding 
for the aggregation of smaller HVAC and cold storage loads, and gridIMP 
for delivering a fully automated, self-learning DR electricity control system. 
The control system would be designed to learn the specific behaviours of 
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consumers in order to adjust DR participation [271]. Thus, the available 
funding and industrial setting creates a favourable environment for the 
emergence of numerous projects and initiatives in DR. 

Furthermore, the industry survey realised in this study has shown 
that a large proportion of new AI companies involved in DR, have either 
been start-ups (more than 40% of the total number), or recently bought 
by, or having teamed up with larger companies (i.e. global consultancies 
and big corporations). To give just one example, Vattenfall, a Swedish 
power company, acquired all shares of the Dutch start-up company 
Senfal. Therefore, it combined its diverse portfolio of clients with the 
innovative and flexible technology of Senfal that utilises optimisation, 
AI and ML [272]. Orsted and Open Energi are another example of a 
similar group. Open Energi’s AI technology product is presented by its 
electricity supplier partner, Orsted. It aims to make DR decisions in a 
smarter way as it is based on more granular asset and market data. 

Regarding the application domain of AI for the reviewed DR com-
panies, the survey has shown that the two most popular uses are fore-
casting and automation. These data-driven AI approaches have mainly 
used historical frequency data, along with pricing and weather data 
[273]. Moreover, the most widely adopted architecture is based on a 
cloud platform that collates data from numerous sources and uses ma-
chine elarning to automate service participation, like in the case of 
Upside Energy [274]. Thus, efficiency of DR solutions rests on various 
technologies like big data management (primarily cloud based), ML 
techniques to interpret these data, optimisation algorithms, and IoT 
devices to allow a bidirectional communication between the aggregator 
and the controllable end-users appliances. 

This growing interest of the industry in DR solutions is also well 
illustrated by the funded projects related to this topic. Table 3 presents 
several current projects which are funded by the European Union, 
through programmes like Horizon 2020. In each of these projects, DR is 
a solution proposed to the consumers for providing flexibility to the grid, 
while maintaining comfort or economic welfare to the end-users. AI 
tools are mostly used for forecasting (load, production-weather, price) 
tasks. These forecasts are in turn used by the service provider companies 
level to provide an optimal scheduling of the flexibility. The current 
trend in the industry is to take advantage of the new technologies (e.g. 
IoT, big data, AI) and automate DR, while providing interoperability 
across all platforms and devices [275]. 

6. Discussion 

In the previous sections, we have performed detailed reviews of the 
fundamental AI techniques used in energy demand response, the key 
application areas of interest in this domain, as well as of the areas 
attracting ongoing industrial interest and investment. Against this 
background, in this section we present and discuss some summary sta-
tistics covering all the works reviewed, as well as a discussion of the key 
challenges and opportunities of the various techniques identified by our 
study. 

6.1. Challenges and opportunities of using AI in DR 

The research literature reviewed in this work show that various 
groups of AI techniques have been used for numerous DR applications. 
Fig. 8 is a heatmap chart displaying the number of reviewed papers that 
have utilised a specific category of AI methods for a particular DR 
application area. 

Forecasting 
Looking at Figs. 6 and 8, it is apparent that one of the most heavily 

utilised family of methods is artificial neural networks, which have 
been mainly employed for forecasting applications. ANNs have been 
used both for load and price prediction, and the researchers have applied 
them using a single hidden layer, as well as “deeper”, multi-layer ar-
chitectures. The capability of ANNs to learn arbitrary, non-linear, 
complex functions has made them attractive for forecasting tasks in 

DR [276], where the predictions can potentially relate to numerous 
inputs in a highly non-linear fashion. On the other hand, their perfor-
mance can vary greatly depending on the set of selected variables which 
will be used as inputs, the training algorithm, and the tuning of their 
hyperparameters; where there is no single method that guarantees the 
optimal selection of these. Moreover, it needs to be taken into account 
that ANNs can be computationally expensive and usually require a large 
amount of data in order to outperform other less flexible methods. This 
can pose a problem for DR applications, especially due to the current 
limited adoption of DR programmes. 

Another set of methods which have been primarily used for fore-
casting purposes are supervised machine learning techniques. These 
methods in general are less flexible, higher bias techniques than ANNs, 
and rely heavily on feature selection and feature engineering9 to pro-
duce good results — compared to ANNs. On the other hand, supervised 
methods such as regression trees [75,76] and gradient boosting [54] can 
handle missing data better than ANNs, and require fewer examples to 
train, which has merits in the DR setting. Another important aspect of 
some supervised learning methods used in the DR literature, is the use of 
probabilistic models for load forecasting, i.e. GPs [60–62]. Using a 
prediction model which does not output only a point estimate, but a 
distribution, can lead to more informed decision making in DR, as well 
as better rewarding of the participants through a more accurate baseline 
estimation. 

The future of demand response in smart grids is steering towards a 
highly granular control of the end-user loads. This calls for a more highly 
accurate load and price forecasting. Traditional approaches to load and 
price forecasting in DR include time-series models such as autore-
gressive (AR), auto-regressive integrated moving average (ARIMA), and 
exponential smoothing [277]. This type of models is generally linear in 
nature and have been shown to provide less accurate results in load 
forecasting [278]. The lower prediction performance of classical 
methods can be attributed to their linearity assumptions, and that is the 
reason why ANNs, with their ability to approximate highly non-linear 
relationships, have been primarily employed for load and price fore-
casting in DR. Additionally, due to the fact that demand is increasingly 
becoming more non-linear and variable, AI methods are bound to show 
even more promising results in load and price forecasting. Also, another 
advantage of AI forecasting techniques is the ability to output forecasts 
that span multiple horizons in time and space, and the ability to incor-
porate uncertainty in the forecasts, leading to more informative pre-
dictions. On the other hand, AI approaches for forecasting are more 
computationally intensive and their performance can vary depending on 
their hyper-parameter tuning and feature engineering. 

Consumer/load clustering 
In the current DR setting, there are limited labelled data on which to 

classify customers [279]. As a result, using clustering (unsupervised) 
models is the only viable approach to address the task of segmenting 
electricity customers. This is also supported by the research, as the vast 
majority of the papers reviewed use clustering techniques for creating 
customers groups. While clustering techniques are beneficial in this 
application, they present a number of challenges. Among others, these 
techniques require data pre-processing (i.e. normalisation) to work, 
suffer from the “curse of dimensionality”, and is really challenging to 
evaluate their results [52] — due to the lack of labelled data. 

Dynamic control 
Continuing with ML approaches, reinforcement learning methods 

have been mainly employed for control tasks. At the consumer level 
scheduling and control of the various DR units needs to be automated 
(especially in the residential sector) — that is why home EMS are 
needed. Additionally, at the service provider level, especially in direct 
load control DR programmes where the multitude and variety of devices 
and appliances across the aggregator’s portfolio, the process of control 

9 The process of creating features using domain knowledge. 
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and scheduling is rendered infeasible without automating a big part, or 
the whole process. Learning from interaction and acting accordingly to 
the consumers preferences is important for DR control systems. As 
already stated in Section 3.1.3, the most widely used RL algorithm in DR 
is Q-learning. While it is an online method and offer convergence gua-
rantees, using tabular methods such as Q-learning can be challenging 
when the space of actions and environment states becomes large [101]. 
This can be a problem especially in the service provider level; where the 
quantity and variety of DR units and different environments, is levels 
higher compared to a household or an office building. There is work 
where researchers try to alleviate this issue by approximating the 
action-value function using an ANN [121] or using FQI [117–120]. The 
literature has also employed multi-agent RL methods to tackle the 
problem of the large state space [114,126,127]. 

Compared to traditional control mechanisms for DR, such as Model 
predictive control (MPC), RL approaches do not generally require a 
model of the environment to be applied (although there are model-based 
RL algorithms) [101]. This provides an advantage in designing DR 
control systems that take into account consumers’ preferences. More-
over, deep RL has been shown to work better in high-dimensional tasks 
[101]. In contrast, model-based control needs a model of the consumer 
and the participating agents. That problem in general is intractable and 
there is no feasible way to model all the involved agents beforehand, 
whereas with methods like reinforcement learning the preferences of the 
DR agents can be learned through interaction. Furthermore, RL’s 
adaptive online nature makes them more suitable for applications in 
dynamic environments, like the control of appliances and equipment for 
DR, whereas MPC methods successful application depends heavily on 
the quality of the prior knowledge regarding the system dynamics [280]. 
In an era, where DR-related data becomes more abundant AI approaches 
for control are able to provide more personalised DR services. On the 
other hand, MPC methods are a more mature technology with inherent 
constraint handling, and a mature feasibility and robustness theory 
[281]. Another big issue of RL in general, with implications to its correct 
application in DR, is the design of reward signals [101]. There have been 
quite a few cases where RL agents have found unexpected ways to make 
their environments deliver reward, but with undesirable policies [101]. 
In the energy DR literature, to the best of our knowledge, this is a heavily 
under-researched topic. 

Scheduling 
In the majority of the cases, nature-inspired algorithms are the 

most frequently utilised for scheduling tasks. In general, the scheduling 
problem can be highly complex, non-linear, and non-convex. This group 
of algorithms is able to find promising solutions in a reasonable time due 
to their exploration and exploitation ability [128]. Other key advantages 
include their robustness and adaptability with changing conditions and 
environment, are parallel algorithms, and can incorporate mechanisms 
to avoid getting trapped in local optima [128]. Moreover, this group of 
algorithms often have good “anytime” properties, in the sense they re-
turn promising solutions even if the computation is stopped earlier. This 
is an important property in real applications, where there are often 
physical limitations in the hardware and processing time available. On 
the other hand, nature-inspired methods do not offer the guarantee of 
finding an optimal solution, and specific algorithms have their own 
drawbacks. For example, GAs, if not properly tuned, can suffer from 
premature convergence and unpredictable results, and sometimes use 
complex, not always intuitive functions in selection and crossover op-
erators, while PSO suffers from getting stuck into local optima and slow 
convergence speed [128]. Nature-inspired AI has also been employed for 
the design of pricing schemes, where the service provider tries to find 
the prices for DR, which will optimise their profit while taking into 
account consumers’ preferences and network constraints. The NSGA 
algorithm, and its variations, have been applied in the multi-objective, 
Pareto efficient scheduling of loads for DR [144–148]. 

Classical algorithms used for solving DR scheduling problems are 
linear programming (LP), nonlinear programming (NLP), mixed-integer 
linear programming (MILP), and mixed-integer nonlinear programming 
(MINLP), depending on the formulation of the scheduling problem 
[282]. The primary advantageous properties of the population-based, 
stochastic, nature-inspired AI methods are that they can handle tasks 
with a large number of decision variables and also adapt to changes in 
scheduling for DR [128], compared to the deterministic classical DR 
scheduling methods. These abilities are important because they can 
result in adaptive DR systems that are able to alter efficiently changes 
and interruption in the scheduling of appliances and relevant equip-
ment. Mathematical optimisation/scheduling methods usually rely on 
some implicit assumption, such as the system being linear or the search 
space being convex. However, real-life DR systems are increasingly 

Fig. 8. Heatmap displaying the intensity of AI research methods in different DR application areas.  
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composed of many heterogeneous devices of different types (e.g. bat-
teries, HVAC units, industrial devices, EVs etc), which means the control 
problem is often non-linear in nature. For such non-linear optimisation 
problems, AI methods (such as GAs, NSGA or PSO) often perform better 
than traditional approaches [282]. 

Multi-agent systems and incentive design 
While traditional DR approaches assume there is direct control of the 

devices being managed, real-life DR systems are increasingly an aggre-
gation of a large number of devices (building HVAC, EVs, water tanks 
etc) that are under the control of different entities/parties who may have 
their own interests and objectives, not always aligned with those of the 
DR system operator. For such systems, multi-agent methods or those 
from game-theoretic mechanism design are increasingly important. In 
the reviewed literature, researchers have primarily applied multi-agent 
systems for the design of pricing/incentive mechanisms. Mechanism 
design has been used to design DR schemes which will have certain 
advantageous properties and satisfy specific conditions. While these 
methods provide significant insights into the behaviour of distributed 
DR systems, composed of self-interested parties, they are often depen-
dent on the modelling assumption made. Where these assumptions do 
not hold in real life, the resulting schemes will not necessarily have the 
expected properties. Coalitional game theory has been applied in the 
design of incentive-based DR schemes and the distribution of the ex-
pected payoff to the participants. It is heavily used in incentive-based DR 
due to the contractual agreements between the service provider and the 
participants in a DR programme. On the other hand, computational 
complexity and intractability are issues that need to be addressed for 
these methods to be more widely applicable. Hybrid methods which 
could include function approximation (such as the work of O’Brien et al. 
[226], Bakr and Cranefield [227]), and efficient search could be a po-
tential path for addressing these challenges. 

6.2. Discussion of AI methods in DR schemes and consumer types 

As it is displayed in Fig. 9 the primary focus of the surveyed literature 
has been on price-based programmes, with price-based related papers 
constituting half of the reviewed literature. The most common type of 
programmes in the surveyed papers are RTP [144,145,172,198,251, 
283], dynamic pricing [80,107,108,202,284,285], ToU programmes 
[64,71,148,165,189], and inclining block rate programmes [69,71], 
among others. In terms of AI methods for price-based DR schemes, 
machine learning, ANNs, and nature-inspired AI techniques are the most 
frequent approaches, in (almost) equal proportion. ANNs with 1 hidden 

layer are the most commonly applied AI subgroup for price-based pro-
grammes, and have been mainly utilised in load and price forecasting. 
Besides ANNs, supervised learning approaches have also been applied 
for forecasting applications in price-based DR. Nature-inspired algo-
rithms have also been heavily studied for price-based DR. The majority 
of the nature-inspired AI methods have been applied for the scheduling 
of DR resources under varying pricing tariffs. This could be attributed to 
their relatively low computational complexity and ability to find solu-
tions in a reasonable amount of time, which is especially advantageous 
under real-time pricing schemes and with sudden changes in schedules. 

On the other hand, incentive-based (or contract-based) DR, appears 
so far, to have attracted comparably less interest than price-based DR 
from the AI research community. The main type of incentive-based 
programmes found in the literature has been direct load control [70, 
118,120,218,267], mainly of thermostatically controlled loads and EVs. 
The most widely used AI approach is reinforcement learning, which is 
used to control and schedule devices, while exploring the environment 
and learning through interaction with the user. Moreover, cooperative 
game theory and mechanism design methods have been mainly studied 
for incentive-based programmes due to the contractual nature of these 
schemes and the need for designing fair and incentive aligned DR pro-
grammes, as well as for rewarding DR participants in a fair and stable 
manner [234]. 

Finally, a high percentage of the unsupervised algorithms is agnostic 
to the DR scheme type. These unsupervised algorithms have been 
primarily employed for load clustering in the reviewed literature. 
Moreover, it is also worth noting that ANNs and supervised learning 
techniques have been applied irrespective of the DR scheme type, they 
can be used to obtain forecasts to both price and incentive-based DR 
schemes. 

Regarding research related to the consumer type, as displayed in 
Fig. 10, the surveyed work has primarily applied AI approaches for 
residential applications or was agnostic to the type of end-users. This 
could be attributed to the current trend of including residential end- 
users in the flexibility offers to balance a supplier’s portfolio, or to 
maintain the system’s frequency and/or voltage. AI methods provide a 
great tool to help with addressing the challenges inherent to the provi-
sion of DR services while using a large number of different end-users. 
Moreover, for almost every category of AI approaches, besides cooper-
ative game theory and mechanism design techniques, the largest part of 
the reviewed literature is focused on the residential setting. Next, there 
is a relatively high proportion of the total surveyed papers where the 
proposed frameworks have been agnostic to the type of end-users. The 

Fig. 9. Application of various AI research method groups in DR scheme categories.  
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majority of the surveyed papers using cooperative game theory and 
mechanism design belong to this category. This could be because they 
use abstractions which can handle all types of agents (residential, 
commercial, and residential end-users). On the other hand, a relatively 
small part of the explored literature has applied AI methods considering 
only industrial [54,64,76,148,149,248] or commercial [114,179,188, 
194] consumers, as these are already well-known application that 
require less coordination and data management. To conclude, Fig. 10 
could indicate that there is a trend towards researching AI solutions to 
effectively utilise all types of loads in a flexibility portfolio. 

6.3. Research evolution and recommendations for the future 

As shown in Fig. 1 it can be observed that there is a sudden increase 
of research papers, which are using AI approaches (especially ML and 
ANNs) for DR applications, from 2013 onwards. This growing trend can 
be attributed both to the rise in popularity of AI approaches and DR. In 
Fig. 11 we clearly see that the usage of AI approaches has increased 
across all DR application areas; with the majority of the examined pa-
pers using AI techniques for forecasting and scheduling and control 
tasks. Additionally, we found that a big part of the literature, from 2013 
onwards, has applied AI methods for residential DR and small scale in-
dustrial/commercial. This coincides with the need to increase the share 
of small-scale participants in DR schemes. Although at first, participants 
of DR programmes were large industrial entities [249], which consumed 
considerable amounts of electricity, going forward residential and small 
industrial/commercial entities will increasingly need to be brought into 
DR programmes, to achieve higher adoption of DR. AI techniques have 
been used to address the complexities of residential entities by auto-
mating the decision making process and control of DR appliances, based 
on consumers’ preferences and behaviour. AI approaches have also been 
used to create better forecasts for demand and electricity prices, devel-
oping more accurate control and scheduling frameworks, and better 
tools for decision making, compared to the traditional modelling 
approaches. 

Despite the great progress achieved by using AI approaches for DR, 
we identify a number of challenges which should potentially be 
addressed by future research. First, DR agents need to function in a 
partially observable environment i.e. agents cannot have perfect 
knowledge of the units used for DR, the other agents, and the environ-
ment [10]. In the reviewed literature, there is some work which ad-
dresses the problem of partial observability — either directly with the 

use of partially observable MDPs [114,283] or indirectly via function 
approximation [119,121]. So far, to our knowledge, the largest share of 
the existing research assumes fully observable tasks (e.g. formulation of 
the DR problem as fully observable MDP). The incorporation of partial 
observability and incomplete knowledge of the DR environment in AI 
models can pave the way for agents which operate under diverse envi-
ronments and various constraints, both in the consumer and the service 
provider level. Furthermore, we recommend that future DR models need 
to be multi-agent and consider the objectives and actions of the various 
parties participating in DR programmes. While there is work assuming 
multi-agent environments (e.g. cooperative game theory, multi-agent 
RL), a big portion of the examined research models DR as a central-
ised, single-agent task, where other entities are not considered as agents 
with their own objectives, but as part of the environment. 

Furthermore, forecasting techniques can help with addressing the 
stochasticity in DR models, forecasts need to become increasingly ac-
curate, span multiple horizons in time and space, and better quantify the 
inherent uncertainty [247]. Additional considerations include the scal-
ability of the proposed AI methods, especially when non-parametric 
methods are employed (e.g. following work [68,107,108]) and the 
heterogeneity of consumers and appliances when modelling DR. There is 
also a need to develop models and results that are generalisable to wider 
settings, and a need to assure the reproducibility of results (lack of 
modelling details is a key problem across a wide part of the reviewed 
literature). Moreover, there is increasing interest in using AI and ML for 
integrated demand response from other energy vectors (gas, heating 
networks etc.) [22], interacting with the power system, and this is ex-
pected to play an increasing role in the future. 

Summing up, we believe a potential way forward for the research 
could be to adopt more multi-agent frameworks, where agents are able 
to function under a partial observable, stochastic environment, while at 
the same time relaxing the assumptions about the preferences and 
behaviour of participating entities (e.g. price elasticity of electricity 
consumers, economic rationality, discomfort functions, etc.). 

7. Conclusions 

Electrical grids are facing new challenges, such as the increasing 
share of DER and the growing adoption of new loads like EVs and heat 
pumps. To address these challenges, there has been a growing interest 
for DR solutions as it allows grid operators to maintain the electrical 
grid’s balance at a low cost, while avoiding or delaying the need for 

Fig. 10. Application of various AI research method groups for different DR consumer types.  
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costly reinforcements of the power networks, or investing in a lot of 
costly back-up generation. Although, DR programmes were originally 
targeting a small number of large industrial and tertiary consumers, 
currently there is a strong drive to include residential and small tertiary 
loads into the DR portfolio. This shift requires to correctly select the end- 
users contributing to a specific consumption shift, but also to schedule 
their consumption, control units for DR, and determine the reward/ 
penalty schemes. To achieve these objectives, AI solutions have been 
extensively used by researchers in order to find solutions where tradi-
tional approaches could not provide results that are sufficiently efficient 
or reliable. 

In this work, the authors have reviewed over 160 papers, published 
between 2009 and 2019, as well as 40 companies and commercial ini-
tiatives, and 21 large projects to identify and discuss the trends for AI 
approaches in the energy DR sector. The literature reviewed in this work 
display that AI approaches are a promising technology for DR applica-
tions. Going forward, adoption of AI is paramount for the wide success of 
DR schemes. Even though AI approaches offer tools to tackle many 
challenges of the DR schemes, they also pose a series of considerations 
and limitations. Better understanding of the methods and their limita-
tions is vital for the proper application in the DR setting. 

Our review highlighted that a large number of different AI tech-
niques are being used, but it appears clearly that some techniques are 
more suitable than others for specific tasks. Indeed, it is showed that 
ANNs, which are commonly used for multi-variable function approxi-
mation and regression, are extensively used for short term load and price 
forecasting, using supervised learning to achieve accurate prediction. In 
contrast, algorithms using RL are often used to capture human feedback, 
which makes them suitable for control tasks in HEMS that integrate a DR 
solution. On the other hand, unsupervised learning is mostly used for 
clustering when there is no prior knowledge of the categories, which is 
mostly the case for DR customers clustering tasks at aggregators level. 
Finally, once DR customers have been categorised and their consump-
tion has been forecast, aggregators schedule the activation of DR par-
ticipants and plan their rewards and penalties. Different approaches 
have been highlighted for these tasks, among which optimisation, that 

can require the use of nature inspired optimisation techniques (e.g. 
swarm intelligence), where traditional, deterministic optimisation 
methods are less accurate. Other approaches use multi-agent systems 
within game-theoretic environments to determine the optimal pricing 
and scheduling strategy. 

Our work also showed that this growing interest of the research 
community for AI solutions in the DR sector is also felt in the industrial 
sector — where numerous start-ups have been created in the last few 
years have adopted the same trends highlighted above. Nevertheless, 
even if these trends for the use of AI in DR are well established, more 
research is clearly needed to identify the optimal solutions in many 
cases. Indeed, many of the proposed solutions lack testing and validation 
through real-life trials and experimentation conducted at large scale. 
Hence, additional research initiatives along with industrial projects and 
large-scale experimentation are still necessary to allow the emergence of 
more accurate models and AI solutions. This path will allow AI/ML 
techniques to become mainstream or become business-as-usual in the 
energy DR sector. 
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Appendix 

See Table 1, Table 2, and Table 3.  

Table 1 
Summary of the papers reviewed.   

Ref Year Method(s) Objective(s) 
Machine Learning  

Forecasting in DR  
1 Simmhan et al. [75] 2013 Regression trees Demand forecasting. 
2 Yang et al. [286] 2014 Ensemble learning Consumption prediction of EMS subsystems. 
3 Bina and Ahmadi [70] 2014 Gaussian Copulas Aggregate demand forecasting. 
4 Bina and Ahmadi [71] 2015 Gaussian Copulas Non-controllable load estimation. 
5 Park et al. [89] 2015 SOM, K-means Baseline estimation. 
6 Tavakoli Bina and Ahmadi 

[69] 
2015 Gaussian Copulas EVs’ charging demand estimation. 

7 Weng and Rajagopal [60] 2015 Gaussian processes Baseline estimation. 
8 Behl et al. [76] 2016 Regression trees Recommender system for DR. 
9 Pal and Kumar [55] 2016 SVR with GA Prediction of electricity prices for residential DR. 
10 Zhou et al. [58] 2016 GMM, HMM, kNN Regression, SVR, DT 

Regression 
Learn behaviour of users conditional on their latent states STLF for DR. 

11 Chen et al. [248] 2017 SVR Baseline estimation. 
12 Giovanelli et al. [54] 2017 SVM, GBDT, Decision Trees Prediction of the frequency containment reserves prices for normal operation. 
13 Cheung et al. [78] 2018 Ensemble learning STLF for DR. 
14 Tang et al. [62] 2018 Adaptive K-means, Gaussian processes Evaluation of the users with DR participating potential and the related capacity for DR. 
15 Weng et al. [61] 2018 Gaussian Processes Baseline estimation. 
16 Yang et al. [56] 2018 Ensemble learning Estimation of energy consumption for EMS subsystems.  

Scheduling and Control of Loads for DR  
17 Dayu Huang et al. [100] 2013 HMM Estimation of individual household heating usage from aggregate smart meter data. 
18 Shoji et al. [81] 2014 Bayesian network EMS for DR. 
19 Goubko et al. [79] 2016 Bayesian learning Learning of consumers’ preferences for residential DR. 
20 Pereira et al. [93] 2016 Fuzzy clustering, ANN (1 hidden layer) Controller design for DR consumption forecasting. 
21 Babar et al. [126] 2018 Decentralised Q-learning DR scheduling over DA basis. 
22 Bahrami et al. [123] 2018 Actor-critic learning method, stochastic 

games 
Load scheduling in RTP. 

23 Claessens et al. [119] 2018 Batch RL (CNN) Feature extraction, Direct load control of thermostatic loads for DR. 
24 Hansen et al. [283] 2018 Partially observable MDP Home EMS design for RTP. 
25 Hurtado et al. [114] 2018 Cooperative & decentralised RL Analysis of the cooperation’s effect in decentralised decision making. 
26 Medved et al. [121] 2018 Approximate Q-learning (DQN) DR unit scheduling. 
27 Patyn et al. [120] 2018 Batch RL (MLP, CNN, LSTM) Implementation of a heat pump agent in DR. 
28 Wan et al. [287] 2018 Approximate Q-learning Residential EV charging management system under real-time electricity pricing 

scheme.  

Design of pricing/incentive schemes  
29 Liyan Jia et al. [80] 2013 Piecewise linear stochastic 

approximation 
Dynamic pricing of electricity by a retailer for customers in a DR program. 

30 Babar et al. [110] 2015 Q-learning Evaluation of the price elasticity of demand. 
31 Lu et al. [107] 2017 Q-learning Learning retail pricing strategies for price-based DR. 
32 Lu et al. [108] 2018 Q-learning Dynamic pricing DR algorithm between an aggregator and consumers. 
33 Lu and Hong [109] 2019 FF-DNN, Q-learning Price & load forecasting, learn optimal incentive rates for various customers.  

Customer segmentation  
34 Vale et al. [288] 2009 Data mining & clustering techniques Characterisation of the customers’ profiles in the scope of DR schemes. 
35 O’Neill et al. [112] 2010 Q-learning EMS for price-based DR. 
36 Dusparic et al. [127] 2013 W-learning Smart charging of EVs for DR. 
37 Albert and Rajagopal [82] 2013 Ensemble learning with spectral 

clustering 
Segmentation of customers. 

38 Cao et al. [84] 2013 K-means (þSOM), Hierarchical 
clustering 

Segmentation of households. 

39 Alizadeh et al. [267] 2014 custom clustering algorithm Flexibility aggregation of batteries and small deferrable loads for DR. 
40 Zeifman [259] 2014 Supervised matrix-based method Prediction of household propensity to enrol in a DR program. 
41 Kouzelis et al. [264] 2014 K-means Grouping of DR flexible loads. 
42 Kwac et al. [91] 2014 Adaptive K-means, Hierarchical 

Clustering 
DR customer segmentation. 

43 Ruelens et al. [117] 2014 Batch RL Control of a heterogeneous cluster of domestic electric water heaters. 
44 Wen et al. [111] 2015 Q-learning Scheduling residential devices for DR. 
45 Develder et al. [266] 2016 Density-based clustering algorithm Clustering of EVs’ charging sessions for DR services. 
46 Golpayegani et al. [124] 2016 Collaborative & Parallel MCTS Multi-agent planning in DR. 
47 Haben et al. [95] 2016 GMM Creation of customers’ groups for DR. 
48 Ikeda and Nishi [96] 2016 Sparse Coding Household clustering for DR services. 
49 Spinola et al. [260] 2016 K-means Aggregation of resources. 
50 Spinola et al. [88] 2016 K-means Creation of groups of DR resources for remuneration. 
51 Trovato et al. [265] 2016 K-means Cluster flexibility of TCLs for DR. 
52 Zhou et al. [57] 2016 Supervised learning methods, K-means Identification of users with high potential reduction during DR hours. 

(continued on next page) 
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Table 1 (continued )  
Ref Year Method(s) Objective(s) 

53 Ahmed and Bou_ard [116] 2017 Monte Carlo methods for RL Customer selection model for decision making in a DR program. 
54 Chen et al. [90] 2017 K-means, PCA, ELM Classification of residential load profiles. 
55 Koolen et al. [87] 2017 PCA, K-means Identification of demand patterns of participants in DR. 
56 Lin et al. [97] 2017 Spectral clustering Load profile clustering for DR. 
57 Ruelens et al. [118] 2017 Batch RL Control of thermostatic loads in DR. 
58 Spínola et al. [263] 2017 K-means Aggregation of demand-side resources. 
59 Panapakidis et al. [92] 2017 Modified Fuzzy C-Means Extraction of representative load profiles of the consumers. 
60 Grabner et al. [68] 2018 K-means, linear regression Examination of typical shapes of load profiles with clustering. 
61 Spinola et al. [262] 2018 K-means Clustering of flexibility resources for DR services. 
62 Varghese et al. [85] 2018 K-means, GMM, SOM Consumer segmentation for DR. 
63 Waczowicz et al. [99] 2018 Ranking method PROMETHEE Automatic hyper-parameter selection for DR clustering. 
64 Xiong et al. [261] 2018 [tc]Modified clustering-LSA (CLSA) EV user classification. 
65 Luo et al. [94] 2019 Density based spatial clustering, kNN Categorisation of consumers according to their attitudes to incentive DR.  

Nature-Inspired Intelligence  
Scheduling and Control of Loads for DR  

66 Pedrasa et al. [162] 2009 Binary PSO Scheduling of interruptible loads. 
67 Faria et al. [160] 2011 PSO, Mutated PSO Scheduling of DR resources along DG in VPP. 
68 Faria et al. [166] 2013 Mutated PSO Scheduling of DR resources along DG in VPP. 
69 Faria et al. [164] 2014 Quantum PSO Scheduling of DR resources along DG in VPP. 
70 Fotouhi Ghazvini et al. [147] 2015 NSGA-II Short-term DR scheduling for retailers. 
71 Lin and Tsai [251] 2015 NSGA-II HEMS power scheduling for DR. 
72 Margaret and Uma Rao [167] 2015 Artificial Bee Colony DR load scheduling. 
73 Ogwumike et al. [289] 2015 Greedy strategy without back-tracking Smart appliance scheduling. 
74 Pereira et al. [163] 2015 Quantum PSO Scheduling of DR resources in VPP, along DG and external power suppliers. 
75 Salami and Farsi [140] 2015 Differential Evolution Propose a DR algorithm. 
76 Soares et al. [161] 2015 Modified PSO Optimal control of EVs from the perspective of VPP, while also managing other energy 

resources. 
77 Zhu et al. [250] 2015 Cooperative PSO Scheduling of smart homes’ devices for DR. 
78 Behera et al. [290] 2016 GA Power scheduling for smart houses. 
79 Herath and Venayagamoorthy 

[159] 
2016 Discrete PSO Load scheduling for DR. 

80 Mamun et al. [149] 2016 Modified Differential Evolution Datacenter battery management & scheduling for DR. 
81 Rehman et al. [136] 2016 GA, Binary PSO, WDO Appliance scheduling for DR. 
82 Sen et al. [255] 2016 PSO Consumer scheduling in DR. 
83 Carrasqueira et al. [134] 2017 Bi-level EA, Bi-level PSO Determine the optimal power prices retailer can set to maximize profit under 

consumers’ DR strategies to minimise cost. 
84 Cort�es-Arcos et al. [145] 2017 NSGA-II Multi-objective scheduling for RTP. 
85 Herath and Venayagamoorthy 

[158] 
2017 Multi-objective PSO Load scheduling for DR. 

86 Kazemi et al. [137] 2017 Gray Wolf Optimiser, GA DR appliance scheduling. 
87 Lin et al. [291] 2017 Autoregressive ANN, GA Management of a water heater under dynamic pricing. 
88 Cavalca et al. [157] 2018 Stochastic population PSO Load scheduling for price-based DR. 
89 Veras et al. [252] 2018 NSGA-II Load scheduling in HEMS for DR. 
90 Zhang et al. [146] 2018 NSGA-II Load scheduling strategies for industrial processes. 
91 Jiang [256] 2019 NSGA-II Scheduling of an integrated system for DR. 
92 Lu et al. [257] 2019 NSGA-II Load & PV generation management under dynamic pricing. 
93 da Silva et al. [144] 2020 NSGA-III Home appliance scheduling for DR.  

Design of pricing/incentive schemes  
94 Alves et al. [138] 2016 GA Determine optimal pricing scheme. 
95 Meng et al. [139] 2018 GA Two-level distributed pricing optimisation framework, for the retailer to determine 

optimal electricity prices. 
96 Herath et al. [165] 2019 Constrained PSO, AIS ToU pricing mechanism. 
97 Hu et al. [148] 2019 NSGA-II Multi-objective optimisation of ToU pricing.  

Customer segmentation  
98 Spinola et al. [86] 2017 PSO, Simulated Annealing, K-means Aggregation model.  

Artificial Neural Networks  
Forecasting in DR  

99 Escriv�a-Escriv�a et al. [194] 2011 ANN (1 hidden layer) Baseline load forecast. 
100 Jiang and Tan [186] 2012 ANN (1 hidden layer) Prediction of electricity prices. 
101 Xu et al. [197] 2013 ANN (1 hidden layer) Load forecasting. 
102 Grant et al. [196] 2014 ANN (1 hidden layer) STLF for controlled peak demand in DR. 
103 Hassan et al. [292] 2014 ANN (1 hidden layer) Load forecasting, price forecasting. 
104 Lee and Moon [177] 2014 Autoregressive RNN Load forecasting. 
105 Qifang Chen et al. [172] 2014 Wavelet neural network Real-time price forecasting. 
106 Schachter and Mancarella 

[200] 
2014 ANN (1 hidden layer) STLF for DR. 

107 Basnet et al. [218] 2015 FF-DNN Price forecasting. 
108 Paterakis et al. [199] 2015 ANN and wavelet decomposition Load pattern forecasting considering DR price signals. 
109 Severini et al. [202] 2015 ANN (1 hidden layer) DA forecasting of dynamic prices. 
110 Takiyar [203] 2015 ANN hybridised with PSO Peak demand forecasting for DR. 

(continued on next page) 
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Table 1 (continued )  
Ref Year Method(s) Objective(s) 

111 Basnet et al. [215] 2016 FF-DNN Peak demand forecasting for DR. 
112 Jazaeri et al. [184] 2016 Non-linear regression, ANN (1 hidden 

layer) 
Baseline estimation. 

113 Klaassen et al. [67] 2016 ANN (1 hidden layer), multiple 
regression 

Estimation of the DR potential of residential heating systems for DR 

114 Pal and Kumar [192] 2016 ANN (1 hidden layer) Prediction of RTP day-ahead prices. 
115 Paterakis et al. [173] 2016 ANN and wavelet decomposition Load pattern forecasting considering DR price signals. 
116 Singh et al. [174] 2016 Autoregressive ANN Load forecasting. 
117 MacDougall et al. [183] 2016 ANN (1 hidden layer) Estimation of available flexibility of a heterogeneous VPP. 
118 MacDougall et al. [65] 2016 ANN (1 hidden layer), multivariate 

linear regression 
Estimation of aggregate flexibility characteristics. 

119 Ninagawa et al. [187] 2016 ANN (1 hidden layer) Prediction of aggregated power curtailment in DR. 
120 Huang et al. [216] 2017 FF-DNN Prediction of electricity prices for RTP. 
121 Liu et al. [176] 2017 Elman Neural Network STLF for DR. 
122 MacDougall et al. [181] 2017 ANN (1 hidden layer) Estimation of VPP’s available capacity. 
123 MacDougall et al. [182] 2017 ANN (1 hidden layer) Capacity prediction of a homogeneous VPP. 
124 Akhavan-Rezai et al. [190] 2018 ANN (1 hidden layer) Forecast of future EVs arrivals in smart parking lots, whose batteries are used for DR. 
125 Aoyagi et al. [201] 2018 ANN (1 hidden layer) Prediction of electricity prices for DR. 
126 Arabzadeh et al. [285] 2018 Autoregressive ANN DA heat demand prediction of a building. 
127 Arunaun and Pora [64] 2018 ANN (1 hidden layer) Baseline estimation. 
128 Giovanelli et al. [214] 2018 FF-DNN Prediction of the FCR DA prices. 
129 Ponocko and Milanovic [191] 2018 ANN (1 hidden layer) Load forecasting for DR. 
130 Rahman et al. [293] 2018 Deep RNNs Medium-to-long term load forecasting for DR. 
131 Mohi Ud Din et al. [217] 2018 PCA, FF-DNN, R-DNN Appliance-level STLF. 
132 Ninagawa et al. [188] 2018 ANN (1 hidden layer) Prediction of changes in the response of the air conditioning power in DR. 
133 Xie et al. [141] 2018 ANN (1 hidden layer) trained with GA & 

PSO 
Prediction of initial compensation price in Interruptible DR. 

134 Liu et al. [63] 2019 LSTM Identification of DR participants’ response behaviour.  

Scheduling and Control of Loads for DR  
135 Gavgani et al. [294] 2014 ANN (1 hidden layer) Voltage security margin calculation. 
136 Shahgoshtasbi and Jamshidi 

[284] 
2014 Associative memory ANN Intelligent lookup table subsystem for EMS. 

137 Lee et al. [175] 2015 ANN (1 hidden layer) Model thermal behaviour of HVAC system. 
138 Ahmed et al. [211] 2016 FF-DNN HEM controller considering DR signals. 
139 Hafez and Bhattacharya [189] 2018 ANN (1 hidden layer) Model EV charging station load used for DR. 
140 Kim [179] 2018 ANN (1 hidden layer) Modelling of thermal discomfort in DR.  

Design of pricing/incentive schemes  
141 Holtschneider and Erlich 

[180] 
2013 ANN (1 hidden layer) Description of consumers’ behaviour. 

142 Gamage and Gelazanskas 
[198] 

2014 ANN (1 hidden layer) Real-time pricing model. 

143 Dehghanpour et al. [66] 2018 Q-learning, linear regression, ANN (1 
hidden layer) 

Study the behaviour of a day-ahead (DA) retail power market with price-based DR 
from AC.  

Customer segmentation  
144 Kamruzzaman et al. [178] 2018 ANN (1 hidden layer) Classification & identification of hourly loads for DR. 
145 Ryu et al. [213] 2018 Deep convolutional autoencoder DR load profile clustering. 
146 Wang et al. [212] 2018 Deep CNN with SVM layer Inference of consumers’ characteristics.  

Multi-agent Systems  
Scheduling and Control of Loads for DR  

147 Hayakawa et al. [231] 2015 Mechanism design EV charging mechanism for DR.  

Design of pricing/incentive schemes  
148 Kota et al. [235] 2012 Multi-agent mechanism design Cooperatives’ formation for DSM. 
149 Haring et al. [258] 2013 Cooperative Game Theory, Q-learning Contract design for DR. 
150 Liu and Vain [295] 2013 Multiagent-based meta-model Model the price-responsive behaviour in the context of DR 
151 Lopes et al. [243] 2013 Automated Negotiation in DR Creation of tool to support bilateral contracting in electricity market. 
152 Jain et al. [115] 2014 Multi-Armed Bandit Mechanism that designs incentive offers to electricity consumers who have unknown 

response characteristics 
153 Bakr and Cranefield [227] 2015 Shapley value (weighted voting game) Fair rewarding of DR participants. 
154 O’Brien et al. [226] 2015 Cooperative game theory, RL Fair rewarding of DR participants, approximate Shapley value with RL. 
155 Ma et al. [233] 2016 Mechanism design Selection of agents for DR. 
156 Ma et al. [232] 2017 Mechanism design Selection of agents for DR. 
157 Meir et al. [234] 2017 VCG auction Contract design for DR. 
158 Nishiyama et al. [224] 2017 Shapley value, core concept Analysis of cooperative DR structure. 
159 Yu and Hong [296] 2017 Game theory (Stackelberg) Incentive-based DR resource trading framework. 
160 Li et al. [185] 2018 Cooperative game theory Prediction of electricity prices in Customer Coupon DR. 
161 Robu et al. [225] 2018 Cooperative game theory Propose a prediction-of-use (POU) tariff.   
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Table 2 
Summary of companies using AI for DR services.   

Company Country Organisation 
type 

Technology Type of market 

1 Actility [297] Global company IoT, VPP smart utilities, service coordination 
2 AutoGrid [298] US company Patented predictive controls technology, real-time 

optimisation energy, AI, big data, VPP 
DR, auto-DR, C&I, storage 

3 BeeBryte [299] France, Singapore start-up cloud-based intelligence software Automatic & real-time control of demand-side 
flexibility for DR 

4 Bidgely [300] US start-up AI, patented learning techniques DR coordination, gas disaggregation, grid 
services 

5 CLEAResult [301] US company IoT, AI DR, grid balancing, HEMS 
6 cyberGRID [302] Austria company VPP, scalable ICT DR, auto-DR ICT development 
7 E.ON [303] UK company VPP system DR 
8 Enbala [304] Canada company closed-loop real-time optimisation of DERs, ML VPP, 

distributed bidding system 
load control, DR, auto-DR, forecasting 

9 Enel X [305] Global company Data-science driven behavioural software DR for businesses and utilities, demand 
management 

10 Energy Pool [306] UK, France, Belgium company latest industry standard technology, optimisation auto-DR, energy management 
11 Enervalis [307] Belgium company Cloud Platform, Demand& production Forecasting HEMS, DR tools, DER production 
12 Engie [308] France company AI, VPP, optimisation algorithms HEMS, DR 
13 EnPowered [309] Canada start-up AI computing & ML technologies peak demand prediction, market response 

prediction for DR 
14 Entelios [310] Norway, Sweden, 

Germany, UK 
company industry standard hardware technology, cloud-based 

software 
DR aggregator, DR for industry and commercial 
sectors, grid services, energy trading 

15 Faraday Grid [311] UK start-up patented hardware and software power flow, energy trading 
16 Flexitricity [312] UK company data-driven modelling DR, electricity and gas trading, DR aggregator, 

supplier 
17 Greensmith Energy 

[313] 
US company VPP, ML, ANNs, historic and real-time data analytics Energy storage, grid services 

18 GridBeyond [273] UK, Ireland company cloud-based platform, ML, optimisation FFR, grid services, DR aggregator, forecasting for 
frequency and balancing mechanism 

19 GridIMP [314] UK start-up AI, IoT DR for domestic sites, load control 
20 Honeywell [315] Global company wifi-enabled smart thermostats peak load shaving, auto-DR 
21 Itron [316] US company cloud-based software DR, energy management, load control 
22 Kiwi Power [317] UK company latest industry standard technology DR aggregator, static, dynamic FFR, mainly 

industrial, big commercial, energy storage 
23 kWIQly [318] Switzerland start-up ML, pattern-detection, auto-DR, energy efficiency improvements, 

diagnostics 
24 Levelise [319] UK start-up AI, optimisation, cloud-based platform DR for domestic sites using hot water tanks, 

domestic asset aggregator, energy storage 
25 Limejump [320] UK company VPP, cloud-based software balancing mechanism, supplier, FFR, CM 
26 Nexant [321] Global company latest industry standard technology, network 

modelling tools, transmission system risk analysis 
tools 

grid services, DR, peak shaving, consultancy 

27 North Star Solar 
[322] 

UK start-up self-learning algorithms HEMS with Battery, peak shaving & Grid Support 

28 Open Energi [323] UK company ML co-ordination of DER and trade flexibility across 
evergy markets 

29 Regalgrid [324] Italy start-up patented hardware and cloud-based software, real- 
time aggregation, VPP 

DR, energy sharing, EV management, energy 
storage 

30 REstore [325] France, UK, Benelux, 
Germany 

company cloud-based platform DR, frequency control, capacity markets 

31 Senfal [326] Netherlands start-up AI, innovative software, trading technology 
algorithm 

auto-DR, energy storage, DR for industrial sites, 
energy trading 

32 Social Energy [327] UK company cloud-based AI and software platform, VPP DR, supplier, energy storage, dynamic FFR 
33 Solo Energy [328] UK start-up VPP, blockchain, P2P energy storage, energy trading 
34 Tempus Energy 

[329] 
Australia start-up AI market forecasting, load control, grid services, 

smart charging 
35 There Corporation 

[330] 
Finland start-up cloud-based software DR for domestic sites, load control 

36 ThermoVault [331] Belgium start-up self-learning algorithms Grid balancing, peak shaving 
37 tiko [332] Switzerland start-up VPP, EMS, real-time aggregation, cloud-to-cloud 

integration 
sub-second frequency response, DR for small to 
medium businesses and residential assets 

38 Upside Energy [274] UK start-up cloud-based platform, advanced algorithms, AI DR for commercial, industrial and domestic sites 
39 Virtual Power 

Solutions [333] 
UK, Portugal start-up IoT, big data, cloud platform DR tools, EV charging, PV production 

monitoring 
40 Voltalis [334] France company real-time optimisation, ML peak load shaving, DR   
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Table 3 
Summary of European funded industrial projects using AI for DR services.   

Project Name Time Scale Aims of the Project Technology 
1 AnyPLACE [335] 2015–2017 EMS capable of monitoring and controlling local devices according to the 

preferences of endusers 
Optimal Scheduling based on Price& Utility 
requirements 

2 Flex4Grid [336] 2015–2017 Management of Prosumers’ flexibility using advanced information technology 
solutions 

Dynamic Pricing & short term forecast 

3 FLEXMETER 
[337] 

2015–2017 Development of a smart meters and associated architecture to provide DR and 
other services 

Load forecasting with ANN DR optimisation 

4 UPGRID [338] 2015–2017 Provide solutions for the DSO to enable flexible demand and production through 
new metering and analysis solutions 

Load clustering & forecasting K-means & ANN 

5 RealValue [339] 2015–2018 Create economic value from load flexibility (Thermal storage& batteries) in the 
wholesale electricity market 

Optimized scheduling& stochastic models for 
prediction 

6 FLEXICIENCY 
[340] 

2015–2019 Implementation of a common data exchange platform enabling novel energy 
services in the electricity retail market 

Customer power curve profiling 

7 FutureFlow [341] 2016–2019 Integration of end-users’ loads in the frequency response market for grid services Aggregation tools Scheduling, forecasting 
8 WiseGrid [342] 2016–2020 Develop ICT services for storage to increase the share of Renewable Energy Sources 

& EVs 
DSM including Load forecasting using SVM 

9 InterFlex [343] 2017–2019 Interaction assessment between flexibilities provided by the energy market 
(storage, DR, EV) and the distribution grid 

optimal scheduling, forecasting 

10 INVADE [344] 2017–2019 Cloud based flexibility management system (batteries, EVs, Heat) to increase DER 
integration 

EV load & heat forecasting 

11 TESTBED [345] 2017–2019 Develop efficient methods that optimise ICT (information and Communication 
Technologies) infrastructure for VPP and DR 

Multi Objective Optimisation for DR 

12 DRIvE [346] 2017–2020 Platform to optimise flexibility of residential & tertiary loads for grid services and 
economic revenues 

Multi-Agent Systems Optimisation STLF with 
ANNs 

13 Dominoes [347] 2017–2020 Local market for DR, grid management & Peer-to-peer solutions Forecasting 
14 Integrid [348] 2017–2020 Allow end-users to access electricity markets through aggregators, utilities to 

provide services to the grid 
Probabilistic price forecasting Support vector 
based flexibility forecasting 

15 InteGRIDy [349] 2017–2020 Optimal coordination of DER, storage & loads& profiling of production & load Forecasting 
16 GOFLEX [350] 2017–2020 Market based management of flexibilities (load & Production) Optimal Dynamic Pricing Logistic Regression 

Forecast 
17 FLEXCoop [351] 2017–2020 Complete automated DR framework & tool suite for residential electricity 

consumers. 
Load clustering & forecasting Prosumer behaviour 
and comfort modelling 

18 DELTA [352] 2018–2021 Decentralised & distributed platform for DR (residential & tertiary loads, DER, 
storage) 

Multi-Agent Systems, Loads clustering, Forecast, 
Incentives Schemes 

19 Osmose [353] 2018–2021 Transmission grid level synchronization of flexibilities including DR Weather forecast & Dynamic Thermal Rating 
20 þCityxChange 

[354] 
2018–2023 DR & DSM services for Positive Energy Blocks VPP, load forecasting, network design and analysis 

21 ReFLEX [355] 2019–2022 Use of energy storage to increase the use of renewable energy production Weather & demand forecast  
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